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ABSTRACT 

Plants depend entirely on innate immunity system to protect them from 
various pathogenic bacteria, fungi, and viruses. The first layer defense mechanism is 
named as Pattern-triggered immunity (PTI) system. It is activated by Pathogen-
associated molecular pattern (PAMP) of the host plant by Pattern recognition 
receptor (PRR) with the aid of co-receptor. Elongation factor receptor (EFR), which 
is also known as PRR, is one of the most recognized receptor used to protect against 
disease in Brassica species. Although research on transgenic approach and wet labs 
experiments have been carried out to analyse the EFR model, but the full ectodomain 
interactions of EFR with PAMP elf18 protein and co-receptor Brassinosteroid 
Insensitive 1-associated receptor kinases (BAK1) protein through in silico has not 
been accomplished yet. The purpose of this study was to determine the interaction of 
EFR protein with elf18 protein through in silico analysis approach. In this study, 
PRR EFR protein and PAMP elf18 protein was constructed by homology modelling 
using HHpred Modeller, followed by docking and molecular dynamics (MD) 
simulation of EFR protein and elf18 protein with co-receptor BAK1 protein 
(PDB:3UIM) and apo BAK1 (PDB ID:3ULZ) as model for mutant protein using 
ZDOCK 3.0.2 server and GROMACS 5.0.4 respectively. Finally, superimposition 
was done between EFR-elf18-BAK1 complex with existed FLS2-flg22-BAK1 
crystal structure. Modelling results showed that multiple template modelling (MTM) 
generated best models compared to single template modelling (STM) due to their 
best quality of the protein structure obtained by HHpred Modeller generate best 
validation results of 71.123 ERRAT, 95.67% Verify3D and 92.8% in favoured 
region of Ramachandran Plot. Docking results showed that the complex interaction 
of BAK1 protein and elf18 protein binds at the concave surface of Leucine-Rich-
Repeat (LRR) EFR, compatible with the existed FLS2 complex binding interactions. 
For the EFR-elf18-BAK1 (normal) complex, about 20 hydrogen bonds were 
sustained which is higher compared to EFR-elf18-BAK1 (mutated) complex that 
only sustained 16 hydrogen bonds, proved that the mutated protein have less 
interaction after simulation. After 50ns MD Simulation, the results showed that all 
the docked complexes has significant reduction of H-bonds. For EFR-elf18-BAK1 
docked complex, H-bond between EFR protein and BAK1 protein reduced from 45 
to 22, and H-bond between elf18 protein and BAK1 protein were reduced from 9 to 0 
which caused by the conformational changes of the proteins during simulation. This 
study helps to understand the Brassica disease in detail and contribute significantly to 
early event of Pattern Triggered Immunity mechanism of EFR-elf18-BAK1 protein 
complex. 
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ABSTRAK 
 
 
 
