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ABSTRACT 

Novel trimetal-oxide (Ru/Fe/Ce) supported on γ-Al2O3 catalysts were 

synthesized by simple impregnation method. The conversion of CO2 to CH4 was 

optimized using response surface methodology (RSM) based on the amount of catalyst 

loading, calcination temperatures and catalyst dosages. In addition, stability, 

reliability, robustness, reproducibility, and regeneration testing were also investigated. 

Superior catalytic performance was obtained using catalyst with ruthenium content of 

5 wt% loading, iron content of 10 wt% loading and cerium content of 85 wt% loading 

which was calcined at 1000°C for 5 h. The CO2 conversion achieved 97.2% at 275°C 

with CH4 formation of 93.5%. The Ru/Fe/Ce (5:10:85)/γ-Al2O3 catalyst exhibits 

excellent catalytic stability up to 65 h. CO2-TPD results revealed this catalyst 

possesses medium-strength basic sites while TPR study revealed the catalyst exhibits 

best reduction pre-treatment at >250°C. Meanwhile, the BET analysis illustrated the 

catalyst possesses a mesoporous structure. XRD revealed the transformation of cubic 

Al2O3 calcined at 1000°C to rhombohedral at 1100°C. TEM micrographs revealed the 

d-spacing value is in accordance with XRD analyses. FESEM micrographs displayed 

the catalyst surface is covered with small, dispersed spherical particles. EDX mapping 

profile showed good distributions of Ce, Fe, and Ru on the catalyst surface. The 

physicochemical analyses have shown that the active sites of the potential catalyst 

Ru/Fe/Ce (5:10:85)/γ-Al2O3 are RuO2 (t), Fe2O3 (r), Al2O3 (c), Al2O3 (r) and CeO2 (c) 

with a particle size <10 nm. The mechanistic studies have shown that CO2 methanation 

occurs via the adsorption of CO2 on surface of ceria and iron oxide, and then stepwise 

hydrogenation leading to CH4 formation through carboxylate intermediate by the 

hydrogen spilled over from Ru surface. As a result, dissociated hydrogen over 

ruthenium reacts with surface carbon, leading to formation of *CH intermediate, which 

subsequently hydrogenated to produce *CH2, *CH3 and finally to the desired product 

methane. The Ru/Fe/Ca (5:25:70)/γ-Al2O3 catalyst calcined at 1000°C gave a  

maximum conversion of  85.59% CO2 with CH4 formation of 79.58% at a reaction 

temperature of 300°C which was less as compared to the potential catalyst Ru/Fe/Ce 

(5:10:85)/γ-Al2O3. 
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ABSTRAK 

Mangkin baharu trilogam-oksida (Ru/Fe/Ce) yang disokong pada γ-Al2O3 

telah disintesis melalui kaedah pengisitepuan mudah. Penukaran CO2 kepada CH4 

telah dioptimumkan menggunakan kaedah permukaan gerak balas (RSM) berdasarkan 

jumlah muatan mangkin, suhu pengkalsinan dan dos mangkin. Tambahan lagi, ujian 

kestabilan, kebolehpercayaan, keteguhan, kebolehulangan dan penjanaan semula telah 

juga dikaji. Prestasi pemangkinan unggul diperolehi menggunakan mangkin dengan 

kandungan rutenium 5 wt%, muatan kandungan ferum10 wt%, dan muatan kandungan 

serium 85 wt% yang dikalsinkan pada 1000°C selama 5 j. Penukaran CO2 mencapai 

97.2% pada 275°C dengan pembentukan CH4 93.5%. Mangkin Ru/Fe/Ce (5:10:85)/γ-

Al2O3 mempamerkan kestabilan pemangkinan yang sangat baik sehingga 65 j. 

Keputusan CO2-TPD mendedahkan mangkin ini mempunyai tapak bes berkekuatan 

sederhana manakala kajian TPR mendedahkan mangkin ini mempamerkan 

pengurangan pra-rawatan terbaik pada >250°C. Sementara itu, analisis BET 

menunjukkan mangkin mempunyai struktur mesoporos. XRD mendedahkan 

transformasi  Al2O3 kubik dikalsinkan pada 1000°C kepada rombohedral pada 1100°C. 

