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ABSTRACT 

Gold (Au) is a precious metal that has low toxicity but has vast applications 

and high market prices.  There is an increasing interest in the catalytic application of 

Au due to its unique properties.  However, the global resources of Au are quite limited, 

thus recovery of Au from waste solution is a challenging and important task.  Hence, 

this research focuses on the adsorption of Au(III) ions on a thiol based adsorbent and 

its subsequent bio-reduction to Au(0).  Thioctic acid functionalised silica coated 

magnetite nanoparticles (RS-SR-NH-SiO2-Fe3O4) has been synthesised and its ability 

for the recovery of Au(III) from aqueous solutions was assessed at different 

parameters.  The results of the adsorption thermodynamics and kinetics showed that 

this magnetic adsorbent has good adsorption capacity for Au(III) and the best 

interpretation of the experimental data was given by the Langmuir isotherm model.  

The results showed that the adsorption kinetics followed a pseudo-second-order rate 

equation with maximum adsorption capacity for Au(III) as 285.71 mg g−1 at 45°C.  

The thermodynamic parameters ∆G°, ∆H°, and ∆S° were −13.56 kJ mol−1, −24.33 kJ  

mol−1, and −36.18 J K−1mol−1, respectively.  The adsorption was a chemisorption 

process with activation energy of 11.58 kJ mol−1.  In the next step, the adsorbed Au(III) 

ions were reduced into Au(0) using Phaleria macrocarpa (Scheff.) Boerl fruit aqueous 

extract.  The performance of the biosynthesised Au(0)-RS-SR-NH-SiO2-Fe3O4 

catalysts were evaluated by using 4-nitrophenol reduction and styrene epoxidation.  

Au(0)-RS-SR-NH-SiO2-Fe3O4 catalyst showed a good catalytic performance in the 

reduction of 4-nitrophenol into 4-aminophenol in the presence of NaBH4 as the 

hydrogen source.  The effect of three different parameters, namely volume of NaBH4, 

concentration of 4-nitrophenol and amount of catalyst were investigated.  Under 

optimal conditions (0.5 mL NaBH4, 0.05 mM 4-nitrophenol and 2 mg Au-RS-SR-NH-

SiO2-Fe3O4), the conversion of 4-nitrophenol were found to be 96% after 60 min.  

Au(0)-RS-SR-NH-SiO2-Fe3O4 catalyst also showed high reusability as the catalytic 

activity remained excellent after five successive runs.  Meanwhile, the effects of 

amount of base, reactant to oxidant mole ratio, catalyst amount, solvent volume, 

temperature and time on the catalytic epoxidation of styrene by Au(0)-RS-SR-NH-

SiO2-Fe3O4 catalyst were also investigated.  Response surface methodology (RSM) 

demonstrated the ability to predict the conditions that favour high percentage 

conversion of styrene.  Under the proposed optimised conditions, considering all 

variables in the model range, namely TBHP molar ratio of 4 and run for 6 h at 80°C, 

a high percentage conversion of styrene of 61.8% was attained.  This catalyst could be 

easily recovered magnetically and reused for at least four times with satisfactory 

conversion.  Leaching of Au from the RS-SR-NH-SiO2-Fe3O4 surface was extremely 

small and can be considered negligible.  This study showed that RS-SR-NH-SiO2-

Fe3O4 acted as dual functional material with excellent properties as adsorbent for the 

recovery of Au and as support for Au catalyst for the reduction 4-nitrophenol and 

epoxidation of styrene. 
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ABSTRAK 

Emas (Au) adalah logam berharga yang mempunyai ketoksikan yang rendah 

tetapi mempunyai aplikasi yang luas dan harga pasaran yang tinggi. Terdapat 

peningkatan minat dalam penggunaan Au sebagai mangkin kerana sifatnya yang unik.  