 
Tumbuhan bergantung sepenuhnya pada sistem keimunan inat untuk 

mempertahankan diri dari serangan bakteria, kulat dan virus.Lapisan pertahanan 
pertama adalah dikenali sebagai sistem imuniti cetusan corak (PTI). Sistem tersebut 
diaktifkan melalui mikroorganisma tanggapan relatif patogen (PAMP) oleh reseptor 
pengesanan corak (PRR) tumbuhan perumah dan protin ko-reseptor. Reseptor faktor 
pemanjangan (EFR) adalah antara reseptor pengesanan corak (PRR) yang merupakan 
reseptor yang paling dikenali untuk melindungi daripada penyakit dalam spesies 
Brassica.Walaupun beberapa kajian melalui pendekatan transgenik dan eksperimen 
makmal telah dijalankan untuk menganalisis model EFR, namun interaksi penuh 
antara EFR dengan protin elf18 dan protin ko-reseptor BAK1 dalam kajian in silico 
masih belum dilakukan. Tujuan kajian ini dijalankan adalah untuk mengkaji 
hubungan interaksi di antara protin EFR dengan protin elf18 melalui pendekatan 
secara in silico . Dalam kajian ini, (PRR) protin EFR dan PAMP protin elf18 telah 
dibina melalui pemodelan homologi menggunakan HHpred Modeller diikuti proses 
mengedok menggunakan perisian Z-dock dan simulasi dinamik, GROMACS 
bersama protin ko-reseptor BAK1 (PDB: 3UIM) dan mutannya yang dikenali 
sebagai apo (PDB: 3ULZ). Akhir sekali, hasil keputusan dok iaitu komplek EFR-
ef18-BAK1 dibandingkan dengan struktur kristal yang telah sedia ada iaitu FLS2-
flg22-BAK1. Keputusan pemodelan menunjukkan bahawa templat tunggal tidak 
mampu memperoleh struktur model yang berkualiti dan hanya perisian Modeller 
yang berhubung dengan HHpred mampu memberi keputusan model yang terbaik 
iaitu sebanyak 71.123 ERRAT, 95.67% nilai Verify 3D and 92.8% asid amino di 
dalam kawasan yang dibenarkan dalam plot Ramachandran. Keputusan analisis 
menunjukkan mekanisma pelekatan oleh dok dengan protin BAK1 dan protin elf18 
menghasilkan bentuk permukaan cekung mengikat di sebelah sisi EFR LRR yang 
lebih serasi dengan komplek yang sedia ada iaitu FLS2. Bilangan ikatan hidrogen 
adalah tinggi (20) bagi komplek EFR-elf18-BAK1 (normal) berbanding komplek 
EFR-elf18-BAK1 (bermutasi) (16) di mana ini membuktikan kesan mutasi yang 
memberi interaksi yang kurang selepas proses simulasi. Keputusan simulasi 
dinamik pada 50ns menunjukkan kehilangan ikatan hidrogen pada kesemua struktur 
yang telah didok.  Bagi dok kompleks EFR-elf18-BAK1, ikatan hidrogen  antara protin 
EFR dan protin BAK1 berkurang daripada 45 kepada 22, dan ikatan hidrogen antara protin 
elf18 dan protin BAK1 berkurang daripada 9 kepada 0 yang mungkin berpunca daripada 
perubahan konformasi protin semasa proses simulasi dinamik. Hasil kajian ini 
membantu untuk memahami penyakit dalam tumbuhan Brassica dengan terperinci dan 
mungkin menyumbang kepada pemahaman peristiwa awal PTI oleh kompleks protin 
EFR-elf18-BAK1. 
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CHAPTER 1 

 
 
 

INTRODUCTION 
 
 
 

 
1.1 Background of study 
 
 

Arabidopsis plant consists of various disease resistances majorly in Brassica 

species. Brassica plant species such as Cabbage (Brassica oleracea var. capitata L.) 

is one of the main vegetables consumed in Malaysia as fresh market vegetable and 

also eaten fresh in food consumption such as coleslaw, sauerkraut and cabbage roll. 

It has contributed to greatest production in many parts of Malaysia, especially in 

Cameron Highland with 92% of total cabbage production annually. However, it also 

causes 11%  of crop loss each year since 1925 due to pest infestation (Mazlan & 

Mumford, 2005). The Brassica species mainly affected by diseases such as 

Xanthomonas campestris and Plamodiospora brassicae  causes by the most 

prominent insect pest, Plutella xylostella. There is a lot of research has been already 

done to control the disease such as transgenic crops as well as the usage of the 

biological insecticide and insect-resistant genetically modified crop which is  

ineffective  due to some of the factors such as short-lived of plant species, non-

environmental friendly and highly cost (Bravo Alejandro & Gill Sarjeet, 2008). 

