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ABSTRACT

The advanced oxidation process using heterogeneous photocatalyst has been 
proven as a promising technique for the wide range of organic pollutants degradation 
in aquatic environment. Paraquat dichloride is a highly toxic organic pollutant that is 
still being widely used in agricultural sectors. This could cause malicious effects to 
living things and should be treated immediately. In this study, nanocomposite TiO2 

based photocatalysts incorporated with transition metal oxides were synthesized using 
modified sol-gel and hydrothermal methods. The photocatalytic activity of the 
prepared catalysts was examined for the paraquat dichloride degradation in aqueous 
solution under UV lamp (X = 365 nm, 12 watts) and fluorescence visible lamp (A > 
400 nm, Philips, 36 watts) for four hours. The photodegradation of paraquat dichloride 
was monitored using ultraviolet-visible spectrophotometer. The potential catalysts 
were further accomplished for several optimization studies inclusive of co-catalyst 
ratio, calcination temperature and catalyst dosage. From the screening results, 
ZrO2/TiO2 photocatalyst calcined at 750°C was found to give the best photocatalytic 
activity for both methods. The characterization analyses showed the presence of 
crystalline heterostructure ZrTiOVTi2ZrO6/TiO2 species with particle size in the range 
of 8-25 nm and band gap energy of 3.1 - 3.38 eV. The obtained species were confirmed 
by X-ray photoelectron spectroscopy and high resolution-transmission electron 
microscopy. The nano irregular morphology was observed with mesoporous mixtures 
of Type III and IV isotherms and H2 (b) type hysteresis loop with surface area of 49 
m2g-1. The highest photodegradation of 98.45% was obtained using 0.3 g of ZrO2/TiO2 

(40:60) prepared by hydrothermal method with 100% mineralization after irradiated 
for four hours. Meanwhile, for sol-gel method, only 84.51% of degradation was 
obtained over 0.3 g of ZrO2/TiO2 (20:80) catalyst. Response surface methodology with 
Box-Behnken design suggested that 0.3 g of ZrO2/TiO2 catalyst with 40:60 Zr to Ti 
ratio and calcination temperature of 815°C is required to achieve 98.43% of paraquat 
dichloride degradation. Under this condition, the paraquat dichloride photodegradation 
achieved 98.87%, higher than the recommended value. Furthermore, the advance 
optimization on the effect of pH, addition of H 2O2, sonication treatment, 
hydrogenation process and immobilization on the support material were also studied 
but no significant increment was observed for the photodegradation. The suggested 
active species from the radical scavenger studies were in the order of e- > O2 - > OH 
> h+. From the mechanistic study, the paraquat cation was adsorbed on the ZrO2/TiO2 

(40:60) photocatalyst surface while intermediates of monopyridone, C12H 16N2O4 ion, 
4-carboxyl-1-methylpyridium ion were validated by Gaussian 16 software. The 
mechanism was confirmed following the first-order kinetic in accordance to 
Langmuir-Hinshelwood model.
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ABSTRAK

