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ABSTRACT 

Silver in its various forms is well known to have a potent antibacterial property. 

Despite the high antibacterial activity and efficacy of silver nanoparticles (AgNP), its 

frequent use could lead to bacterial resistance. Without a proper release mechanism, 

the efficacy of AgNP is often questioned. Additionally, chemical and physical methods 

to synthesize AgNP pose threats to the environment and health. Thus, alternative 

approach using biological resources are desired. However, AgNP produced through 

this method still needs preclinical evaluation on toxicity and biocompatibility. Thus, a 

novel in situ biosynthesis of AgNP-incorporated synthesized zeolite A (AgNP-SZ) 

was developed. The AgNP-SZ was then assessed for their antibacterial activity, in vitro 

cytotoxicity and wound healing potency. Zeolite A (SZ) was synthesized from 

kaolinite through hydrothermal method whereas AgNP was produced from AgNO3 

using Orthosiphon aristatus leaves extract as the green reducing and capping agent. 

The AgNP-SZ was synthesized using 0.4 mL 5 % O. aristatus leaf extract solution and 

mixed physically with Ag-SZ. The synthesized materials SZ, Ag-SZ and AgNP-SZ 

were characterized for their morphological and physicochemical properties. In the 

present study, the characterization results validated that the synthesized product was 

zeolite A. Characterization by Transmission Electron Microscope (TEM) showed 

AgNP with particle size of 20.01 nm in diameter and area of 381.61 nm2 was 

incorporated in the zeolite A. TEM analysis, surface and pore analysis (BET/BJH), 

thermogravimetric and differential temperature analysis (TGA-DTA), and inductively 

coupled plasma-optical emission spectrometry (ICP OES) were used to assess the 

synthesized products. These characterizations validated the O. aristatus leaves extract 

acted as natural reducing and capping agents with a timely release mechanism of 

AgNP from zeolite A. SZ, Ag-SZ and AgNP-SZ were assessed for antibacterial 

activity against E. coli and S. aureus using disc diffusion technique (DDT) and 

minimum inhibitory/bactericidal concentration (MIC/MBC), biofilm inhibition 

against P. aeruginosa, in vitro cytotoxicity against human skin fibroblast (HSF 1184) 

cells and wound healing potency through in vitro scratch assay. The powder form of 

the samples was pressed into pellets for DDT, whereas MIC/MBC and biofilm study 

utilized the powder form in both water and saline solution. Inhibition zones and 

bacterial growth inhibition were observed. The DDT showed clear zone of inhibitions 

for Ag-loaded materials on both bacteria, with E. coli was more susceptible than S. 

aureus in both water and saline solutions based on the MIC/MBC values. The AgNP-

SZ also showed potential biofilm inhibition action against S. aureus compared to P. 

aeruginosa. SZ, Ag-SZ and AgNP-SZ at 0.5, 1.0, 1.5, and 2.0 mg/mL were tested for 

cytotoxicity. In vitro scratch assay determined the HSF 1184 cell migration rate after 

treatment with the synthesized products. The absence of cytotoxicity in all 

concentrations of AgNP-SZ proved that the material is biocompatible. Although cell 

migration rate by AgNP-SZ was slower compared to the SZ and control in in vitro 

scratch assay, the material did not hinder cell migration and proliferation. These 

findings show the potential of green synthesized AgNP-incorporated zeolite A using 

plant extract to substitute conventional methods, with good antibacterial application 

and sustainable production.  
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ABSTRAK 