Walau bagaimana pun, sumber Au global agak terhad, dengan itu perolehan semula 

Au daripada sisa cecair adalah satu tugas yang mencabar dan penting.  Oleh itu, kajian 

ini memberi tumpuan kepada penjerapan ion Au(III) pada penjerap berasaskan tiol dan 

seterusnya bio-penurunannya kepada Au(0).  Nanopartikel magnetit bersalut silika 

berkefungsian asid tioktik (RS-SR-NH-SiO2-Fe3O4) telah disintesis dan kebolehannya 

untuk perolehan semula Au(III) daripada larutan akueus telah dinilai pada parameter 

yang berbeza.  Keputusan penjerapan termodinamik dan kinetik menunjukkan bahawa 

penjerap magnetik ini mempunyai kapasiti penjerapan yang baik bagi Au(III) dan 

interpretasi terbaik data eksperimen diberikan oleh model isoterma Langmuir.  

Keputusan menunjukkan kinetik penjerapan mengikuti persamaan kadar pseudo-tertib 

kedua dengan kapasiti penjerapan maksima bagi Au(III) 285.71 mg/g pada 45°C.  

Parameter termodinamik ΔG°, ΔH°, dan ΔS° ialah masing-masing −13.56 kJ mol−1, 

−24.33 kJ mol−1, dan −36.18 J K−1 mol−1.  Penjerapan adalah proses pengkimierapan 

dengan tenaga pengaktifan 11.58 kJ mol−1.  Dalam langkah seterusnya, ion Au(III) 

yang terjerap telah diturunkan kepada Au(0) menggunakan ekstrak akueus buah 

Phaleria macrocarpa (Scheff.) Boerl.  Prestasi biosintesis mangkin Au(0)-RS-SR-

NH-SiO2-Fe3O4 telah dinilai dengan menggunakan penurunan 4-nitrofenol dan 

pengepoksidaan stirena.  Mangkin Au(0)-RS-SR-NH-SiO2-Fe3O4 menunjukkan 

prestasi pemangkinan yang baik dalam penurunan 4-nitrofenol menjadi 4-aminofenol 

dengan kehadiran NaBH4 sebagai sumber hidrogen.  Kesan tiga parameter yang 

berbeza, iaitu isipadu NaBH4, kepekatan 4-nitrofenol dan jumlah mangkin telah dikaji.  

Di bawah keadaan optimum (0.5 mL NaBH4, 0.05 mM 4-nitrofenol dan 2 mg Au-RS-

SR-NH-SiO2-Fe3O4), didapati penurunan 4-nitrofenol adalah sebanyak 96% selepas 

60 minit.  Mangkin Au(0)-RS-SR-NH-SiO2-Fe3O4 juga menunjukkan kebolehgunaan 

semula yang tinggi kerana aktiviti pemangkinan kekal cemerlang selepas lima kali 

penggunaan berturut-turut.  Sementara itu, kesan jumlah alkali, nisbah mol reaktan 

terhadap pengoksida, jumlah mangkin, isipadu pelarut, suhu dan masa pengepoksidaan 

bermangkin stirena oleh mangkin Au(0)-RS-SR-NH-SiO2-Fe3O4 juga dikaji.  Kaedah 

permukaan gerak balas (RSM) menunjukkan keupayaan untuk meramal keadaan yang 

memihak kepada peratusan penukaran stirena yang tinggi.  Di bawah keadaan 

optimum yang dicadangkan, dengan mengambil kira semua pembolehubah dalam julat 

model iaitu nisbah molar TBHP 4 dan dijalankan selama 6 jam pada 80°C, peratus 

tinggi penukaran stirena telah dicapai sebanyak 61.8%.  Mangkin ini boleh diperoleh 

semula secara magnetik dengan mudah dan digunakan semula sekurang-kurangnya 

empat kali dengan penukaran yang memuaskan.  Larut-lesapan Au dari permukaan 

RS-SR-NH-SiO2-Fe3O4 adalah sangat kecil dan boleh diabaikan.  Kajian ini 

menunjukkan bahawa RS-SR-NH-SiO2-Fe3O4 bertindak sebagai bahan dwi-fungsi 

dengan sifat sebagai penjerap yang sangat baik untuk perolehan semula Au dan sebagai 

sokongan bagi mangkin Au untuk penurunan 4-nitrofenol dan pengepoksidaan stirena. 
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INTRODUCTION 

1.1 Background of Study 

Gold (Au) has been known to human for more than 5000 years and it has been 

considered as a precious element throughout history and societies.  Owing to its rarity, 

malleability, ductility, vivid colour, nontoxic properties, and inertness in air or water, 

Au is considered a symbol of fortune to its owner and it has been used in coinage, 

jewellery and ornaments, and other art works (Wang et al., 2012).  Meanwhile, in this 

modern era, Au is widely use in industrial and economic activities such as medical 

fields and biomedical research, catalytic, and electric and electronic components 

(Baba, 1987; Cui and Zhang, 2008; Syed, 2012).  

