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ABSTRACT 

The ever-increasing worldwide energy consumption and released tons of 

energy-related CO2 gas into the atmosphere have driven the exploration of syngas in 

petrochemical industries and synfuels generation from Fischer-Tropsch synthesis 

(FTS). Among the technologies for syngas generation, catalytic partial oxidation of 

methane (POM) appears as a promising technique due to its short contact time at high 

space velocity and mildly exothermicity leading to excellent energy efficiency. 

However, the catalyst deactivation induced by carbon deposit is always a challenging 

issue for POM.  Thermodynamic equilibrium assessment for POM was conducted in 

this research by using the Gibbs free energy minimization approach to study the tuning 

of syngas H2/CO ratio appropriate for downstream FTS. The results revealed that 

indirect combustion-reforming pathway was possibly the main contributory factor to 

the syngas yield during POM. In this research, silica materials with various 

morphology, namely commercial silica (SiO2), commercial Mobil Composition of 

Matter number 41 (MCM-41) and dendritic fibrous KAUST Catalysis Centre 1 (KCC-

1) were prepared to study their properties and catalytic activity relationship for POM. 

The KCC-1 support was synthesized using microwave-assisted microemulsion. The 

addition of 0.5 wt.% M (M = Ru, Pd or Rh) on KCC-1 support were carried out using 

wetness impregnation methods to further enhance the POM performance. The catalysts 

were characterized using X-ray diffraction, N2 physisorption, transmission electron 

microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared 

spectroscopy, electron spin resonance and Raman spectroscopy measurements. The 

effects of support morphology and active transition metals addition towards the 

catalytic performance, stability, resistibility to carbonaceous deposits and high-

temperature oxidative regeneration of the KCC-1 supported catalysts were examined 

over a temperature range of 500–900 oC. Compared to SiO2 and MCM-41, the high 

concentration of oxygen vacancies in KCC-1 substantially contributed to the 

enhancement in POM performance which was highly associated with CH4 dissociation 

and adsorption of oxidizing agents (i.e., O2, CO2 and H2O). At 800 oC, turnover rate 

of CH4 dropped in the order of Rh/KCC-1 (30.1 min-1) > Pd/KCC-1 (18.1 min-1) > 

Ru/KCC-1 (15.1 min-1). The in-situ ESR and XPS studies corroborated that the oxygen 

vacancies were beneficial for the syngas formation by enhancing methane steam 

reforming and methane dry reforming reaction rates as well as carbon gasification 

process. Based on the achieved H2/CO ratio, Rh/KCC-1 appeared as a prospective 

candidate for use in POM application appropriate for downstream synfuel production. 

The mechanism-derived kinetic modelling determined that the POM over Rh/KCC-1 

followed dual site dissociative adsorption of both CH4 and O2 with bimolecular surface 

reaction as rate-determining step. This study highlighted the new perspectives on the 

use of KCC-1 supported catalysts in alternative, renewable and sustainable energy 

technologies with respect to reaction engineering and catalysis, particularly from 

catalyst synthesis, characterization and application point of view.  
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ABSTRAK 

Penggunaan tenaga di seluruh dunia dan pengeluaran banyak gas karbon 

dioksida (CO2) yang berkaitan dengan tenaga ke atmosfera telah mendorong 

penerokaan singas dalam industri petrokimia dan penjanaan sinbahanapi dari sintesis 

Fischer-Tropsch (FTS). Antara teknologi untuk penjanaan singas, pengoksidaan 

separa bermangkin metana (POM) muncul sebagai teknik yang berpotensi kerana masa 

sentuhannya yang singkat pada halaju ruang yang tinggi dan eksotermisiti ringan yang 

membawa kepada kecekapan tenaga yang sangat baik. Walau bagaimanapun, 

penyahaktifan mangkin yang disebabkan oleh karbon sentiasa menjadi isu yang 

mencabar bagi POM. Penilaian keseimbangan termodinamik untuk POM dijalankan 

dengan pendekatan peminimuman tenaga bebas Gibbs untuk mengkaji penalaan 

nisbah singas H2/CO yang sesuai untuk FTS hiliran. Keputusan mendedahkan bahawa 

laluan pembaharuan pembakaran yang tidak langsung mungkin merupakan faktor 

penyumbang utama kepada hasil syngas semasa POM. Dalam penyelidikan ini, bahan 

silika dengan pelbagai morfologi, iaitu, silika komersial (SiO2), Komposisi Mobil 