Proses pengoksidaan termaju menggunakan fotomangkin heterogen telah 
terbukti sebagai teknik yang menyakinkan bagi degradasi pelbagai pencemar organik 
di dalam persekitaran akuatik. Paraquat diklorida adalah bahan pencemar organik yang 
sangat toksik yang masih digunakan secara meluas dalam sektor pertanian. Ia boleh 
menyebabkan kesan buruk kepada benda hidup dan perlu dirawat dengan segera. 
Dalam kajian ini, fotopemangkin nanokomposit berasaskan TiO2 yang digabungkan 
dengan oksida logam peralihan telah disintesis menggunakan kaedah sol-gel yang 
diubah suai dan hidroterma. Aktiviti fotopemangkinan mangkin yang disediakan telah 
diuji bagi degradasi paraquat diklorida di dalam larutan akueus di bawah lampuUV (A, 
= 365 nm, 12 watt) dan lampu pendarfluor nampak (X > 400 nm, Philips, 36 watt) 
selama empat jam. Fotodegradasi paraquat diklorida telah dipantau dengan 
menggunakan spektrofotometer ultraungu-cahaya nampak. Mangkin yang berpotensi 
kemudiannya dilengkapi dengan beberapa kajian pengoptimuman termasuk nisbah ko- 
mangkin, suhu kalsinasi dan dos mangkin. Daripada hasil saringan, ZrO2/TiO2 dikalsin 
pada 750°C didapati memberikan aktiviti fotomangkinan terbaik bagi kedua-dua 
kaedah. Hasil analisis pencirian menunjukkkan kehadiran struktur hetero berhablur 
spesies ZrTiO4/Ti2ZrO6/TiO2 dengan saiz zarah antara 8-25 nm dan tenaga luang jalur
3.1 - 3.8 eV. Spesies yang diperoleh telah disahkan dengan spektroskopi fotoelektron 
sinar-X dan mikroskopi electron penghantaran resolusi tinggi. Morfologi nano tidak 
sekata diperhatikan dengan campuran liang meso isoterma jenis III dan IV dan keluk 
histeresis jenis H2 (b) dengan luas permukaan 49 m2g-1. Fotodegradasi tertinggi iaitu 
98.45% telah diperoleh menggunakan 0.3 g ZrO2/TiO2 (40:60) yang disediakan 
melalui kaedah hidroterma dengan pemineralan 1 0 0 % selepas penyinaran selama 
empat jam. Sementara itu, bagi kaedah sol-gel, hanya 84.51% degradasi diperoleh 
menggunakan 0.3 g pemangkin ZrO2/TiO2 (20:80). Kaedah permukaan gerak balas 
dengan reka bentuk Box-Behnken mencadangkan bahawa 0.3 g mangkin ZrO2/TiO2 

dengan nisbah Zr kepada Ti 40:60 dan suhu pengkalsinan 815°C diperlukan untuk 
mencapai 98.43% degradasi paraquat diklorida. Di bawah keadaan ini, fotodegradasi 
paraquat diklorida telah mencapai 98.87%, lebih tinggi daripada nilai yang disyorkan. 
Tambahan pula, pengoptimuman kesan pH, penambahan H2O2, rawatan sonikasi, 
proses penghidrogenan dan pemegunan pada bahan sokongan juga telah dikaji namun 
tiada kenaikan ketara fotodegradasi diperhatikan. Spesies aktif yang dicadangkan 
daripada kajian pemerangkapan radikal adalah mengikut urutan e-> O2’- > OH'> h+. 
Dari kajian mekanistik, kation paraquat telah terjerap pada permukaan fotomangkin 
ZrO2/TiO2 (40:60) manakala sebatian pertengahan monopiridon, ion C12H 16N2O4, ion 
4-karboksil-1-metilpiridium pula telah disahkan dengan perisian Gaussian 16. 
Mekanisme telah disahkan mengikuti kinetik kelas pertama sesuai dengan model 
Langmuir-Hinshelwood.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

Water is one of the most crucial sources in an ecosystem. About 70 % of the 

Earth’s surface is covered by water. Water pollution has become one of the severe 

global issues due to the toxic contaminants discharge directly or indirectly from 

industries or domestic activities without proper treatment. Subsequently causes the 

consumption of polluted or infected aquatic life and water, resulting in long term 

illness on the human being. Direct contaminant such as effluent from factories and 

sewage treatment plants is regulated under the Environmental Quality Act 1974 and 

Environmental Quality (Sewage and Industrial Effluents) Regulations 1979. 

Meanwhile, indirect contaminant source is difficult to be identified and this 

contamination usually comes either from the soil, groundwater and atmosphere via 

rainwater or agricultural practices like fertilizers and herbicides. These pollutants 

commonly lead to soil and groundwater contamination leading to ill-associated 

towards human health and aquatic biodiversity. In common, agricultural residues such 

as herbicides are strongly adsorbed by soil and may leach into the water bodies by 

rainfall or runoff which could give a nasty effect on living things mainly for humans.

Recently, the statistic of herbicide usage increased rapidly along with the world 

population thus increases the food consumption’s demand (Diaz Kirmser et al., 2010). 

