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ABSTRACT 

 

 

There is a growing concern regarding the lack of an efficient solution to solve 

halogenated compound pollution in the environment. A Gram-negative bacterium, Rhizobium 

sp.  RC1, which uses 2,2-DCP as one of its primary sources of carbon was previously isolated. 

However, the process of transporting haloacids into Rhizobium sp. RC1 has yet to be 

confirmed. A putative haloacid transport gene, dehrP, inside Rhizobium sp. RC1 is speculated 

to be responsible for this process. The aim of this research was to elucidate the function of this 

gene for the transport of haloacids into the cell. To achieve this, dehrP was initially analysed 

using several BLAST tools and then aligned using T-Coffee against other known transport 

proteins. The subsequent protein of this gene, DehrP, was concluded to belong in the Major 

Facilitator Superfamily (MFS) and Metabolite:H+ symporter (MHS) family of proteins. DehrP 

was determined to have nine transmembrane helices with MFS unique motifs between helices 

two and three, and helices eight and nine. Evolutionary analysis of DehrP was determined to 

have close relations to MHS family haloacid transporters, DehP, Deh4p and Dehp2 in 

Burkholderia caribensis MBA4. DehrP was modelled using Phyre2 with the transport protein 

XylE from Escherichia coli as the reference model. DehrP was compared with XylE in order 

to determine the proton and haloacid binding sites. The proton binding site of DehrP is made 

up of two residues, Asp36 and Arg130 whereas the assumed haloacid binding site residues are 

(Glu33, Trp34, Phe37, Arg75, Tyr271 and Ser402). To verify the assumption for the haloacid 

binding site, the binding site residues were replaced with alanine and the new sequence was 

named DehrPa. The 3D structures of DehrP and DehrPa were refined using 3Drefine in order 

to prepare them for docking simulations using AutoDock Vina. Docking simulations were done 

with four haloacids (2,2-DCP, MCA, D-2DCP and L-2DCP). The assumed substrate binding 

residues of DehrP was validated due to the lower binding affinity and lower binding accuracy 

of DehrPa. Unexpectedly, it was also found that 2,2-DCP was still able to bind to three other 

residues that was not mutated inside DehrPa. This study confirms haloacid binding site for 

DehrP of previous work with additional discovery of alternative binding residues specifically 

for 2,2-DCP.  
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ABSTRAK 

 

 

 

Kurangnya penyelesaian yang berkesan untuk pencemaran alam sekitar oleh sebatian 

halogen adalah semakin membimbangkan. Bakteria Gram-negatif, Rhizobium sp. RC1 yang 

menggunakan 2,2-DCP sebagai salah satu sumber utama karbon telah berjaya dipencilkan. 

Bagaimanapun, proses pengangkutan 2,2-DCP ke dalam sel Rhizobium sp. RC1 masih belum 

dikenal pasti. Satu gen putatif pengangkutan haloasid, dehrP, di dalam Rhizobium sp. RC1 

dianggap bertanggungjawab bagi proses ini. Kajian in bertujuan untuk menjelaskan fungsi gen 

ini bagi pengangkutan haloasid ke dalam sel. Untuk mencapai matlamat ini, gen dehrP  

dianalisa menggunakan beberapa alat BLAST dan kemudian disejajar menggunakan perisian 

T-Coffee dibandingkan dengan protin pengangkutan lain. Protin daripada gen ini, DehrP, telah 

disimpulkan tergolong di dalam kumpulan protin Major Facilitator Superfamily (MFS) dan 

simpot Metabolit:H+ (MHS). DehrP didapati mempunyai sembilan heliks transmembrane 

dengan motif unik MFS di antara heliks kedua dan ketiga, dan heliks kelapan dan kesembilan. 

