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ABSTRACT 

Microelectronic packages with ball grid array (BGA) solder interconnects are 

subjected to thermomechanical load cycles during fabrication and throughout service 

life. The lead-free solder joints of BGA respond to both temperature and strain-rate 

depends on the exposed temperature cycles. Consequently, damage-based models are 

required for predicting accurately the reliability of the package. The analysis requires 

temperature and strain-rate dependent properties of the solder alloy and the 

solder/intermetallic compound (solder/IMC) interfaces. Solder/IMC interfaces of the 

solder interconnects have a high susceptibility to failure in Sn-4.0Ag-0.5Cu (SAC405) 

solder joints. The purpose of this research is to establish temperature and strain-rate 

dependent damage-based models for describing the failure process of solder 

interconnects. In this study, reliability temperature cycles with high heating and 

cooling ramps were used to examine the characteristic evolution of stresses and 

inelastic strains of the solder joints in the BGA package. A 3D finite element model of 

the BGA package under reflow cooling from 220 to 25 °C and subsequent temperature 

cycles between 125 to -40 °C was evaluated in predicting the damage initiation, 

propagation, and solder/IMC interface fracture process of the solder joints. Unified 

inelastic strain constitutive (Anand) model with optimized model parameters and the 

cohesive zone model was implemented to predict the creep-viscoplasticity effect of 

the bulk solder joint and the fracture of brittle solder/IMC interface. It was found that 

the most critical solder joint is located underneath the silicon die corner with the 

highest equivalent inelastic strain and von Mises stress under reflow cooling. As 

expected, the strain rate dependency of the damage model shows a faster inelastic 

strain rate which is 4 x 10-5 s-1 found in the critical solder joint after three temperature 

cycles with 900 second dwell time as compared to inelastic strain rate under reflow 

cooling. The accumulation of inelastic strain is confined to the small edge region at 

the solder/IMC interface at the board side of the assembly. Damaged location in the 

bulk solder occurs closer to the edge of the solder/IMC interface throughout the 

temperature cycles. Based on the parametric study, the higher ramp rate of 370 °C/min 

has resulted in greater inelastic strain accumulation compared to lower ramp rates of 

11 and 22 °C/min in the solder joint with an inelastic strain rate of 1.5 x 10-3 s-1. The 

validated finite element model with damage-based material response enables the fast 

generation of reliability data of the solder joints in newly designed BGA packages for 

competitive time-to-market of the product.  
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 ABSTRAK  

Pakej mikroelektronik dengan rangkaian tatasusunan grid bebola (BGA) bagi 

sambungan pateri saling hubungan mengalami kitaran beban termomekanik semasa 

fabrikasi dan juga sepanjang penggunaannya. Tindakbalas sambungan pateri bebas 

plumbum di dalam BGA terhadap kadar terikan dan suhu bergantung kepada kitaran 

suhu yang didedahkan. Oleh itu, model berasaskan kerosakan diperlukan untuk 

meramalkan kebolehpercayaan pakej secara tepat. Analisis memerlukan sifat 

kebergantungan suhu dan kadar terikan pateri aloi dan antara muka pateri/sebatian 

antara logam (pateri/IMC). Antara muka pateri/IMC saling hubung pateri mempunyai 

kerentanan yang tinggi untuk gagal dalam sambungan pateri Sn-4.0Ag-0.5Cu 

(SAC405). Tujuan penyelidikan ini adalah untuk menentukan model berasaskan 

kerosakan yang bergantung pada kadar suhu dan terikan bagi menggambarkan proses 

kegagalan sambungan pateri. Dalam kajian ini, kebolehpercayaan kitaran suhu pada 

tanjakan pemanasan dan penyejukan yang tinggi digunakan untuk meneliti evolusi 

ciri-ciri tegasan dan keterikan tidak anjal sambungan dalam pakej BGA. Model unsur 

terhingga 3D bagi pakej BGA di bawah penyejukan ulang aliran dengan julat suhu 

antara 220 hingga 25 °C dan kitaran suhu berturutan dengan julat suhu antara 125 

hingga -40 °C dinilai untuk meramalkan permulaan kerosakan, perambatan kerosakan 

dan proses retakan antara muka pateri/IMC. Model konstitutif terikan tidak anjal 

(Anand) dengan parameter model yang dioptimumkan dan model zon jeleket 

dilaksanakan untuk meramalkan kesan rayapan-plastikvisko sambungan pateri pukal 

dan retakan rapuh antara muka pateri/IMC. Ia mendapati bahawa sambungan pateri 

yang paling kritikal adalah yang terletak di bawah sudut dai silikon dengan terikan 

tidak anjal dan tekanan von Mises yang paling tinggi di bawah penyejukan ulang 

aliran. Seperti yang dijangkakan, kebergantungan kadar terikan dengan kadar tanjakan 

bagi model kerosakan menunjukkan kadar terikan tidak anjal lebih tinggi iaitu 4x10-5 

s-1 pada kawasan pateri kritikal selepas dikenakan tiga kitaran suhu dengan masa inap 