Mikrograf TEM mendedahkan nilai d-jarak adalah bersesuaian dengan analisis XRD. 

Mikrograf FESEM memaparkan permukaan mangkin ditutupi dengan zarah-zarah 

kecil berbentuk sfera yang tersebar. Profil pemetaan EDX menunjukkan penyebaran 

yang baik bagi Ce, Fe, dan Ru pada permukaan mangkin. Analisis fisikokimia 

menunjukkan bahawa tapak aktif bagi mangkin yang berpotensi Ru/Fe/Ce (5:10:85)/γ-

Al2O3 adalah RuO2 (t), Fe2O3 (r), Al2O3 (c), Al2O3 (r) CeO2 (c) dengan saiz zarah <10 

nm. Kajian mekanistik  menunjukkan bahawa metanasi CO2 terjadi melalui penjerapan 

CO2 pada permukaan seria dan ferum, dan kemudian penghidrogenan langkah demi 

langkah membawa kepada pembentukan CH4 melalui perantaraan karboksilat oleh 

hidrogen yang terbebas dari permukaan Ru. Akibatnya, hidrogen yang terpisah pada 

rutenium bertindak balas dengan permukaan karbon, yang membawa kepada 

pembentukan perantaraan *CH dan penghidrogenan selanjutnya menghasilkan *CH2, 

*CH3 dan akhirnya produk metana yang dikehendaki. Mangkin Ru/Fe/Ca (5:25:70)/γ-

Al2O3 yang dikalsin pada 1000°C memberi penukaran maksimum, 85.59% CO2 

dengan pembentukan CH4 ,79.58% pada suhu tindak balas 300°C yang mana ia lebih 

rendah berbanding dengan mangkin berpotensi Ru/Fe/Ce (5:10:85)/γ-Al2O3.  
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INTRODUCTION 

1.1 Background 

Anaerobic decomposition of non-fossil organic material produces natural gas. 

This highly flammable gas is a homogenous liquid with low density and viscosity. 

Moreover, acidic gases such as CO2 and H2S are also present in the natural gas (Curry, 

1981).  Malaysia has been extracting sour natural gas. Before the purification process 

begins, Malaysian natural gas consists of several gaseous impurities (Bakar and Ali, 

2010). The chemical composition of crude Malaysian natural gas is shown in Table 

1.1 

Table 1.1 Chemical composition of crude natural gas, Terengganu, Malaysia 

(Bakar and Ali, 2010).  

Chemical Name Chemical formula  Percentage (%) 

Methane CH4 40-50 

Ethane CH3-CH3 5-10 

Propane CH3-CH2-CH3 1-5 

Carbon dioxide CO2 3-20 

Hydrogen sulphide H2S 0-1 

 

To increase the calorific value of natural gas and prevent corrosion of pipelines 

and process equipment, it is essential to eliminate the presence of CO2 in raw natural 

gas. Moreover, at a very low temperature, CO2 tends to freeze to form solidified CO2, 
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which leads to clogging of the pipeline. This impurity in natural gas can reduce its 

quality and thus reduces the market price of gas. Therefore, the elimination of carbon 

dioxide from the natural gas is very important to prevent or minimize the emission of 

hazardous gases into the environment. Among the multiple human activities that 

produce GHGs, the usage of energy is undoubtedly the largest source as shown in 

Figure 1.1.  

 

Figure 1.1  Shares of global anthropogenic GHGs emission (Quadrelli and 

Peterson, 2007). 

1.2 Various technologies for the CO2 removal from natural gas 

At present, there are many ways to capture and separate CO2. Three  general 

categories of processes available for removal of CO2 from refinery gas streams are 

chemical solvents, physical solvents, and solid adsorbents (Maples, 2000). 

1.2.1 Chemical absorption method 

Alkanolamine includes the family of organic compounds such as mono-

ethanolamine (MEA), diglycol amine (DGA), diisopropanol amine (DIPA), methyl 

diethanolamine (MDEA), diethanolamine (DEA) and triethanolamine (TEA). Among 

these amines, MEA is the strongest because it can remove both CO2 and H2S from the 

gas streams. In the chemical absorption process, typically amine solution such as MEA 
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is employed and its recovery rate for CO2 is 98%. The MEA solution absorption 

process has been used commercially in the gas industry for 60 years and is considered 

the most mature process (Mokhatab et al., 2018). However, this method can only work 

if CO2 is present not more than 10%. 