DehrP telah didapati berkait rapat dengan protin pengangkut haloasid lain daripada kumpulan 

MHS, DehP, Deh4p dan Dehp2 dalam Burkholderia caribensis MBA4. Model DehrP  telah 

dibina menggunakan Phyre2 dengan protin pengangkutan XylE dari Escherichia coli sebagai 

model rujukan. DehrP telah dibandingkan dengan XylE untuk menentukan lokasi tapak 

pengikat proton dan haloasid. Lokasi tapak pengikat proton DehrP terdiri daripada dua residu, 

Asp36 dan Arg130 manakala andaian tapak pengikat haloasid adalah Glu33, Trp34, Phe37, 

Arg75, Tyr271 dan Ser402. Bagi mengesahkan andaian tapak pengikat bagi haloasid, residu-

residu tersebut telah ditukar kepada alanin dan jujukan protin baru ini diberi nama DehrPa. 

Model 3D DehrP dan DehrPa telah dikemaskan dengan menggunakan 3Drefine sebagai 

persediaan simulasi dok menggunakan AutoDock Vina. Simulasi mengedok dilakukan 

menggunakan empat haloasid (2,2-DCP, MCA, D-2DCP dan L-2DCP). Kesimpulannya, 

andaian residu tapak pengikat dalam DehrP telah berjaya disahkan melalui keafinan ikatan dan 

kejituan yang rendah dalam DehrPa. Tanpa diduga, 2,2-DCP didapati masih dapat mengikat 

kepada tiga residu lain yang tidak dimutasikan dalam DehrPa. Kajian ini mengesahkan tapak 

pengikat haloasid bagi DehrP oleh kajian terdahulu dengan penemuaan terbaru residu pengikat 

alternatif khusus bagi 2,2-DCP.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

Halogenated compounds have been used extensively in both industrial and 

personal use cases (herbicides, cleaning agents, etc.). Halogenated compounds are 

both made artificially and naturally where the latter is the result of geothermal 

processes such as volcanic eruptions and forest fires (Gribble, 2003). As halogenated 

compounds are also a type of carbon source, some microorganisms have taken this to 

advantage which resulted in using halogenated compounds as a source of energy 

through biodegradation.  Types of halogenated compounds would be haloacids or 

haloacetate which can be found in everyday uses such as 2,2-dichloropropionic acid 

(2,2-DCP) or better known as Dalapon®, is widely used as a herbicide and while 

haloacetate can be found in household cleaners. The amount of pollution that is caused 

by haloacids and haloacetate is concerning due to their alarming toxic effects towards 

living organisms that have little to no means of disposing these compounds from their 

systems (Plewa, Kargalioglu, Vankerk, Minear, & Wagner, 2002).  

 

 

Bioinformatics tools are one of the main methods of protein analysis in general. 

By using these tools, information such as protein family and 3D structures can be 

obtained without having to physically analyse the protein itself. Usually bioinformatics 

tools go in tandem with preliminary laboratory work to work out the properties of a 

protein. This is especially useful when analysing a protein that is hard to analyse such 

as membrane proteins.  
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The bacterium used for the research is Rhizobium sp. RC1 which is a Gram-

negative bacterium that was isolated from the soil using 2,2-dichloropropionic acid 

(2,2-DCP). These bacteria break down haloacids and use it as a source of carbon and 

is capable of doing this due the dehalogenase enzymes that are present inside the cell 

(Huyop & Nemati, 2010). It has been predicted that this organism has a specific 

transport protein that is responsible of transporting haloacids into the cell, but it has 

not been extensively researched (Tsang & Pang, 2001). The putative transport gene of 

Rhizobium sp. RC1, dehrP, is used as the starting point of the research. 

 

 

Analysis of proteins such as DehrP have brought upon the formation of families 

that groups these proteins together in a family. The Major Facilitator Superfamily 

(MFS) was established so that proteins that are responsible for transport inside bacteria 

are grouped together and is used as reference to log other proteins similar to the 

members of the family (Pao, Paulsen, & Saier, Jr., 1998). Sub-families were then 

established under MFS in order to group the proteins based on the distinctive traits of 

each proteins such as transport system and substrate transported. One f these families 

is the Metabolite:H+ Symporter (MHS) family which groups proteins transport 

metabolites with protons simultaneously into the cell.  