 
 
Many research recently focused on in silico analysis study where all data of 

biological experiments are being carried out entirely using computer. Pattern 

recognition receptor (PRR) plays an important role in in silico study for rapid 

detection of potential danger caused by pests and microbes by pathogen-associated 

molecular pattern (PAMP). Arabidopsis thaliana is currently used to analyse the 

microbial-plant interaction through in silico analysis (Bigeard et al., 2015; Kunze, 

2004). From Arabidopsis plant, many PRR have their own specific binding with 

PAMP. Flagellin Sensitive2 (FLS2) and Elongation factor receptor (EFR) are the 

most-characterized membrane protein used for in silico study. However, the overall 

structure of protein complex FLS2LRR-flg22-BAK1LRR has already been analyzed 
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through in silico binding mechanism (Sun et al., 2013), in which LRR indicated as 

leucine rich repeat domain. 

 
 
The perception of bacterial elongation factor Tu (EF-Tu) by Elongation factor 

receptor (EFR) protein explains the well-studied PAMP/PRR pair specifically for 

Arabidopsis plant disease (Roux et al., 2011; Sato et al., 2000). Elongation factor Tu 

(EF-Tu) is the most abundant bacterial protein that acts as a pathogen-associated 

molecular pattern (PAMP).  Arabidopsis plants recognize the N terminus of the 

protein comprises the first 18 amino acids of elf18 as it is fully active in defence 

responses (Albert et al., 2010).  Additionally,  the co-receptor such as  

Brassinosteroid Insensitive 1-associated receptor kinases (BAK1) protein and related 

somatic embryogenesis receptor kinase (SERK) protein helps to regulate and activate 

the immune response (Newman, Sundelin, Nielsen, & Erbs, 2013). 

 
 
Previous research on transgenic expressions of LRR-RK EFR protein with 

different receptor protein of Flagellin Sensitive2 (FLS2) has been carried out through 

experiments such as binding assay, co-immunoprecipation, conservation mapping 

and others. Although most of PRR/PAMP have already been identified, however the 

full ectodomain analysis of EFR protein and its interaction with PAMP has not been 

carried out yet. Therefore, this current study attempts to interact LRR domain of EFR 

protein with elf18 protein and co-receptor BAK1 protein. This study significantly 

helps to analyse the brassica disease in detail and the interaction between EFR and 

elf18 in PTI system. Consequently, through the interaction, the similarity and 

differences with the existed complexes of FLS2-flg22-BAK1 is analyse through in 

silico analysis using bioinformatics approach.  

 
 
 
 
1.2 Problem statement  
 
 

The potential danger caused by insect pest, Plutella xylostella  trigger the 

Arabidopsis plant disease and crop loss in Brassica species especially in cabbage.  

EFR is the most-characterized membrane protein, that has specific ectodomain 
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binding towards elf18 protein is used for in silico study to control the disease. When 

the pathogen attacked the plasma membrane, EFR protein will recognise the 

conserved PAMP and undergo downstream activities (Bigeard et al., 2015; Che, 

2017).  Recent research has been done in many wet lab experiments on transpecies 

transfer of LRR-RK EFR protein and different PRR to test the effectiveness of 

different plant species. Previous research has demonstrated co-immunoprecipitation 

experiments through in-vivo to test the ability of transgenic expressions of EFR 

protein and Flagellin Sensitive2 (FLS2) receptor with somatic embryogenesis 

receptor kinase (SERK) co-receptor in tobacco and tomato (Helft et al., 2011; Roux 

et al., 2011).  Recent research also proved through conservation mapping method to 

predict suitable functional sites where it has been demonstrated through LRR domain 

of EFR protein and FLS2 receptor to test the resistance on bacteria Ralstonia 

solanacearum and Xanthomonas campestris pv. Vesicatoria  (Helft et al., 2011).  

However, the transgenic plants expressing EFR protein causes wilting symptoms. 