900 saat berbanding dengan kadar terikan tidak anjal di bawah penyejukan ulang 

aliran. Penumpukan terikan tidak anjal tertumpu di kawasan pinggir yang kecil di 

antara muka pateri/IMC di bahagian tepi papan pemasangan. Lokasi kerosakan dalam 

pateri pukal berlaku dekat dengan pinggir antara muka pateri/IMC sepanjang kitaran 

suhu dikenakan. Berdasarkan kajian parametrik, kadar tanjakan yang lebih tinggi 370 

°C/min mengakibatkan penumpukan terikan tidak anjal dalam sambungan pateri 

dengan kadar 1.5 x 10-3 s-1 berbanding dengan kadar tanjakan yang lebih rendah iaitu 

11 dan 22 °C/min. Model unsur terhingga yang telah disahkan melalui tindak balas 

bahan berasaskan kerosakan membolehkan penjanaan kebolehpercayaan data bagi 

sambungan pateri yang lebih cepat ketika merekabentuk pakej BGA yang baharu 

dengan masa pasaran produk yang lebih kompetitif.  
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INTRODUCTION 

 Background of the Study 

Microelectronic packages offer electrical connections, mechanical and 

environmental support, and thermal connections through lead-free solder interconnect. 

Ball grid array (BGA) packages with lead-free solder joints are widely utilized in the 

electronics industry due to their reliability with many levels of interconnects and 

enhanced connectivity with smaller thermal resistance. The interconnections could be 

pinned, formed conductors, terminals, or flip-chip solder bumps. Flip-chip bonding is 

the most favorable interconnections due to high density and reliable interconnection 

technology [1].  

The flip-chip package emerged as an attractive solution for complicated and 

highly integrated systems with multiple functions such as mobile applications. It is 

keeping up with the times and evolving new innovative solutions to serve advanced 

technologies such as 2.5D and 3D. The flip-chip is used in the global light-emitting 

diode (LED), laptops, desktops, consumer applications, and automotive sector. The 

primary key players in the flip-chip market include Amkor Technology Inc., UTAC 

Holdings Ltd, Chipbond Technology Corporation, Intel Corporation, Taiwan 

Semiconductor Manufacturing Company Limited, TF AMD Microelectronics Sdn. 

Bhd, Global Foundaries U.S. Inc., Powertech Technology Inc., and TongFu 

Microelectronics Co. 

Although emerging markets are driving to fine pitch copper (Cu) pillar bumps 

[2], conventional lead-free solder joints for BGA packages are still needed in 

packaging technology to meet customer’s demand [3, 4]. Towards the development of 

semiconductor and electronic packaging technology, flip-chip ball grid array 

(FCBGA) assembly has become necessary in the electronics industry due to the high 
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interconnection density and lower cost [4, 5]. The new generation lead-free solders are 

designed for applications in a harsh environment. Therefore, they need to have 

excellent thermal and mechanical resistance under temperature cycling and long dwell 

conditions. In a real application, the solder joint is subjected to various types of loading 

such as thermal reflow [6, 7], thermal cycling [8-10], and impact [11-13] that caused 

thermal and mechanical stresses. Table 1.1 shows an example of the temperature 

operating environments for various electronics applications in different fields. For 

example, BGA packages are needed in vehicle engine control, braking, and 

communication in automotive applications. 