 

 

Members of the MHS family include Deh4p and Dehp2 in Burkholderia 

cepacia MBA4, XylE in E. coli and GlcPse in Staphylococcus epidermidis. All of these 

proteins exhibit the unique characteristics that categorise them as members of the MFS 

and MHS family of proteins. All of these proteins should possess a unique MFS protein 

between helices 2 and 3, and helices 8 and 9 and have a unique cytoplasmic loop (Pao, 

Paulsen, & Saier, Jr., 1998). It is inferred that DehrP inside Rhizobium sp. RC1 relates 

to these proteins based on prior research and it is highly probable that DehrP would 

also exhibit the same traits.  
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1.2    Problem Statement 

 

It is well established that the consumption of food or nutrients that are 

contaminated with haloalkanoic acids (haloacids) could have toxic and carcinogenic 

effects towards the organism that consumed it. This is also a problem since not all 

organisms can degrade haloacids in their system. Microorganisms are gradually being 

extensively used in order to breakdown haloacids in places such as in soil due to their 

ability to transport haloacids into the cytoplasm. However, only specific 

microorganisms have ability to transport these compounds into the cell. In order to be 

able to transport these substrates, the microorganism should possess a certain transport 

gene to be expressed to produce a specific haloacids transport protein due to haloacids 

not being a natural substrate for these microorganisms. By expressing these genes, the 

microorganism is able to produce an alternative transport pathway to accommodate for 

the haloacids.  

 

The cell used for the research, Rhizobium sp. RC1, is known to be able to 

transport haloacids such as 2,2-DCP into the cell as a carbon source. However, only 

the process of transporting haloacids into the cell is confirmed. The full mechanism 

during the process is not yet well documented and extensively researched. By 

researching the mechanism of the transport process, it can lead to the better 

understanding of the transport system of the cell itself and can be used to efficiently 

study haloacid transport in Rhizobium sp. RC1 in real life situations.  

 

 

 

 

1.3 Significance of Research 

 

 

By the means of this research, it is hoped that the structure and functions of the 

proteins involved in the transport mechanism of haloacids into Rhizobium sp. RC1 can 

be clarified. Research regarding the putative transport protein of Rhizobium sp.  RC1 

have been minimal and the latest research has inferred the structure and proton binding 
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abilities. In solidifying these hypotheses, we could start to build a better picture of the 

process of transporting haloacids into Rhizobium sp.  RC1 operates. By gaining more 

understanding of the structure and the haloacid transport process of haloacid 

transporters of Rhizobium sp.  RC1, it would be useful in gaining better efficiency of 

using the microorganism to uptake haloacids in order to better degrade haloacids 

pollutants in designated areas.  

 

 

 

 

1.4    Research Objectives 

 

i) To analyse the amino acid sequence of haloacid transporter (DehrP) from 

Rhizobium sp.  RC1 and subsequently determine the classification and 

family of DehrP. 

ii) To determine the 3D structure and the topological arrangements of DehrP 

in Rhizobium sp.  RC1 from its primary sequence. 

iii) To determine and analyse the substrate and proton binding sites of DehrP. 

 

 

 

 

1.5    Scope of the Research 

 

 

Analysis of Rhizobium sp.  RC1 putative transport gene, dehrP, is purely 

computational and software based. This is because the laboratory work to determine 

the nucleotide sequence of the putative transport gene in Rhizobium sp. RC1 is already 

documented and stored in an online database. This require downloading the 

determined nucleotide sequence that was submitted into the GenBank Database and 

translate it into the appropriate amino acid sequence. Using the information given, the 

nucleotide sequence would then be used to do further computational analysis using 

bioinformatics software packages during the research. No further laboratory work will 
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be done since it has been determined that doing extensive laboratory and physical 

analysis of the putative transport protein would take a long time and would require 

specialised tools and materials beforehand. Doing computational analysis is a good 

alternative that will still yield the results that we have predicted prior to the research.  
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