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ABSTRACT

Contemporary thermally-constrained techniques for optimizing dark silicon 

many-core system performance do not use dynamic thermal management efficiently 

and do not consider the wake-up latency of dark cores. This thesis proposes two 

improved techniques to overcome these limitations. First is a dynamic thermal-aware 

performance optimization (DTaPO) technique for dark silicon many-core systems. 

DTaPO optimizes dark silicon many-core system performance under thermal constraint. 

The proposed technique utilizes both task migration and dynamic voltage frequency 

scaling (DVFS) to optimize the performance of a many-core system while keeping the 

system temperature at a safe operating limit. Task migration puts hot cores in low- 

power states and moves tasks to cool dark cores to aggressively reduce chip temperature 

while maintaining high overall system performance. To reduce task migration cold start 

overhead during task migration, source cores keep their level-2 cache content accessible 

to the destination cores. Moreover, task migration is limited among cores sharing the 

last level cache. In the case where task migration cannot be used due to no cool dark 

core destinations being available, DVFS is used to gradually cool the hot cores by 

reducing their frequency. Second, a prediction-based early wake-up (PEW) technique 

for dark cores is proposed to reduce the impact of dark core wake-up latency during the 

task migration process. An online sliding window-based ridge regression is used as the 

prediction model. In real-time, the prediction model uses the previous thermal, power, 

and core status (i.e., active or dark) to predict the subsequent temperature of each core 

. If task migration is expected to be used in the next control period, PEW puts the dark 

cores in a power state with low wake-up latency. Thus, it reduces the time needed by the 

dark cores to start running the migrating tasks, which improves the many-core system’s 

overall performance. Experimental results show that DTaPO improves the system’s 

performance by up to 80% compared to the Optimal Sprinting Patterns technique and 

reduces the temperature by up to 13.6 °C. Moreover, the comparison results show that 

the proposed PEW reduces the application execution time by up to 7.9% and 4.1% 

compared to DTaPO and the fixed-threshold wake-up (FEW) technique, respectively. 

It also shows that the proposed PEW increases the energy-efficiency by up to 5.5% and 

2.3% MIPS/W over DTaPO and FEW, respectively.
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ABSTRAK

Teknik kekangan-haba kontemporari untuk mengoptimumkan prestasi sistem 
banyak-teras silikon gelap tidak menggunakan pengurusan haba dinamik dengan cekap 
serta tidak mengambil kira kependaman bangun teras gelap. Tesis ini mencadangkan 
dua teknik yang ditambah baik untuk mengatasi batasan ini. Pertama ialah teknik 
pengoptimuman prestasi sedar-haba dinamik (DTaPO) bagi sistem banyak-teras silikon 
gelap. DTaPO mengoptimumkan prestasi sistem banyak-teras silikon gelap di bawah 
kekangan haba. Teknik yang dicadangkan menggunakan kedua-dua penghijrahan 
tugas dan penskalaan frekuensi voltan dinamik (DVFS) untuk mengoptimumkan 
prestasi sistem banyak-teras sambil mengekalkan suhu sistem pada had operasi yang 
selamat. Penghijrahan tugas meletakkan teras panas dalam keadaan kuasa rendah 
dan memindahkan tugas kepada teras gelap sejuk bagi mengurangkan suhu cip 
secara agresif sambil mengekalkan prestasi sistem keseluruhan yang tinggi. Untuk 
mengurangkan overhed permulaan sejuk semasa pemindahan tugas, teras sumber 
memastikan kandungan cache tahap-2 mereka boleh diakses oleh teras destinasi. 
Selain itu, pemindahan tugas adalah terhad di kalangan teras yang berkongsi cache 
tahap terakhir. Jika pemindahan tugas tidak boleh dilaksanakan kerana tiada destinasi 
teras gelap sejuk tersedia, DVFS digunakan untuk menyejukkan teras panas secara 
beransur-ansur dengan menurunkan frekuensi teras panas. Kedua, teknik bangun awal 
berasaskan ramalan (PEW) untuk teras gelap dicadangkan untuk mengurangkan kesan 
kependaman bangun teras gelap semasa pemindahan tugas. Regresi rabung berasaskan 
tingkap gelongsor dalam talian digunakan sebagai model ramalan. Dalam masa nyata, 
model ramalan menggunakan bacaan haba, kuasa dan status teras (iaitu, aktif atau 
gelap) untuk meramalkan suhu teras seterusnya. Jika pemindahan tugas dijangka akan 
digunakan dalam tempoh kawalan seterusnya, PEW meletakkan keadaan kuasa teras 
gelap dalam keadaan kuasa dengan kependaman bangun yang rendah. Oleh itu, ia 
dapat mengurangkan masa yang diperlukan oleh teras gelap untuk memulakan tugas 
yang dipindahkan, yang dapat meningkatkan prestasi keseluruhan sistem banyak-teras. 
Keputusan eksperimen menunjukkan bahawa DTaPO meningkatkan prestasi sistem 
sehingga 80% berbanding dengan teknik Pola Pecutan Optimum dan mengurangkan 
suhu sehingga 13.6 C .  Selain itu, hasil perbandingan menunjukkan bahawa PEW yang 
dicadangkan mengurangkan masa pelakuan aplikasi masing-masing sehingga 7.9% 
dan 4.1% berbanding dengan DTaPO dan teknik bangun ambang tetap (FEW). Ia 
juga menunjukkan bahawa PEW yang dicadangkan meningkatkan kecekapan tenaga 
masing-masing sehingga 5.5% dan 2.3% MIPS/W berbanding DTaPO dan FEW.
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CHAPTER 1