Among the herbicide used, paraquat dichloride is one of the active ingredients that was 

widely used for the agricultural and non-agricultural sectors. This compound is known 

as methyl viologen with the IUPAC name of 1,1-dimethyl-4,40-bipyridylium 

dichloride. The structural formula for paraquat dichloride is shown in Figure 1.1
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1, 1’-dimethyl-4, 4’-bipyridinium dichloride

Figure 1.1 Structure form ula of Paraquat dichloride

Paraquat dichloride is harmful to humans and could lead to fatal injury if they 

exceed the lethal dosage. Paraquat poisoning can lead to dysfunctional kidney and liver 

in humans and animals. Besides that, it also might cause Parkinson’s disease (Mandel, 

Adami and Cole, 2012). However, paraquat dichloride demand increased due to the 

low-cost and high efficiency to eliminate a wide range of weed made it popular for 

massive applications. Widespread use of paraquat dichloride application on the soil 

surface resulted in contamination of water bodies due to heavy rainfall and thus 

penetrates into the food chain. It also shows high persistence and toxicity in the 

environment, which has an impact on the environment (Huston and Pignatello, 1999). 

Hence, it is important to control water contamination to keep the reservoir from being 

polluted. At present, paraquat dichloride has been banned in certain countries which 

are Austria, European Union and South Korea (Santos et al., (2013),Cha et al., (2016) 

and Verissimo, Bast and Weseler, (2017). Malaysia has also had decided to ban the 

use of paraquat dichloride starting in January 2020 (The Sun Daily, 2020) but it can 

be only used for the selected agricultural sector and must be controlled under Pesticide 

Act 1974.

According to the United States Environmental Protection Agency (2018) the 

maximum contamination levels (MCL) for paraquat in drinking water is 20 pg/L. 

While, based on the National Water Quality Standards for Malaysia the maximum 

concentration level for water resource was set at 10 pg/L (Huang et al., 2012). In 

Malaysia, the concentration of paraquat dichloride detected is at ranging from1.49 -  

2.29 pg/L (Iguegbe and Mohd, (2008), . Ismail, Sameni and Halimah, (2011)). 

Eventhough the concentration detected still in ppb level but the half-life of paraquat in
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the soil can be up to 6 years which might cause a serious impact on humans and other 

living things in the futures and must be treated (Alexander. M, 1999).

The development in science and technology causes an increase in demand to 

solve the paraquat dichloride contamination in the aquatic environment. Numerous 

treatments have been done to overcome these contaminations either by physical, 

biological or chemical methods. Generally, biological treatment methods such as using 

enzymes and microorganisms are not effective, because biological methods might 

produce secondary pollutants after the reaction that need further treatment which will 

be an additional cost (Han et al., 2009). Besides, some of the organic pollutants are 

chemically stable and difficult to be degraded by these methods. Moreover, a long 

retention time is required for the degradation of organic pollution by using biological 

methods (Wu et al., (2013) and Li et al.,(2017)).

The physicochemical method has emerged as a promising method to degraded 

paraquat dichloride due to its high efficiency and non-toxic properties. Heterogeneous 

photocatalyst has received considerable attention among researchers. This was due to 

its effectiveness to degrade and mineralize a wide range of organic and inorganic 

contaminations in the aquatic environment to harmless by-product(Ahmed et al., 

2011). Heterogeneous photocatalytic oxidation is a reaction that involves the use of 

catalyst that has a different phase from the reactant. Catalyst is a substance that 

increases the reaction rate by providing an alternate mechanism pathway. Meanwhile, 

photocatalysis is a process of acceleration of the photoreaction in presence of light. In 

photogenerated catalysis, the photocatalytic activity depends on the ability of the 

catalyst to create electron-hole pairs in producing free radicals (hydroxyl radicals, 

OH*). It will decompose and remove the toxicity of harmful organic chemical 

substance into carbon dioxide and water (Rauf and Ashraf, 2009).

Among semiconductor material, titanium(IV) dioxide (TiO2) is the most 

favourable photocatalyst for heterogenous photocatalysis due to its non-toxicity, the 

capability of degrading a wide range of pollutants, insoluble in water, good reusability 

and photostable which makes it a suitable photocatalyst for applications in 

environmental remediation nowadays (Teh and Mohamed, 2011). Furthermore, an
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extensive literature has shown many possibilities of improving the photocatalytic 

efficiency of TiO2 especially by incorporating with transition metal oxide. The 

incorporation of titanium dioxide with transition metal oxide also had received much 

attention which mostly will contribute to better photocatalytic performance of either 

using UV irradiation or visible light (Han et al., 2009).

Transition metals exhibit more than one oxidation stated that enables to 

enhance the photocatalytic performance of TiO2. This was due to ability to act as traps 

for photogenerated electron and hole pairs as well as charge traps in the lattice of TiO2 . 