Argentum dalam pelbagai bentuk adalah sangat terkenal dengan ciri 

antibakteria yang kuat. Meskipun mempunyai aktiviti antibakteria yang tinggi, 

penggunaan nanozarah Argentum (AgNP) yang kerap menyebabkan kerintangan 

bakteria. Tanpa mekanisme pelepasan yang terkawal, keberkesanan AgNP sering 

dipertikaikan. Tambahan pula, kaedah sintesis secara kimia dan fizikal menjadi 

ancaman kepada alam sekitar dan kesihatan. Justeru, kaedah alternatif menggunakan 

sumber biologi adalah diperlukan. Namun, AgNP yang terhasil menggunakan sumber 

biologi masih memerlukan ujian pra-klinikal toksisiti dan bioserasi. Oleh itu, kaedah 

baharu biosintesis in situ AgNP sebatian sintesis zeolit A (AgNP-SZ) telah 

dibangunkan. AgNP-SZ telah dinilai berdasarkan aktiviti antibakteria, kadar 

ketoksikan sel, dan keupayaan menyembuh luka in vitro. Zeolit A (SZ) dihasilkan 

daripada kaolinit melalui proses hidroterma, manakala AgNP dihasilkan menggunakan 

ekstrak daun Orthosiphon aristatus sebagai agen penurun dan penukup. Penghasilan 

in situ ini telah dijalankan dengan menggunakan 0.4 mL larutan ekstrak daun O. 

aristatus (5%). Dalam kajian ini, kesemua sampel SZ, Ag-SZ dan AgNP-SZ telah 

dicirikan sifat morfologi dan fizikokimia mereka. Pencirian ini telah mengesahkan 

penghasilan zeolit A. Pencirian mikroskopi elektron transmisi (TEM) menunjukkan 

penyebatian AgNP dengan saiz zarah berdiameter 20.01 nm dan luas 381.61 nm2 

dalam struktur rangka zeolit A. Analisis TEM, kaedah BET/BJH, analisis 

termogravimetri  (TGA-DTA), dan spektrometri pancaran optik-plasma terganding 

induktif (ICP-OES) telah digunakan untuk menilai produk yang disintesis. Pencirian 

tersebut mengesahkan bahawa ekstrak daun O. aristatus bertindak sebagai agen 

penukupan dan perlepasan terkawal AgNP daripada  zeolit A. SZ, Ag-SZ dan AgNP-

SZ telah dinilai menggunakan kaedah peresapan cakera (DDT) dan kepekatan 

merencat/bakteriasid minimum (MIC/MBC) terhadap Escherichia coli dan 

Staphylococcus aureus, perencatan biofilem terhadap Pseudomonas aeruginosa, serta 

analisis ketoksikan dan potensi menyembuh luka melalui ujian cakar in vitro ke atas 

sel fibroblaskulit manusia (HSF 1184). Sampel berbentuk serbuk diproses menjadi 

palet untuk digunakan dalam ujian DDT, manakala sampel berbentuk serbuk 

digunakan dalam ujian MIC/MBC dan biofilem di dalam larutan air dan garam. Zon 

perencatan dan pertumbuhan bakteria telah direkodkan. Hasil DDT telah menunjukkan 

zon perencatan bagi bahan terkandung Ag, dengan E. coli didapati lebih rentan 

berbanding S. aureus melalui ujian MIC/MBC. Ujian perencatan biofilem 

menggunakan AgNP-SZ juga menunjukkan potensi yang baik terhadap S. aureus 

berbanding P. aeruginosa. SZ, Ag-SZ dan AgNP-SZ pada kepekatan 0.5, 1.0, 1.5, dan 

2.0 mg/mL telah dinilai bagi ujian ketoksikan sel. Ujian cakaran in vitro telah 

dilakukan untuk menentukan kadar penghijarahan sel HSF 1184. Ketiadaan aktiviti 

ketoksikan sel pada kesemua kepekatan AgNP-SZ telah membuktikan bahan tersebut 

adalah bersifat bioserasi. Walaupun kadar migrasi sel dilaporkan lebih perlahan bagi 

sampel AgNP-SZ berbanding zeolit A dan sampel kawalan dalam ujian cakaran in 

vitro, bahan tersebut tidak merencatkan migrasi sel. Penemuan ini menunjukkan 

kebolehupayaan sintesis hijau AgNP sebatian zeolit A daripada ekstrak tumbuhan 

berbanding teknologi lazim dengan sifat antibakteria dan bioserasi yang baik serta 

penghasilan produk yang lebih mampan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Various types and compositions of clays and minerals have been frequently 

studied and utilized for their multipurpose applications. Studies have focused on 

zeolite type-A out of several types of zeolites that include A, X, and Y (common 

types). Zeolite A is widely used for various purposes, and it can be used as a carrier 

for silver ions and silver nanoparticles (AgNP) (Jiraroj, Tungasmita, and Tungasmita, 