INTRODUCTION

The evolution of electronic components has been continuing since the transistor 

was invented. Moore’s law [1] predicted that the number of transistors on a chip would 

double every two years, while Dennard scaling [2] predicted that power downscaling is 

proportional to technology size. These two laws were the key concepts for increasing 

processor performance. As the size of fabrication technology decreases, it becomes 

more difficult to scale down the supply voltage as it approaches the threshold voltage. 

Thus, further increases in frequency are infeasible due to increasing power densities 

that directly contribute to increasing chip temperature. As a solution, more cores on 

a single chip are integrated to improve processing performance. According to the 

international technology roadmap for semiconductors (ITRS) [3], the number of cores 

in future many-core systems will increase to hundreds in mobile devices and thousands 

in servers.

Although the many-core system is a promising solution for improving 

processing performance, further reducing technology size without downscaling the 

supply voltage would increase the many-core system power density, leading to increase 

chip temperature. To ensure a safe chip operating temperature, only some cores can be 

active (i.e., turned on) while others should be dark (i.e., turned off). Dynamic Thermal 

Management (DTM) manages active cores to run at different voltage/frequency levels. 

Consequently, turning some cores off will prevent a many-core system from fully 

utilizing a large number of cores for improved processing performance. This problem 

is called the dark silicon problem [4]. It is expected to be significant in future many-core 

systems [5].
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Transistor scaling

□  Active core 16 nm 11 nm 8 nm
□  Dark core

Figure 1.1 An illustration of the technology node’s impact on the dark silicon 
percentage.

1.1 D ark Silicon Many-Core System and Its Therm al Constraints

The dark silicon in modern many-core systems is considered the most significant 

performance limitation because it prevents many-core systems from utilizing and 

gaining improved performance from a large number of processing cores. Increasing 

the number of cores increases the dark silicon ratio, which represents the portion of a 

chip that cannot be used. Figure 1.1 illustrates the impact of the technology node on 

the dark silicon ratio. Reducing technology size allows the integration of more cores 

on a chip. However, integrating more cores means more heat due to increasing power 

density. Studies in [4,6] predicted that for the 8 nm technology node, more than half 

of the cores on a chip would be dark cores. This prediction has prompted researchers 

to find techniques to maximize multi/many-core system performance for dark silicon 

while maintaining safe thermal operations.