 

 

Due to the wide uses of Au in various applications, the demand of Au has 

increased rapidly.  However, Au existence in nature is at very low level and it is 

predicted that the natural sources of Au will be exhausted by the end of 2030 (Moyer, 

2010).  Thus, due to an increasing demand for Au, it is a great interest to recover Au 

from aqueous and waste solution.  

 

 

 Many studies have been carried out to recover Au(III) ions from aqueous 

solution.  For example, pyrometallurgical and hydrometallurgical processes have been 

used to recover Au from wastewater (Jacobsen, 2005).  However, the 

hydrometallurgical methods, including adsorption, solvent extraction, ion exchange, 

and cementation, have been utilised more often than the pyrometallurgical process 

(Das, 2010; Syed, 2012).  In particular, adsorption process has gained the most interest 

among the researchers and applied in the industrial processes due to its simple 

equipment, low cost, ease of operation, and high efficiency even at low metal ion 
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concentration (Singh and Tiwari, 1997; Ramesh et al., 2008; Tabakci and Yilmaz, 

2008). 

 

 

Several adsorbents for Au adsorption had been reported, including natural 

biosorbents, such as algae (Umali et al., 2006; Mata et al., 2009) and bacteria and 

yeasts (Tsuruta, 2004), as well as synthetic materials, for example, resins, mesoporous 

adsorbents, and activated carbon (Soylak et al., 2000; Elci et al., 2007; Tuzen et al., 

2008; Syed, 2012).  Among these adsorbents, biosorbents are considered as a 

promising technology for the recovery of Au(III) ions, and have been used for the 

recovery of Au(III) ions from real wastewater (Das, 2010).  However, some of these 

adsorbents suffer from difficulty in its separation, long equilibrium time, and 

regeneration (Das, 2010).  For the complicated structure of biosorbents, the adsorption 

mechanism for Au(III) ions could not be explained clearly.   

 

 

The area of Au catalysis has taken a giant leap forward in the past decade.  The 

initial breakthrough of catalysis by Au was made 30 years ago by Hutchings (1985) 

and Haruta et al. (1987) as they proved that Au can be an excellent catalyst in contrast 

to the existing perception that it was unlike other precious metals.  One key early paper 

was the observation by Sermon et al. (1979) which reported that Au could be an 

effective hydrogenation catalyst for butadiene.  Since then, many studies had been 

carried out using Au as catalyst (Hutchings, 1985; Bond and Thompson, 2000; 

Hutchings, 2008; Wojcieszak et al., 2016; Megías-Sayago et al., 2017; Philip et al., 

2017; Simakova et al., 2017) and now Au nanoparticles are recognised as a hot area 

for research (Amdouni et al., 2018; Hosseini et al., 2018; Umamaheswari et al., 2018). 

 

 

Colloidal Au nanoparticles was extensively studied in aerobic oxidation of 

alcohols (Tsunoyama et al., 2005; Tsunoyama et al., 2009), 1,2-diols (Mertens et al., 

2005), and CO (Iizuka et al., 1999; Sanchez-Castillo et al., 2004), as well as 

nitrophenol reduction (Hayakawa et al., 2003; Rashid and Mandal, 2008; Biondi et al., 

2011) and carbon–carbon coupling (Tsunoyama et al., 2004).  The advantage of this 

colloidal Au nanoparticles in the catalytic reaction is it can act as both homogeneous 

and heterogeneous catalyst simultaneously (Wong, 2017).  This Au nanoparticles can 

be seen as a bridge between homogeneous and heterogeneous catalysis because it can 
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react actively as the homogeneous catalyst and can be separated and recycled into the 

next reaction like the heterogeneous catalyst (Wong, 2017).  However, due to its ultra-

small size, this colloidal nanoparticle suffers from major limitations as it requires 

filtration techniques that may often lead to the loss of the catalyst.  