The incorporating with transition metal was believed can prevent the agglomeration of 

particles thus forming well-defined nanocrystal with high surface area. Moreover, the 

incorporation of transition metal ions into the matrix could decrease the band-gap 

energy of TiO2 and causes a red shift of the absorption edge to the visible-light region. 

This red shift is caused by the charge-transfer transition between the d electrons of the 

transition metals and the CB or VB of TiO2. In addition, transition metal ions in the 

TiO2 lattice could delayed the recombination rate of photogenerated electron and holes 

by act as traps thus improving the photocatalytic activity of single TiO2.

Response surface methodology (RSM) is one of the computational method that 

has been used for designing the optimization of the experiment to obtain the optimum 

response (Sakkas et al., 2010). This technique can be used to develop models from 

experimental or simulation data and evaluating the individual or interaction between 

the variables. Among the RSM design used, Bob-Behnken design (BBD) has proven 

as a useful technique for optimization process as it requires less experimental points 

with high efficiency (Toemen, Bakar and Ali, (2014)and Tantriratna et al., (2011). 

RSM also had been used by researchers in photocatalysis field either for experimental 

design or for process optimization.

Therefore, the degradation of paraquat dichloride using the photocatalysis 

method could be the alternative and most effective method. Thus, our current research 

focus on the synthesize of high efficiency nanocomposite TiO2 based photocatalyst 

prepared by sol-gel and hydrothermal methods using transition metal as co-catalyst 

and immobilized on the support material. In addition, optimization study was carried
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out to check the suitability of this technique to optimize the photocatalytic performance 

of potential photocatalyst over degradation of paraquat dichloride via BBD.

The novelties of this research study are as follows:

1) The development of heterostructured ZrTiO4/ZrTi2O6/TiO2 photocatalyst that 

enhanced the degradation of paraquat dichloride.

2) The optimization of the experimental conditions towards the photocatalytic 

degradation of paraquat dichloride over the potential catalysts using BBD 

(RSM).

3) A proposed cyclic stepwise mechanism for paraquat dichloride degradation 

under UV irradiation using ZrO2/TiO2 (40:60) photocatalyst.

4) The new intermediate product for paraquat dichloride degradation and the 

structural confirmation test using Gaussian 16 software.

1.2 Problem Statements

Paraquat dichloride contamination in the aquatic environment could give 

dangerous effects on human beings and living things. Therefore, an immediate solution 

is needed to solve this problem. Although a few treatment methods have been 

investigated for the degradation of paraquat dichloride however all methods have their 

drawbacks. Thus in this study, it is proposed to use the photocatalysis technology to 

degrade paraquat dichloride in solution by using nanocomposite TiO2 based 

photocatalyst.

Currently, TiO2 photocatalyst had gained wide interest in the degradation of 

various aquatic contaminations. Meanwhile, it is still not suitable for practical 

application due to its lower photo utilization efficiency and relatively higher band gap 

(Horvath et. al., 2003, Zu et. al., 2009). However, incorporating with suitable 

transition metal oxide had shown promising technique to enhanced the efficiency. The 

incorporation with transition metal oxides will give the useful outcome that might 

improve the photocatalytic activity. This is due to either the reduction in the band-gap
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energy or formation of heterostructured photocatalyst which will increase the 

generating hydroxyl radicals (OH^). Besides that, the existence of heterostructure 

might lead to charge transfer between species thus producing more active species and 

formation of nanoheterostured had reported could lead to improve the photocatalytic 

activity even the bad gap increases. This was due to cative species existed on the 

catalyst surface even the band gap energy increases (Li et al., 2016). In addition, only 

a few studies on the degradation of paraquat dichloride were conducted employing 

nanocomposite TiO2 photocatalyst. Furthermore, the synthesis of visible light driven 

photocatalyst is crucial for a practical use of photocatalysis technique for the 

degradation of paraquat dichloride in water since artificial UV light is costly and only 

11% could be found in the sunlight. In addition, the immobilization of the 

photocatalyst on the support material also was proven would be useful for industrial 

application.