1.2.2 Physical adsorption method 

Adsorption process is generally considered as low energy intensive and very 

cost-effective method. Physical adsorbents such as  zeolites, molecular sieves, 

polymers, templated silicas, and activated carbon  typically adsorb water vapor better 

over CO2 and their CO2 adsorption capacity at low pressure is not sufficiently high 

(Bell et al., 2010; Olajire, 2010). However, the main drawback of this process is the 

high amount of adsorbent required due to large amount of flue gases in stationary 

plants.  

1.2.3 Membrane technology 

The quality of natural gas can also be improved with special polymer 

membranes. These membranes can reduce the concentration of H2S and CO2, but they 

are not as effective for the separation of toxic gases and require high cost (Omidvar et 

al., 2019). This method uses polymeric membranes (contains semi-permeable 

elements), which are responsible for the separation of gas constituents by selective 

permeation in contact with the membrane. A two-stage membrane system is 

considered better than a single-stage hydrocarbons recovery system. Moreover, the 

system is highly effective at low flow rates, but its performance is reduced when the 

flow rate exceeds the set limit. Thus, this method is economically ineffective as the 

flow rate increases (Kohl and Riesenfeld, 1997). UOP polymeric membranes are more 

effective for the removal of H2S from natural gas, although natural gas has higher 

concentration of H2S and higher operating pressures. These membranes cut off acidic 

gases to a reduction level from 70-90% (Cnop et al., 2007). However, polymeric 
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membranes have drawbacks like low permeability and selectivity, plasticization at 

high temperatures, but also insufficient thermal and chemical stability. 

1.3 Catalytic methanation  

Methanation of CO2 is an important process for the purification of natural gas. 

Hydrogen gas is used in addition to the carbon dioxide gas to form methane (CH4). 

The methanation process is shown in the equation below. 

𝐶𝑂2  +    4𝐻2  →  𝐶𝐻4  +  2𝐻2𝑂  (1.1) 

 

The advantage of catalytic methanation has led researchers to choose this 

process due to its higher thermal stability, good chemical resistance to solvents, high 

mechanical strength, recyclable and long lifetime. 

Our previous studies  (Bakar et al., 2015; Rosid et al., 2019; Toemen et al., 

2016; Toemen et al., 2018; Zamani et al., 2014) has drew attention on methanation 

reaction, which highlights that how adsorption strength of CO2 is controlled by Lewis 

basicity of catalyst, and the charge transfer from metal surface to chemisorbed CO2. 

Different transition metals and lanthanide elements such as Ni, Pd, Rh, Cu, Mn, Ru 

and Ce supported on alumina were investigated. Zamani et al. (2014)  has reported the 

methanation of carbon dioxide over Ru/Mn/Cu(10:30:60)/Al2O3 catalyst calcined at 

1035°C could give 98.5% CO2 conversion and 70% methane (CH4) formation at 

reaction temperature of 220 °C. The use of high loading makes it more economical, 

and it shows less formation of methane as well as showed stability for seven hours 

only that makes it unfit to use it in industrial application. In another study by Bakar et 

al. (2015), the Ru/Mn/Ni(5:35:60)/Al2O3 catalyst calcined at 1000°C showed excellent 

methanation catalytic activity. They reported the potential catalyst exhibited the 

highest catalytic activity at a reaction temperature of 400°C, which gave 99.74% of 

CO2 conversion with a low yield of 72.36% of methane. The Ru/Mn/Ni 

(5:35:60)/Al2O3 catalyst calcined at 1000°C showed reproducibility for several times 
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and also shows good stability and no deactivation for up to 100 h. However, a high 

reaction temperature of 400°C and low yield of 72.36% are the main drawbacks of this 

catalyst. 