Thermal constraints are the most significant bottlenecks to maximizing 

performance, especially in modern chips with extremely high power densities. A 

chip generates heat as a result of power consumption. However, temperature changes 

do not occur instantaneously with changes in power consumption due to the thermal 

capacitance of chip elements [7]. The temperature reaches a steady state when sufficient 

time has passed with no changes in power. Before reaching the steady-state temperature, 

the intermediate temperatures are called transient temperatures, as shown in Figure 1.2. 

However, the power consumption in a many-core system is highly changeable with 

time. It is critical to keep the chip’s temperature under a specific critical value called 

the threshold temperature. Otherwise, a permanent failure of the chip may occur due 

to the high temperatures. DTM techniques should be applied to keep the chip at a safe 

operating temperature.

2
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1.2 Problem Statem ent

DTM is an efficient technique for optimizing cores’ performance under thermal 

constraints [9]. Task migration and dynamic voltage frequency scaling (DVFS) are 

the most commonly used DTM techniques for run-time thermal management. The 

task migration technique moves tasks from a hot core to a cool core to reduce system 

temperature and balance core processing loads such that all cores can operate at their 

maximum frequency under safe thermal constraints. Migrating tasks to dark cores can 

improve many-core system performance because dark cores are cool and can run at 

maximum frequency. Moreover, tasks are moved only in one direction after activating 

the dark core, i.e., a task is moved from an active core to the dark core.

On the other hand, using DVFS can guarantee that the average temperature 

is not higher than the critical core temperature by reducing the voltage/frequency 

level, which reduces the power consumption and chip temperature. However, using 

task migration and DVFS may cause performance degradation due to task migration 

overhead and downscaling the voltage/frequency level to avoid thermal violations. 

Thus, the resource management needs to address the task migration overhead due to the 

cold start cache misses and wake-up latency of dark cores. Additionally, downscaling 

the voltage/frequency should only be used when no cool cores are available.

Some previous thermal constraint optimization techniques use complex 

mapping and pattern mechanisms unsuitable for run-time thermal management [5 ,10]. 

Other techniques use a computation sprinting mechanism, which increases cores’ 

frequencies for a short period using DVFS [11-19]. However, sprinting techniques 

may decrease the chip lifetime due to high peak temperatures. Some techniques that

3



use DTM, i.e., task migration/DVFS, avoid migration to dark cores due to cold start 

cache misses overhead [20-22 ]. However, in modern many-core systems, the core goes 

into multiple low-power states before it completely shuts off, as implemented in the 

Intel Xeon Phi [23]. During the first low-power state, its L2 cache stays active, by 

which the destination core can access data from it rather than from the shared L3 cache 

or the main memory.

Task migration is widely used for controlling the temperature and improving 

the utilization of many-core systems. However, a large wake-up latency is required to 

activate the dark cores, which degrades the overall performance. Some studies used 

dark cores to migrate the tasks [24-27]. However, all these studies did not provide 

a solution to the wake-up latency of dark cores due to task migration. Waking up 

dark cores early just before performing the task migration can improve the overall 

system performance. Several previous studies proposed an early wake-up of dark 

cores [28,29]. However, these studies depend on a fixed threshold to switch the dark 

cores to an idle state. Switching dark cores to idle mode makes the chip heats up. 

This results in the DTM being used more frequently, which further degrades the system 

performance. Moreover, using a fixed wake-up threshold may not suit high thermal 

fluctuating applications, such as Fluidanmate (see Section 5.3.2). Instead of using a 

fixed wake-up threshold, a simple predictive model can be used to determine when to 

wake up the dark cores at run-time.

In summary, dark silicon many-core system performance can be improved by 

addressing the following problems:

1. The lack of efficiency in using DTM techniques to improve dark silicon many-

core system performance while keeping system temperature at a safe operating

limit.