2014), biogas purification (Abdullah et al., 2018), and wastewater treatment 

(Mahmoodi and Saffar-Dastgerdi, 2019). It is a porous material with various molecular 

size channels, enabling specialized functions in catalysis, separation, and ion exchange 

(Kazemimoghadam, 2016). Zeolite A can be obtained through synthesis from kaolin 

for research purposes (Kwakye-Awuah et al., 2014; Loiola et al., 2012; Mgbemere et 

al., 2018). Kaolin, a type of clay, was used as the precursor for the synthesis of zeolite 

due to its abundant composition of silicon (Si), oxygen (O) and aluminium (Al). These 

elements are important in determining the outcome of the desired zeolite type. 

Therefore, the synthesized zeolite A was modified by the incorporation or ion-

exchanged with Ag and AgNP in advancing the development of composite material of 

zeolite A. This synergy has created potentials for advanced materials in biological and 

medical applications. Zeolite A composite is known for its antibacterial function after 

being modified with several appropriate and compatible antibacterial agents. 

Independently, zeolite A has no special feature to inhibit the growth of bacteria on its 

own. Antibacterial agents are compounds that can inhibit or kill bacteria. One of the 

antibacterial compounds such as silver, whether in the form of ion (Salim and Malek, 

2016) or nanoparticle (Hu et al., 2016), has become a significant benchmark for 

incorporating onto these zeolites. Zeolite can promote wound healing with the addition 

of antibacterial agent (Neidrauer et al., 2014; Purnomo et al., 2018).  
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Malaysia is a tropical country which houses abundance of local herbs and 

plants. These plants contain a rich amount of phytochemical components beneficial 

for many uses. In this work, a local herb known scientifically as Orthosiphon aristatus 

or misai kucing in Malay is highlighted for its use as a green reducing agent. On the 

other hand, kaolinite, a type of clay, is also abundantly exist in Malaysia and is 

frequently used in many advanced construction technologies. These two resources are 

the main materials used in this work. Hence, this study is feasible and attainable to 

develop an impactful research finding. With reference to previous studies, the green 

reducing agent has become an alternative method to reduce silver (Ag) ions to silver 

nanoparticles (AgNP) (Helmy et al., 2020; Sytu & Camacho, 2018; Thi Lan Huong & 

Nguyen, 2019). Furthermore, zeolite A is also capable of being synthesized from the 

kaolinite (Cundy & Cox, 2005; Gougazeh & Buhl, 2014). AgNP is a worldwide 

nanomaterial known as an antibacterial agent and is conventionally synthesized using 

chemical and physical methods. This conventional method usually involves a risk and 

hazard to the user and requires a lot of energy input and a greener approach has been 

introduced over the decades using plant extract (Mittal et al., 2013). Plant extract 

contains a large number of phenolic compounds and alkaloids responsible for reducing 

Ag ions into AgNP (Mittal et al., 2013). Other than reducing capability, compounds 

found in plants are also able to cap the AgNP for the nanoparticles stability (Sytu & 

Camacho, 2018). Its nano-sized particle is also an interesting feature that is used for 

antibacterial application in which the very high surface area enables effective 

interaction with the targeted bacteria (Kim et al., 2007). AgNP is also reported as the 

most effective antibacterial agent against a wide range of pathogenic microorganisms 

(Sharma et al., 2009). The biocompatibility of the materials are often tested to assess 

their suitability for pre-clinical and clinical testing against human skin cells (HSF 

1184) (Asraf et al., 2019), mice (Akkol et al., 2011), and zebrafish (Ramachandran et 

al., 2018). Following this trend, any wound healing research needs to adopt a 

biocompatibility test. Additionally, it can further enhance the value of the modified 

materials.  