Moreover, chimeric receptor of FLS2 substitute with parts of EFR, which tested for 

functionality of ligand-binding-elf18 tobacco and tomato. Nevertheless, this research 

causes incompatible at the swap site and exchange of the LRR subdomain. Thus, due 

to the factors such as short-lived of plants because of high pressure of Bt Cry toxin, 

high cost and incompatible of swap site of protein domains, the previous research is 

considered ineffective. Thus, the current study proposed to investigate the random 

interaction of PRR of full EFR protein domain, without transpecies transfer of 

different receptor with elf18 and co-receptor BAK1 protein through in silico analysis 

approach by using various bioinformatics tool. This study concurrently helps to 

broaden the scope and increase the performance of the plant rather than 

experimenting using the same mainstream wet lab experiments.  

 
 
 
 
1.3       Research Aim and Objectives  
 
 

The overall aim of this research project is to understand the pattern-triggered 

plant immunity system to control disease in Brassica species mediated by EFR 

protein as pattern recognition receptor through in silico analysis study. The 

objectives of this research project are: 
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1. To evaluate structure reliability of single template models and multiple 

template models of PRR EFR protein and PAMP elf18 protein through 

structure validation analysis. 

2.  To determine random molecular interaction of complex of plant PRR EFR 

protein with PAMP elf18 protein through docking using ZDOCK 3.0.2 

server. 

3.  To determine molecular interaction of complexes of plant PRR EFR protein 

and PAMP elf18 protein with co-receptor BAK1 protein through docking. 

4.  To determine structure stability interaction of docked complexes between 

PRR EFR protein and PAMP elf18 protein, together with the co-receptor 

BAK1 protein through molecular dynamics simulation. 

 
 
 
 
1.4 Scope and Limitations of the Study  
 
 

In the beginning of this study, initially the PRR EFR protein and PAMP elf18 

protein was modelled using different tools, in which the amino acid sequence based 

analysis of EFR through multiple sequence alignment was done for EFR protein with 

its different template proteins. The homology modelling have been constructed to 

model the 3D structure of EFR protein and the final structure selected based on 

structure validation percentage using ERRAT, Verify3D and Ramachandran Plot. 

Following that, the random molecular interaction of PRR EFR protein, PAMP elf18 

protein and co-receptor BAK1 protein was done by using ZDOCK 3.0.2 server. 

Then, molecular dynamics simulation was done to analyse the conformational 

changes of the proteins and stability interactions using GROMACS 5.0.4, which 

generated results in root means square deviation (RMSD), root means square 

fluctuations (RMSF) and radius of gyration (Rg) graphs.  According to these 

measurement and other binding analysis measurements provided in methodology 

section, the results were assessed and discussed. For the binding interaction analysis, 

only LRR domain of EFR protein was taken into consideration since the mechanism 

happens outside membrane (R. Gupta & Bent, 2011). 
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The significant limitation for this study was that there is no research 

previously done for the in silico analysis study of EFR protein and interaction with 

its PAMP. Although EFR protein has been model previously, there is no reference 

on such interaction to PAMP elf18 protein as well for md simulation of pattern 

triggered immunity approach. The reference structure was only limited to FLS2 

crystal structure having PDB ID of 4m8A, FLS2 complex as PRR with its PAMP 

flg22 and BAK1 as co-receptor which share similar co-receptor with EFR protein 

complex (Koller & Bent, 2014).  

 
 

Another limitation of this study is that since this project mainly use online 

servers to accomplish work in order to model a protein, for the interaction and for 

simulation of protein. Moreover, not many free online modelling server could able to 

model full EFR protein together with all domains, thus separation of each domain 

has been done and has been model individually (Buenavista et al., 2012). As well for 

free docking tools, ZDOCK 3.0.2 was the most suitable to generate interaction 

between two or more different proteins compared to AutoDock 4.2.  

 
 
 
 
1.5 Significance of study 
 
 

The study of pattern-triggered immunity (PTI) system is important in order to 

understand the stages in plant defense mechanism in detail. Besides, PRR EFR is an 

important protein receptor in controlling major disease in Brassica species especially 

cabbage. Therefore, in silico study of EFR protein interact with PAMP elf18 protein 

and co-receptor BAK1 protein through proper modelling and molecular dynamics 

approach will significantly contributes knowledge to understand the plant defense 

mechanism. 
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