2. The large wake-up latency of the dark cores when waking from a dark state.
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1.3 Objectives

The main aim of this thesis is to improve the overall dark silicon many-core 

system performance under thermal constraints by utilizing task migration. In specific 

terms, the objectives of this thesis are as follows.

1. To propose a dynamic thermal-aware performance optimization technique for 

dark silicon many-core systems. The proposed technique utilizes task migration 

to aggressively reduce system temperature and maintain a high overall many- 

core system performance. If task migration cannot be used due to very high core 

temperatures, DVFS is used to gradually reduce only the hot core frequencies to 

maintain the system performance while keeping the system temperature within 

a safe operating limit.

2. To propose a prediction-based early dark cores wake-up technique to reduce the 

impact of dark cores wake-up latency during the task migration. The proposed 

technique utilizes a prediction model to predict the future temperatures of cores 

and an early wake-up algorithm to put the dark cores in a power state with low 

wake-up latency based on the predicted temperatures.

1.4 Research Scope

This section is an outline of the assumptions and restrictions regarding the work 

presented in this thesis.

1. The optimization goal of this work is the performance in terms of completion 

time, while the temperature is used as a thermal constraint.

2. This work focuses on improving many-core performance from the computation 

perspective. The communication perspective is out of the scope of this work. As 

many-core system task mapping requires placement consideration, application 

mapping is not considered in this work.

3. Many-core architecture:
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(a) A many-core system with shared memory was used to evaluate 

the proposed work. The simulated cores have a homogeneous 

microarchitecture, i.e., they have the same instruction set architecture 

(ISA), and a heterogeneous frequency, i.e., each core can run at a 

different frequency.

(b) Many-core system supports multiple power states.

(c) The many-core system supports preemptable tasks that can be stopped 

and moved to another core to continue the execution.

(d) A mesh network-on-chip (NoC) is used as a communication medium in 

a many-core system.

4. Simulation environment:

(a) Sniper simulation [30] is used to simulate a many-core system and 

generate performance traces.

(b) McPAT power model [31] is used to extract the power-related 

information of the applications.

(c) HotSpot thermal simulator [32] is used to generate temperature traces.

(d) Compute- and memory-intensive applications from SPLASH-2 [33] and 

PARSEC [34] benchmark suites are used to evaluate the efficiency of 

the proposed work.

5. Completion time, temperature, mean absolute error (MAE), root mean square

error (RMSE), and a million instructions per second per Watt (MIPS/W) are

used to evaluate the proposed work.

1.5 Thesis Organization

The rest of the thesis is structured as follows.

Chapter 2 provides the theoretical background and an overview of system 

performance. It presents a brief introduction to the dark silicon problem. This chapter 

also reviews different types of dark silicon optimization techniques. It also presents

6



related works on optimizing the performance of dark silicon many-core systems under 

thermal constraints.

Chapter 3 describes the proposed methodology for the work done in this thesis. 

This includes a general overview of the proposed techniques, the step-by-step research 

approach, the design environment and simulation tools used to validate the proposed 

work, and the performance metrics used to evaluate and measure the proposed work.

Chapter 4 proposes a dynamic thermal-aware performance optimization 

(DTaPO) technique for dark silicon many-core systems. The end of this chapter 

presents the performance of the proposed method. It describes the proposed 

DTaPO methodology, including the system model and the proposed algorithm. The 

experimental setup and performance evaluation are presented at the end of this chapter.

Chapter 5 proposes a prediction-based early wake-up (PEW) technique for the 

dark cores technique that utilizes an online sliding window-based ridge regression (RR) 

to reduce the wake-up latency of dark cores during the task migration. It describes the 

proposed PEW methodology, including the online ridge regression prediction model 

and the early wake-up algorithm. The experimental setup and performance evaluation 

are presented at the end of this chapter.

Chapter 6 summarizes the research work, highlighting the effectiveness of the 

proposed work and outlining future research directions.
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