Therefore, this work is gearing up for green technology in the biosynthesis of 

AgNP and zeolite A from their sources and precursors, respectively. Primarily, this 

work introduced the functional term of in situ synthesis method of AgNP-incorporated 

zeolite A (AgNP-SZ) using the green reducing agent of O. aristatus which is the 
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novelty of this study. So far, Thus, the modification of synthesized zeolite A (SZ) with 

the biosynthesized AgNP promotes an opportunity and interesting feature in 

biomedical application. The research gap in this project includes the innovation of 

synthesizing a material using green technology and assessing the material in both 

applications on the antibacterial property and in vitro skin wound healing. 

1.2 Problem Background 

Synthetic zeolite has become a mainstream process due to its relevant features 

for the industrial application. Zeolite can be synthesized using chemical or 

aluminosilicate precursors which made them comparable materials to the one 

synthesized with biological sources. Each of the synthesis method or route defines its 

own strength and weakness. A chemical precursor affects a high reproducibility and 

purity of the end material (zeolite A) (Huang et al., 2012). However, chemically-

synthesized zeolite requires chemicals which are not readily available and may cause 

a health hazard. The chemical precursors in this study refer to chemical sources other 

than biological sources such as sodium borohydride and sodium citrate. This study 

focused on the abundance of kaolinite in Malaysia. Therefore, it is wise to utilize this 

country’s abundant natural resource through the use of kaolinite as the aluminosilicate 

precursor to synthesize zeolite A. Besides, an important question is posed on the use 

of chemical and physical methods to synthesize AgNP. Although these chemicals such 

as sodium borohydride (NaBH4) and trisodium citrate are good reducing agents, they 

are risks to the environment if not properly disposed of (Banfi et al., 2014). Other than 

that, a physical method such as laser ablation requires a vast amount of energy to 

project the beam (Wei et al., 2015). Thus, this has led to the alternative use of 

biological organisms, including plant, microbes, and yeast, to synthesize AgNP. This 

study has demonstrated the use of local herb named O. aristatus which the reducing 

potential rivals to that chemical process. 

The frequent use of antibacterial agents such as silver, copper, and zinc has 

promoted bacterial resistance towards antibacterial agents. Although at a slow pace, 

bacteria can develop a resistive mechanism to counter the antibacterial materials 
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(Ferreira et al., 2016). These resistances of gram-positive and gram-negative bacteria 

are dependent on the difference in their membrane structure such as the peptidoglycan 

and membrane thickness (Durán et al., 2016). In addition, available antibacterial 

agents such as antibiotic and antiseptic cream, gel or solution are not as effective as 

they were in certain cases. The reduced effectiveness is due to the allergic reaction of 

the skin to certain compounds and a low-dose ingredient. Thus, the development of a 

new material that can deliver antibacterial agents using suitable mechanisms such as 

controlled release, high surface area of contact and low to null toxicity is needed. The 

exploration of new antibacterial products also helps consumers to choose based on 

their preferences in the market. 

There is rising concern of environmental factor when utilizing Ag in salts or 

nanoparticles although Ag is the most potent antibacterial agent to date. When the Ag 

is not properly disposed of, the environment will suffer a bioaccumulation 

phenomenon of heavy metals. A research was conducted to determine the level of 

bioaccumulation of AgNO3 and AgNP in daphnia magna showing a higher amount of 

AgNP in the diet and water exposure (Ribeiro et al., 2017). A similar study also stated 

that Ag bio-accumulative index are higher in the form of AgNO3 than AgNP in 

rainbow trout (Clark et al., 2019) The uncontrolled release of AgNP will accumulate 

in the host of the first consumer and later snowball to the end of the food chain. 

Humans as the end consumer will suffer the most contributing health hazard and 

illness. Current innovations are still lacking in utilizing natural materials such as plants 

and microbes in the production of AgNP. Therefore, green technology ranging from 

production to packaging has been the utmost concern for most industries and suppliers.  