The CO2 conversion using  neodymium doped with manganese and ruthenium 

was studied by Rosid et al. (2019). They evaluated that Ru/Mn/Nd (5:20:75)/Al2O3 

calcined at 1000°C gave CO2 conversion of 100% and CH4 formation of 40.0% at a 

reaction temperature of 400°C under molar ratio of 4:1 (H2:CO2). This result suggested 

that a lot of formation of by products along with the methane and higher reaction 

temperature makes it unfit to use at industrial level. Ceria is a well-known oxygen 

storage material, able to store and release in a reversible manner large amounts of 

oxygen was used by Toemen et al. (2018) for the production of SNG from CO2 

hydrogenation. The ceria based catalyst impregnated with Ru/Mn/Al2O3 was 

developed. The experimental results have shown that Ru/Mn/Ce (5:30:65)/Al2O3 

catalyst calcined at 1000°C achieved 97.73% of CO2 conversion with 91.31% of CH4 

at a reaction temperature of 200°C. The catalyst started to deactivate (spent catalyst) 

at 6th cycle with a CO2 conversion of 41.17%. This catalyst also faces a problem in 

terms of low stability.  

1.4 Role of metal oxides in methanation reaction    

1.4.1 Role of ceria in methanation reaction   

In many catalytic reactions, CeO2 is an active component  because it can absorb 

and release oxygen by transformation between Ce4+  and Ce3+ (Zhou et al., 2016). The 

bulk vacancies created in CeO2 catalyst after reduction at high temperature could 

enhance the carbon dioxide methanation (Trovarelli et al., 1995). Due to its high 

basicity, CO2 is easily adsorbed on CeO2 catalyst that could contribute to high CO2 

conversion (Tada et al., 2014). 
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1.4.2 Role of calcium oxide in methanation reaction 

CaO is  widely used as an excellent promoter for various catalysts owing to its 

high CO2 chemisorption capacity (Sengupta and Deo, 2015). It has been identified that 

CaO is good adsorbing material for CO2 because of its low cost, natural abundance 

and stoichiometric reactive sorption capacity of 0.785(g of CO2/g of oxide) which is 

higher than other metal oxide such as BaO has 0.287 (g of CO2/g of oxide), K2O has 

0.468 (g of CO2/g of oxide), SrO has 0.425 (g of CO2/g of oxide), ZnO has 0.540 (g 

of CO2/g of oxide) (Feng et al., 2007).  

1.4.3 Role of iron oxide in methanation reaction 

The lower iron content was characterized by the highest selectivity with respect 

to CH4 while the catalyst with the highest Fe content had the lowest methane 

selectivity. The increase in iron content resulted in a decrease in both carbon dioxide 

conversion and methane production (Kang et al., 2011). Iron oxide is responsible for 

the elongation and bending of linear structure molecule of CO2 to facilitate the lower 

reaction temperature of methanation (Jo et al., 2000). 

1.4.4 Role of ruthenium oxide in methanation 

Ruthenium is the most active metals for CO2 methanation (Wang et al., 2016). 

Ru cluster size also affects the product selectivity during CO2 reduction with H2. With 

increasing particle size, Ru increase selectivity with respect to methane formation and 

decreases the production of carbon monoxide (Kwak et al., 2013). High activity, low 

load and long-time stability are vital factors leading to the use of Ru in the methanation 

reaction. Ru is an excellent noble metal for breaking H2 gases into H atoms on the 

surface of the catalyst. 
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1.5 Response Surface Methodology (RSM)  

Response surface methodology (RSM) is a set of statistical and mathematical 

methods beneficial for the development, improvement, and optimization of processes. 

In recent years, RSM is the common most used for optimization methods. The 

experimental design and statistical analysis are carried out using the Design-Expert 

software. The development of experiments is now of importance due to their 

significant advantages, such as the reduction of the number of experiments, the 

minimization of operating costs and time, as well as the improvement of the analysis 

of the results obtained. RSM is a powerful statistical and mathematical analysis 

method that is used to extend, develop, and modify the catalytic optimization process 

through numerous studies (Toemen et al., 2014). To assess the impact of process 

variables and their interaction on the response to achieve optimal conditions, Box-

Behnken design (BBD) was used in this research. 