 

 

Hence, in this research, thioctic acid functionalised silica coated magnetite 

nanoparticles was designed with the capability to function as an adsorbent in the 

recovery of Au(III) ions from dilute aqueous solution and subsequently the 

immobilised gold be used as catalyst in the reduction of 4-nitrophenol and epoxidation 

of styrene.  

 

 

To the best of our knowledge, there is yet a study which reported on the dual 

function of thioctic acid functionalised silica coated magnetite nanoparticles as an 

absorbent and also as support for Au catalyst. 

 

 

 

 

1.2 Problem Statement 

The demand for Au in recent years is significantly increasing and thus it 

increases the demand for mining capacities.  However, the global resources of Au are 

quite limited, which bring serious problems with regards to the supply of Au, 

economical, and environmental issues. Mining Au requires high cost and only a small 

amount of product is obtained as they are typically found in ores at very low 

concentrations of below 10 gram/tonne (Hageluken et al., 2009).  Moreover, mining 

process can result in a high emission of greenhouse gases and loss of land and 

biodiversity.  Therefore, a critical approach such as recovery and recycling Au from 

waste solution can help in slowing down the depletion of natural resource and the price 

of Au can be kept lower.  

 

 

Recovery of Au in dilute solution becomes a great interest and many techniques 

have been established to recover Au such as ion exchange, precipitation, solvent 

extraction, and biosorption.  However, these techniques have several disadvantages 
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and difficulties.  For example, the recovery of Au ions from chloride solution using 

solvent extraction consumes a lot of organic solvents that are toxic, flammable, and 

volatile, leading to numerous environmental problems.  Hence, a technique that is 

more environmentally friendly, efficient, and safe should be used in the recovery of 

Au(III) ions in dilute solution. 

 

 

Many materials have been used such as activated carbon, natural biosorbent, 

and mesoporous sorbent for the recovery of Au in solutions.  However, these 

adsorbents require additional techniques such as filtration or centrifugation for its 

recovery and reusability which leads to the possibility of losing the adsorbent during 

this process.  Thus, by designing a magnetic adsorbent with magnetite as its core, the 

used adsorbent can be easily recovered using an external magnetic field.  

 

 

4-Nitrophenol and its derivatives is widely used in manufacturing industries of 

pharmaceutical (Shen et al., 2017), synthetic dyestuff, herbicide, and insecticide (Seo 

et al., 2017).  The high concentration of 4-nitrophenol released in water downstream 

can substantially damage the ecosystem as it is one of the most toxic and refractory 

pollutants (Zhang et al., 2014).  Meanwhile, the product of 4-nitrophenol reduction 

which is 4-aminophenol is less poisonous and has various applications as corrosion 

inhibitor, drying agent, and an important precursor for the manufacture of analgesic 

and antipyretic drugs (Zhao et al., 2015).  Thus, the reduction of 4-nitrophenol to 4-

aminophenol possesses great implication in the pollution abatement and resources 

regeneration. 

 

 

Meanwhile, the conventional production of styrene oxide is by the epoxidation 

of styrene, using stoichiometric amounts of chlorohydrin or peracid as an oxidizing 

agent (Nepak and Srinivas, 2016).  However, peracids are hazardous to handle, very 

expensive, nonselective towards epoxidation, and its usage may lead to the formation 

of many undesirable products (Dumbre et al., 2014).  Hence, a green oxidant which is 

a far more reactive form of oxygen species such as H2O2 or TBHP is necessary to 

produce the epoxides. 

 



 

5 

1.3 Objectives of the Study 

The aims of this study are: 

1. To synthesise and examine the physicochemical properties of thioctic 

acid functionalised silica coated magnetic (RS–SR–NH–SiO2–Fe3O4) 

nanoparticles. 