The toxicological property of the synthesized AgNP using a greener approach 

must also be assessed, although many claim that the green synthesis poses less threat 

to human health. Bio-synthesized AgNP has never been claimed to not cause any 

environmental issue at all. However, the use of biological synthesis would simply 

reduce the significant adverse effect on the environment by removing harmful by-

products of chemical synthesis. A review stated that there are many possible 

mechanisms that lead to an increase or decrease in the toxicity level of AgNP in 

general, depending on the factors such as interaction with organic matters, cations, pH, 
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and oxygen (Clark et al., 2019). A high dose of Ag as in ions and nanoparticles will 

inhibit bacterial growth. However, a proper guideline is needed to assess the toxicity 

of these materials towards human health in general. Other than that, scientific data and 

results have to be produced to rectify the claim of toxicity level, thus creating a proper 

experimental setup on cytotoxicity testing of AgNP in the laboratory. On the other 

hand, wound infection is a frequent case that arises from the area of the wound being 

infected with bacteria. Wounded skin can be properly and quickly healed if personal 

hygiene is well-taken care of. However, in some cases, a wound can be severe due to 

this bacterial infection. According to a study done by swabbing infected wounds of 

patients in a hospital, common bacteria found on the swabs include Staphylococcus 

aureus, Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli, and 

Corynebacterium spp (Bessa et al., 2015). Undeniably, bacteria are the most common 

cause of wound persistence, according to the mentioned study. The wound can heal 

within a certain timeframe, but it can be impaired by bacterial infection. When skin is 

injured, bacteria can quickly obtain access to the underlying tissue making it difficult 

to heal (Bucknall, 1989). This will further give rise to inflammatory reaction on the 

skin since bacteria have the ability to form biofilm which act as their protective layer 

against antibacterial agent. The development of composite material with added value 

mainly the antibacterial property is sought. A good antibacterial activity shows 

decreases or kills a wide range of bacteria completely. Thus, these gaps in the research 

problem need to be explored and studied to produce a functional material with good 

antibacterial activity and biocompatible to the human skin cells.  

1.3 Research Objectives 

The objectives of this work are as follows: 

1. To synthesize zeolite A from kaolinite and bio-green silver nanoparticles from 

Orthosiphon aristatus extract and characterize them. 

2. To incorporate bio-synthesized silver nanoparticles onto synthesized zeolite A 

using in situ method and characterize them. 
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3. To assess the antibacterial property of bio-synthesized silver nanoparticles 

immobilized on zeolite A towards gram positive and gram negative bacteria. 

4. To evaluate the cytotoxicity and skin wound healing capability of the bio-

synthesized silver nanoparticles incorporated on zeolite A on human dermal 

fibroblast cells HSF 1184.  

 

1.4 Research Scope 

There are several important steps in producing the material for this research. 

Based on the objectives, the research scopes are divided into (1) the syntheses of 

zeolite A from kaolinite and the bio-synthesis of AgNP using O. aristatus leaf extract 

as the reducing and capping agent, (2) the in situ preparation method of biosynthesized 

AgNP-incorporated zeolite A, (3) antibacterial assay, and (4) in vitro biocompatibility 

and wound healing assessments on HSF 1184 cells.  

The first scope included the synthesis of zeolite A from raw kaolinite and the 

green biosynthesis of AgNP using O. aristatus leaves extract as the reducing and 

capping agents. Zeolite A is well-known for its hydrothermal synthesis with various 

potential applications (Collins et al., 2020). This hydrothermal method transformed 

kaolinite into zeolite A. On the other hand, AgNP was biosynthesized using O. 

aristatus leaves extract as the reducing and capping agents. The synthesized materials 

(AgNP and SZ) were optimized and characterized before proceeding for in situ 

synthesis method. 