In the other hence, the mechanistic study of paraquat dichloride is still vague 

due to limited research had been conducted using photocatalysis technology 

especially, using nanocomposite TiO2 based photocatalyst. Therefore, this study is 

important to reveals the reaction pathway and the intermediate products formed during 

the photocatalytic degradation reaction. Thus, giving an insight on effect of the 

photocatalytic process on surface of the catalyst which can be an added valuable 

knowledge for the degradation study of paraquat dichloride using photocatalysis 

process.

1.3 Objective of the research

The objectives of the research are as follow:

1. To synthesize and characterize nanocomposite TiO2 photocatalyst with 

transition metal oxides as co-catalyst via modified sol-gel and hydrothermal 

methods
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2. To test and optimize the photocatalytic performance of the prepared 

photocatalyst for degradation of paraquat dichloride

3. To investigate the kinetic reactions and postulate a mechanism for 

photodegradation of paraquat dichloride through the analysis on the 

photocatalyst surface and intermediate products obtained

1.4 Scope of the research

This research was focused on developing a photocatalyst toward the 

degradation of paraquat dichloride. Therefore, a series of photocatalysts were prepared 

using TiO2 as a based catalyst while transition metal oxide was selected as co-catalysts. 

All single, bimetallic and trimetallic oxide photocatalysts were prepared by sol-gel and 

hydrothermal methods. The TiO2 and MO/TiO2 (MO = NiO, Sc2O3, ZrO2, CoO, CuO, 

ZnO, MoO3, RuO, Fe2O3, and V2O5) photocatalysts were prepared based on the atomic 

weight percentage.

The photocatalytic performance of the synthesized catalysts was tested under 

UV irradiation and visible light using a home built a reactor and was monitored by 

UV-Vis spectrophotometer and total organic carbon (TOC) analysis. The UV lamp (X 

=365nm, 12 watts) and compact fluorescence visible lamp (X> 400 nm, Philips, 36 watts) 

were used as light sources. Then, the best prepared photocatalysts were characterized 

by using different techniques to study the physicochemical properties which are X-ray 

diffraction (XRD), field emission scanning electron microscopy-energy dispersion X- 

ray (FESEM-EDX), transmission electron microscopy (TEM), diffuse reflectance 

ultraviolet-visible (DR UV-vis) spectroscopy, X-ray photoelectron spectroscopy 

(XPS) and nitrogen absorption-desorption (NA). Next, the photocatalyst obtained from 

both methods were optimized on the preparation of photocatalysts using various co

catalysts loading (10:90, 20:80, 30:70, 40:60 and 50:50), calcination temperature (450 

- 1000°C) and catalyst dosage (0.1 g to 0.4 g. The reusability testing and mineralization 

study were carried out using the best catalyst obtained from both methods. Validation
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of experimental results was done using response surface methodology (RSM) via Box- 

Behnken design (BBD).

Then, the best photocatalyst was optimized on the photocatalytic degradation 

activity. The five studied parameters are initial pH (pH 5,6,7, 8 and 9), hydrogen 

peroxide concentration (2, 3, 4, 5, 10, 15 and 20 ppm), sonication time (30, 45, and 60 

minutes), hydrogenation (700, 750, 800 and 900 °C) and immobilization on PVC and 

chitosan bead as the supported material using one factor at a time method. Lastly, the 

mechanistic study was determined by using liquid chromatography-mass spectrometer 

quadrupole time-of-flight (LCMS-QTOF) and the structural confirmation test was 

done with Gaussian 16 software to identify the intermediate species and fourier 

transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) was used to 

monitor the adsorbed species on the catalyst surface. The active species was 

investigated using benzoquinone, ammonium oxalate, silver nitrate and tert-butyl 

alcohol as scavengers for superoxide radical, holes, electron and hydroxyl radical, 

respectively.

1.5 Significance of the research

The study gave valuable contributions on the developed preparation method of 

nanocomposite TiO2 photocatalyst incorporating with transition metal oxide that have 

high stability and good photocatalytic performance. The characterizations of the 

prepared TiO2-based photocatalyst will provide valuable knowledge on the. 

fundamental requirements for the physicochemical properties of the material prepared 

either by sol-gel or hydrothermal methods and photocatalytic activities for paraquat 

dichloride degradation.

This study can be considered as one of the environmentally friendly 

technologies since photocatalysts are able to degrade harmful pollutants into non- 

hazardous compounds utilizing light as an energy source. Finally, the success of this
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study will contribute to solving water pollution caused by pesticides, especially from 

the agriculture sector.
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