2. To assess the Au adsorption, desorption, reusability characteristics of 

the RS–SR–NH–SiO2–Fe3O4 and investigate the equilibrium isotherm, 

kinetics, and thermodynamics of the adsorption. 

3. To reduce the immobilised Au(III)–RS–SR–NH–SiO2–Fe3O4 into 

Au(0)–RS–SR–NH–SiO2–Fe3O4 using Phaleria macrocarpa (Scheff.) 

Boerl fruits extract. 

4. To evaluate the catalytic activity of Au(0)–RS–SR–NH–SiO2–Fe3O4 in 

the reduction of 4-nitrophenol and epoxidation of styrene. 

 

 

 

 

1.4 Scope of the Study 

This research focused on the synthesis of thioctic acid surface functionalised 

silica coated magnetite nanoparticles as an adsorbent and as a support for a catalytic 

reaction.  The assessment of the adsorbent on the adsorption Au(III) ions and 

reusability characteristics were done with the optimisation of several parameters 

namely pH, ionic strength, adsorbent dosage, concentration of Au(III) ions, 

temperature, and contact time.  The reusability of the adsorbent was also investigated 

with different concentrations of the desorption agent.  Later, the obtained Au(III) ions 

on the surface of thioctic acid functionalised silica coated magnetite (Au(III)–RS–SR–

NH–SiO2–Fe3O4) were reduced using Phaleria macrocarpa extract to Au–RS–SR–

NH–SiO2–Fe3O4 and tested for catalytic reaction of reduction of 4-nitrophenol and 

epoxidation of styrene.  Box–Behnken design (BBD) model from response surface 

methodology (RSM) was used for the optimisation process. The sample were 

characterised using FTIR, HRTEM, XRD, XRF, VSM, zeta potential, XPS, AAS, and 

GC-FID.  The research outline is illustrated in Figure 1.1.
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Figure 1.1 Research outline

Synthesis of RS–SR–NH–SiO2–

Fe3O4 

Adsorption study on Au(III) ions in 

the dilute solution.  Concentration of 

Au(III) ions were analysed using 

AAS. 

Optimisation: pH, ionic strength, 

adsorbent dosage, concentration of 

Au(III) ions, temperature, and 

contact time. 

 

Evaluation of adsorption isotherm, 

kinetic and thermodynamics 

properties. 

Desorption and recyclability study.  

Concentration of Au(III) ions was 

analysed using AAS. 

Characterisation:  FTIR, HRTEM, 

XRD, XRF, VSM, zeta potential, 

XPS. 

Bio-reduction of Au(III)–RS–SR–

NH–SiO2–Fe3O4 using Phaleria 

macrocarpa extract 

Catalytic reaction of reduction 4-

nitrophenol and epoxidation of 

styrene. 

Optimisation: solvent, time, 

temperature, oxidant, and catalyst 

dosage. 

RSM was used for the optimisation. 

Characterisation:  FTIR, HRTEM, 

XRD, XPS. 

Recyclability study. 
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1.5 Significance of the Study 

In this research, a novel thioctic acid functionalised silica coated magnetite 

nanoparticles was used for the recovery of Au(III) ions in dilute solution.  The use of 

magnetic material offers many advantages over conventional materials in terms of 

recovery and recycling process as it can be simply and efficiently recovered from the 

reaction media with the use of an external magnet.  Meanwhile, according to hard–soft 

acid–base theory, thiol ligands have a high affinity towards Au ions. Thus, in this study 

thioctic acid was grafted onto the surface of silica coated magnetite nanoparticles to 

enhance the recovery of Au ions from dilute solutions. 

 

 

In addition, this study was the first one that explored the dual functionalities of 

thioctic acid functionalised silica coated magnetite nanoparticles as an adsorbent and 

also as a support for Au catalyst. In addition, this research employs a simple and 

environmentally-friendly biosynthesis for Au NPs on the supports by using a locally 

available plant, Phaleria macrocarpa fruit extract. Moreover, the use of green oxidant 

in catalytic reaction and the application of response surface methodology approach for 

catalytic optimisation give advantages as it is more cost effective and environmentally 

friendly.  
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