In the next scope, both syntheses methods were combined into an in situ 

synthesis method through the synthesis, capping and incorporation of AgNP into the 

zeolite A. Similarly, the synthesized materials (Ag-SZ and AgNP-SZ) were 

characterized to confirm the incorporation of Ag and AgNP on or in the zeolite A 

framework. Figure 1.1 shows the schematic diagram of the synthesis pathway of in 

situ biosynthesized AgNP-incorporated zeolite A. 
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The characterization instruments used include Fourier transform infrared 

(FTIR) spectroscopy and X-ray powder diffraction (XRD). Furthermore, the surface 

morphology and properties were examined using field emission scanning electron 

microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, transmission 

electron microscope (TEM), inductively coupled plasma-optical emission 

spectrometry (ICP-OES) and dispersion behaviour. Additional characterizations to 

complement the results were also carried out using thermogravimetric analysis (TGA), 

zeta potential, Brunauer-Emmett-Teller (BET) Surface Area Analysis and Barrett-

Joyner-Halenda (BJH) Pore Size and Volume Analysis (BET-BJH), and inductively-

coupled plasma optical emission spectroscopy (ICP-OES). Additionally, the O. 

aristatus was also identified and characterized for its phytochemical constituents. The 

plant extract was characterized using liquid chromatography-mass spectrometry 

(LCMS), and the synthesis of AgNP using the extract was optimized based on specific 

parameters. 

The third scope emphasized the application and evaluation of the synthesized 

materials for antibacterial application. Disc diffusion technique (DDT) and minimum 

inhibitory/bactericidal concentration (MIC/MBC) were carried out against gram 

negative and gram positive of Escherichia coli ATCC 11229 and Staphylococcus 

aureus ATCC 6538. In addition, biofilm inhibition study was also conducted against 

S. aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. The synthesized 

materials were applied to the bacteria and assessed for the capability of Ag- and AgNP-

associated materials to inhibit the bacterial growth or kill the bacteria completely.  

The last scope involved the in vitro study of the synthesized materials towards 

human dermal fibroblast (HSF 1184) cells. The cells were grown and maintained until 

stable. Afterwards, the prepared samples were tested on the cells using cytotoxicity 

assay (direct method) and scratch assay (indirect method). The direct method involved 

a direct placement of the synthesized samples into the media containing cells. On the 

other hand, the indirect method required the sample extracts to be incorporated with 

the media for cell proliferation. Concentration of samples with no toxicity were 

selected and used for the scratch assay. The wound healing capability between the 

samples (SZ, Ag-SZ and AgNP-SZ) were evaluated and compared.  
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Figure 1.1 Schematic diagram of the in situ biosynthesized AgNP-incorporated zeolite A synthesis pathway 
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1.5 Research Outline 

The outline of the research is shown schematically in Figure 1.2. The outline 

comprises of several stages divided into the synthesis of materials including zeolite A 

from kaolinite and AgNP using O. aristatus, the in situ synthesis antibacterial 

assessments and biofilm inhibition study, and biocompatibility and wound healing 

evaluation of the materials.  

Stage 1 and 2 describes the preliminary synthesis of the respective zeolite A 

and AgNP. These syntheses were carried out firstly to determine the success of both 

synthesized materials (SZ and AgNP). SZ was synthesized from Kaol whereas AgNP 

was bio-synthesized from the O. aristatus leaves extract. 

After the confirmation of the success of both synthesized materials, in situ 

method was carried out in Stage 3. In this stage, Ag-SZ and AgNP-SZ were 

synthesized. The difference between these two materials were the method of synthesis 

and the state of Ag. Ag was in the state of ions whereas AgNP was in the state of 

nanoparticles. In addition, Ag-SZ was used as a comparison to AgNP-SZ to assess the 

effect of reducing agent and capping agent derived from the phyto-compounds 

extracted from O. aristatus leaves. 

Next stage was the application of the synthesized materials. Kaol, SZ, Ag-SZ 

and AgNP-SZ were the studied materials for antibacterial activity whereas SZ, Ag-SZ, 

and AgNP-SZ were tested for the in vitro cytotoxicity and wound healing assessments. 

Antibacterial assays were inclusive of DDT and MIC/MBC with the addition of 

biofilm inhibition study. Other than that, in vitro studies involved the use of 

cytotoxicity assay and scratch assay. In-depth methods are described in a later Chapter 

3.
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Figure 1.2 Outline of research stage-wise for the syntheses and applications of the materials. 
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1.6 Research Significance 

The development of inorganic materials is important to enhance their attributes 

by giving them additional properties such as antibacterial, antifungal, promoting 

wound healing, and increasing livestock. It is important to show that synthetic zeolite 

can be synthesized abundantly because the source of raw kaolinite is available locally. 