Table 1.1 Examples of usage conditions in various fields [14] 

Field 
Temperature 

range 
Cycles/year Service time Failure rate 

Digital cameras 0 to 60 °C 365 1 year 1 % 

Smart watch 15 to 60 °C 1460 5 years 0.1 % 

Telecom -40 to 85 °C  365 7 to 20 years  0.01 % 

Aircraft -55 to 95 °C 365 20 years 0.001 % 

Automotive -55 to 95 °C 100 10 years 0.1 % 

Previous work has reported that lead-free solder joints are susceptible to brittle 

fracture nature due to the rate of intermetallic phase coarsening in the bulk solder under 

prolonged temperature and mechanical load cycles [15]. In the critically-stressed 

solder joint, failure occurs by progressive accumulation of damage throughout the 

temperature cycles. Final fracture is contributed by crack initiation and subsequent 

crack propagation processes. Besides, fast loading cycles are likely to introduce strain 

rate effects on the solder response and dictate the type of failure. The slow strain rate 

may deform the critical solder joint plastically, resulting in ductile failure across the 

bulk solder. In contrast, high strain rate loading may cause brittle fracture near the 

solder/intermetallic compound (solder/IMC) interface [16, 17].  

Consequently, accurate reliability prediction of solder joints should 

acknowledge the progressive damage process under temperature and strain rate effects. 

Researchers need to study further the deformation behavior and damage process of 
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lead-free solders over a wide range of temperature and strain rates, particularly at 

higher straining rates. Most of the open literature is investigated on the failure process 

mechanism in the brittle solder/IMC interface solder joints at room temperature 

conditions [18, 19].  

Experiments such as board-level drop test (BLDT), solder shear push test, ball 

pull test, and impact test are frequently carried out to examine the mechanics behavior 

of BGA solder joints [15, 20-27]. In high-speed ball shear or pull test, the solders are 

sheared or pulled individually to examine the brittle force-displacement response of 

the solder joint. The testing parameters such as the geometry of the solder ball, aging 

duration and temperature, bulk solder composition, shearing speed, gripping pressure, 

and shear tool stand-off height should take into consideration while conducting the 

tests as the resulting force would be affected. There is some evidence that brittle 

materials had cracked near the IMC or along the IMC layer under high strain rate 

mechanical loading [25, 26]. Prediction of solder joint reliability under temperature 

cycling experiments and impact conditions is costly and time-consuming. Such 

conditions motivate the present study to employ a finite element analysis approach for 

predicting the failure process of lead-free solder interconnects. 

The research work is an ongoing collaboration with Intel Technology, Penang, 

Malaysia. 

 Problem Statement 

Lead-free tin-silver-copper (Sn-Ag-Cu) solder alloys in the BGA package 

experience a high temperature of solder reflow to melt the solder alloys. During solder 

reflow cooling, the solder joints experience a large variation in reflow cooling 

temperature caused by thermal mismatches between various materials in the package 

having dissimilar coefficients of thermal expansion. The solder joints are experiencing 

temperature excursion between -40 °C and 125 °C during reliability temperature 

cycles. As the solder joints are subject to heating and cooling rate during temperature 

cycles, the thermo-mechanical deformation response of the solder joints is dependent 
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on temperature and strain rate conditions [28, 29]. Progressive damage in solder joints 

contributes to device failure. Then, the reliability of the solder joint becomes a 

significant concern in electronic industries since it is the weakest link in the typical 

BGA package. The transition from ductile failure to brittle failure occurs at the strain 

rate of 1 s-1 [30] and 10-2 – 10-1 s-1 [17] under tension loading. The solder/IMC interface 

fracture that occurs during temperature cycles needs to be examined. The available 

damage-based models, CZM for the solder/IMC interface and CDM for the bulk solder 

failure are limited to room temperature conditions [19, 31-33]. Thus, this study would 

extend the CZM parameter values as a function of temperature and strain rate effects 

for better prediction accuracy. The development of such a response is significant in 

this research. The effect of temperature and strain rate on the resulting deformation 

response and failure process is demonstrated for the typical BGA package with Sn-

4.0Ag-0.5Cu solder joints. 

 Research Objectives 

The study aims to establish a validated finite element (FE) damage-based 

predictive model for SAC405 solder joints, based on the reflow cooling process and 

the reliability temperature cycles. The specific research objectives are described as 

follows: 

(a)  To quantify temperature- and strain rate-dependent properties of the 

solder/IMC interface of SAC405 solders alloy through a combined 

experimental-FE approach. 

(b)  To establish the effects of temperature and strain rates on the resulting 

deformation response and failure process of the BGA solder joints. 

(c)  To validate the damage-based material model of the SAC405 solder/IMC 

interface on the sensitivity of temperature cycle parameters. 
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 Scopes of the Study  

The present study is focused on the determination of solder/IMC interface 

material properties for use in solder joints reliability prediction, and the research work 

is limited to the following aspects: 

1. SAC405 solder joints with Cu6Sn5 intermetallic compound layer as a 

demonstrator solder material. 