1.6 Problem Statement 

Carbon dioxide is one of the major natural gas impurities by its composition of 

20-30%. The CO2 presence leads to the environmental pollution as well as the natural 

gas delivery system. The emitted CO2 into the atmosphere contributes to global 

warming. At the same time, the presence of CO2 can cause corrosion in main pipelines. 

The delivery pipeline is generally blocked by freezing, resulting in various 

maintenance problems and reduced production efficiency. Hence, it is necessary to 

completely remove hazardous CO2 gas in natural gas. Several technologies like 

chemical absorption method, physical absorption method and membrane technology 

are used in the natural gas sweating process. But these methods are still not effective, 

have a low selectivity and are not economically efficient. They can remove only 10% 

of CO2 in the crude natural gas. Green technology can be applied to remove CO2 by a 

catalytic methanation reaction. CO2 can be converted to methane gas so that methane 

production can be increased.  



8 

The previous studies have shown that methanation catalysts such as cobalt, 

nickel, manganese, copper and zinc deposited on alumina support face challenges in 

terms of stability, reproducibility, regeneration, and operating temperature catalysts. 

Therefore, the development of a highly active catalysts is an important goal aiming the 

production of methane at low temperatures and high conversions of CO2. Problems 

have been revealed with rapid deactivation of methane catalysts in reaction conditions 

and low selectivity with respect to desirable products such as methane.  

1.7 Research Objectives 

The main purpose of this study is to develop potential catalysts that can operate 

effectively at very low possible temperature for CO2 methanation reaction. The main 

objectives of this study are: 

1. To synthesize, characterize and optimize the catalytic activity of alumina 

supported CeO2 and CaO based bi- and tri-metallic catalysts using Fe2O3 and 

RuO2 for the hydrogenation of CO2 to methane. 

2. To verify the optimal conditions attained in laboratory experiments by 

comparing its results with the predicted value of RSM. 

3. To investigate the reproducibility, regeneration, and stability of the potential 

catalyst. 

4. To propose the methanation reaction mechanism over potential catalyst. 

 

1.8 Scope of study 

The aim of this study is to prepare cerium and calcium-oxides based catalysts 

for CO2 methanation reaction. The catalysts were prepared by incipient wetness 

impregnation method and supported on γ-Al2O3. The incorporation of iron and 

ruthenium as co-catalysts was added in order to enhance the catalytic methanation. 
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The prepared catalysts were calcined at 400°C, 700°C and 1000°C and was tested in 

home built microreactor connected to FTIR.   

In order to determine the optimal conditions for catalysts that contribute to the 

highest CO2 conversion, several optimization parameters such as calcination 

temperatures, co-catalyst loadings, catalyst dosages, reliability testing, reproducibility 

testing and stability testing were studied. Catalytic optimization validation was 

executed using the statistical method of response surface methodology (RSM). 

Various analytical methods such as Nitrogen Adsorption method (NA), Thermo-

gravimetry Analysis-Differential Thermal Analysis (TGA-DTA), X-rays Diffraction 

(XRD), Field Emission Scanning Electron Microscope-Energy Dispersive Analysis of 

X-Ray (FESEM-EDX), Transmission Electron Microscopy (TEM) and X-ray 

Photoelectron Spectroscopy (XPS) were used to study the physical properties of the 

catalysts. Adsorption properties of CO2 depending on the reaction temperature were 

studied using IR analysis.  

1.9 Significance of study 

The present study is of interest from the perspective of the concept that CO2 

present in natural gas can be used to produce valuable methane without the loss of 

undesired component (CO2). The methanation process can be used to process a large 

quantity of CO2 in a short time. The catalysts developed were effective at low 

temperature, stable, moderately basic in nature and resistant to chemicals. This “green 

technology” approached for the production of methane gas was considered as an 

environmentally friendly method for waste to wealth concept. This green technology 

helps to reduce problems associated with acid rain, ozone depletion or greenhouse 

effect, and to improve the quality of natural gas. Catalysts developed in this study have 

contributed not only to economic growth, but also to the creation of a green 

environment. Furthermore, the catalysts were easy to prepare, environmentally 

friendly, stable, reusable and used at low reaction temperatures.  
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