Since Malaysia does not produce zeolite minerals, so our researchers can synthesize 

zeolites from abundantly available kaolinite sources with high aluminosilicate content 

(Abdullahi et al., 2019). Furthermore, the rising trend for green synthesis of 

nanoparticles using microbes and plants has provided vast opportunities for our 

researchers to utilize natural products and green approach. Our tropical region is rich 

with plants and herbs which are waiting to be discovered. There are many types of 

research in synthesizing nanoparticles using plants such as Dodonaea viscosa 

(Anandan et al., 2019), Polygonum minus (Ullah, Wilfred, and Shaharun, 2019) and 

Sapindus mukorossi (Thi Lan Huong & Nguyen, 2021) These green syntheses resulted 

in more biocompatibility, scalability, and applicability of the materials (Rajan et al., 

2015). 

Since there is no research conducted on the development of AgNP incorporated 

onto zeolite A using O. aristatus, this project is considered novel in its field. The 

intended use of this medicinal herb is due to its abundance and locality in the tropical 

climatic forest of the southeast of Asia (Febjislami et al. 2019). Additionally, Malaysia 

has many herbs for application in green technology. O. aristatus contains rich amounts 

of plant metabolites (Samidurai et al., 2020). These plant metabolites are responsible 

for reducing and capping the synthesized AgNP. The property of these natural 

metabolites is very much comparable to the conventional chemicals used to synthesize 

AgNP. Therefore, instead of using chemicals, plant metabolites are the potential 

substitutes. Potentially, all compatible materials or compounds can be adhered to or 

immobilized on the zeolite framework through ionic interaction (Nik, Chen, and 

Kaliaguine, 2011) or simply through the deposition of nanoparticles in the zeolitic 

pores (Jiraroj, Tungasmita, and Tungasmita, 2014). Ag ions from silver nitrate can be 

ion-exchanged with other cations such as sodium and magnesium ions (Ebadi 

Amooghin et al., 2016). On the other hand, AgNP can be deposited or adsorbed into 
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the zeolite A framework due to its nano-size (Shameli et al., 2011). The development 

of AgNP incorporated onto synthesized zeolite A using a greener approach is expected 

to set a benchmark for future researchers to continue discovering the potential of 

tropical plants for the biosynthesis of AgNP.  

There is a limited finding related to the use of zeolite in wound healing. A 

review summarized the use of zeolite as a scaffold to enhance dermal tissue 

regeneration (Ninan et al., 2015). This report provided insight into the possible mode 

of actions of the synthesized materials and their antibacterial wound healing 

assessment. Thus, the outcome of this project has established a reproducible method 

and protocol in conducting antibacterial assay and in vitro study, which is acceptable 

and more scientific. Other than that, the scientific exploration of using local plants and 

herbs to synthesize AgNP will promote a greener technology application.  

Wounded skin is prone to bacterial infection due to the exposed inner skin 

layer. Simply being said, wounded skin and bacterial infection are inseparable. 

Bacteria exist on the outermost layer of skin or dead skin layer. Minor wound opens 

up the skin which makes it easier for the bacteria to penetrate (Tomic-Canic et al., 

2020). There are more than a type of bacterium resides on the skin each with different 

roles. Some are the contributing factors in developing chronic wound while the others 

are believed to promote wound healing on the skin. Therefore, antibacterial and wound 

healing assessments are suggested as a complementary for this type of work.  

In a summary, this project is significant to promote an innovative and 

systematic approach in developing applied inorganic material with a greener method 

to solve wound infection on the skin. The method applied a biological synthesis 

method to replace the conventional chemical and physical methods. The systematic 

approach was reflected on the step-wise experimentation on antibacterial wound 

healing. The steps started with comprehensive antibacterial testing and followed by 

cytotoxicity and cell migration assessments.
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