2. Conduct solder ball shear and pull tests of SAC405 solder joints on a BGA 

package using DAGE 4000 bond tester at displacement loading rates ranging 

from 100 µm/s to 600 µm/s to observe rate-dependent response of the solder 

joints. 

3. FE simulations using Abaqus version 6.14 commercial software: 

(a) 3D single solder shear push test (SPT) under rate-dependent loading to 

determine the solder/IMC interface properties. 

(b) BGA test assembly subjected to reflow cooling and temperature load 

cycles incorporated with temperature- and rate-dependent damage-

based models. 

4. Combine experimental results and predicted FE simulation results of solder 

ball SPT to determine the CZM properties of the solder/IMC interface. 

5. Evaluate the bulk solder failure using Rice-Tracey (R-T) damage model and 

CZM formulation to account for temperature-dependent solder/IMC interface 

fracture. 

6. Evaluate the capability of the predicted damage-based models that depend on 

temperature and strain rate using BGA test assembly under reflow cooling 

process and reliability temperature cycles. 
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 Significance of the Study 

Lead-free solder joints in the BGA packages are widely used in electronic 

packaging production. The concern on the reliability of solder joints arises from the 

different thermal and mechanical loading exposed to the materials used in various 

electronic fields. A computational model that can predict the long-term reliability of 

the solder joints is indispensable for the newly-designed BGA packages. The damage 

mechanics-based predictive model developed in this thesis offers an accurate 

prediction of reliability by incorporating the temperature and strain-rate dependent 

parameters. This FE simulation framework shall contribute to the industry 

requirements in developing electronic packages at a low cost by reducing the number 

of experimental testing. This, in turn, shall push the microelectronics industries in 

meeting the requirements for low cost, high reliability, and faster time-to-market of 

new packages.   

 Thesis Layout 

This thesis is divided into seven chapters. In Chapter 1, the background of the 

research and the needs of the study are introduced. The outstanding issue of lead-free 

solder interconnects reliability is described, and the proposed failure mechanism 

model points out. The objectives, scope of work, and significance of this research are 

also presented. 

Chapter 2 reviews the current microelectronic reliability technology. The 

temperature and strain rate material properties of solder material, the formation of 

intermetallic layers during reflow soldering, the role of temperature and strain rate in 

the solder joints reliability, unified constitutive model and damage-based models, 

available mechanical testing for reliability assessment, and summary of previous FE 

simulation work on the mechanical behavior of lead-free solder joint is presented. An 

overview of the literature review is also provided. 
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Chapter 3 illustrates the flowchart of the research work. It includes the details 

of the experimental part and the FE simulation model. The experimental setup and FE 

model configuration of SAC405 solder joints are clarified. The details of FE 

simulation, such as geometry, material properties, loading, and boundary conditions 

are given. The fractographic analysis on the fractured surface after mechanical tests 

are presented.  

Chapter 4 discusses the methodology for determining the CZM interface 

properties of SAC405 solder joints under the solder shear push test. The 

computational-experimental approach is employed to extract the interface properties 

accurately. The dependence of temperature on lead-free solder joints is quantified 

through load-displacement curves at different straining rates. 

In Chapter 5, the reliability of the SAC405 solder joint due to reflow cool-down 

and temperature cycles loading is discussed. The deformation and damage processes 

at the bulk solder and solder/IMC interface are examined. The results in terms of 

evolution and distributions of von Mises stress, accumulated inelastic strain, and 

damage criteria are presented. The damage mechanics are examined by integrating the 

established temperature- and rate-dependent interface properties, as described in 

Chapter 4. 

Chapter 6 discusses the mechanic behavior and damage process on the SAC405 

bulk solder and the brittle solder/IMC interface fracture under temperature cycles 

ranging from -40 to 125 °C. Four temperature cycles load cases (TC1, TC2, TC3, and 

TC4) and one thermal shock (TR1) cycle are simulated in FEA simulation The results 

are presented in terms of the deformation of BGA test assembly, distribution and 

evolution characteristics of stresses and inelastic strain as well as the damage process. 

Chapter 7 presents the conclusion and recommendation of this thesis. The main 

findings and conclusions are highlighted as well as the recommendations for future 

work. 
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