Matter komersial nombor 41 (MCM-41) dan KAUST Catalysis Center 1 (KCC-1) 

berserat dendritik disediakan untuk mengkaji sifat mereka dan hubungan aktiviti 

bermangkin untuk POM. Sokongan KCC-1 disintesis menggunakan mikroemulsi 

berbantu gelombang mikro. Penambahan 0.5 wt.% M (M = Ru, Pd atau Rh) pada 

sokongan KCC-1 telah dibuat dengan menggunakan kaedah impregnasi kebasahan 

untuk meningkatkan lagi prestasi POM. Mangkin dicirikan dengan menggunakan 

pembelauan sinar-X, fisisorpsi N2, mikroskop elektron transmisi, spektroskopi 

fotoelektron sinar-X, spektroskopi inframerah transformasi Fourier, resonans putaran 

elektron dan pengukuran spektroskopi Raman. Kesan morfologi sokongan dan 

penambahan logam peralihan aktif terhadap prestasi mangkin, kestabilan, ketahanan 

terhadap deposit karbon dan pertumbuhan semula oksidatif suhu tinggi kepada 

mangkin yang disokong oleh KCC-1 diperiksa dalam julat suhu 500-900 oC. 

Berbanding dengan SiO2 dan MCM-41, ketumpuan kekosongan oksigen yang tinggi 

dalam KCC-1 dengan ketara menyumbang kepada peningkatan prestasi POM yang 

sangat berkaitan dengan penguraian CH4 dan perjerapan ejen pengoksidaan (iaitu O2, 

CO2 dan H2O). Pada suhu 800 oC, kadar perolehan CH4 menurun mengikut urutan 

Rh/KCC-1 (30.1 min-1) > Pd/KCC-1 (18.1 min-1) > Ru/KCC-1 (15.1 min-1). Kajian 

ESR dan XPS di-situ membuktikan bahawa kekosongan oksigen bermanfaat untuk 

pembentukan singas dengan meningkatkan pembaharuan wap metana dan kadar reaksi 

pembaharuan kering metana serta proses gasifikasi karbon. Berdasarkan nisbah H2/CO 

yang dicapai, Rh/KCC-1 muncul sebagai calon berpotensi untuk digunakan dalam 

aplikasi POM yang sesuai untuk penghasilan bahan bakar hilir. Pemodelan kinetik 

berpandukan mekanisme menunjukkan bahawa POM ke atas Rh/KCC-1 mengikuti 

perjerapan penceraian dwi-tapak kedua-dua CH4 dan O2 dengan reaksi permukaan 

dwimolekul sebagai langkah penentuan kadar. Kajian ini menyoroti perspektif baharu 

mengenai penggunaan mangkin yang disokong oleh KCC-1 dalam teknologi tenaga 

alternatif, boleh diperbaharui dan lestari berkenaan dengan teknik tindak balas dan 

pemangkinan, terutama dari sudut mangkin sintesis, pencirian dan aplikasi mangkin.   
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CHAPTER 1  

 

Equation Chapter (Next) Section 1 

INTRODUCTION 

1.1 Research Background 

The depletion of fossil fuel and anthropogenic CO2 emission has grown 

exponentially due to the large-scale industrial combustion driven by the increasing 

global energy demand and economic expansion in recent years. The fossil fuel-based 

combustion (i.e., coal, natural gas and petroleum) reportedly resulted in 33.5 gigatons 

of global energy-related CO2 emission in 2019 and as a result of intensive population 

growth, it predictably grows by an additional 19.2% in 2050 (Friedlingstein et al., 

2019; Peters et al., 2020). Thus, there is a worldwide concern regarding the 

environment degradation and climate changes, attributed to the present carbon-

intensive energy system (Kan et al., 2019). In this context, substituting current fossil 

fuel-based energy with less carbon-intensive energy sources and reducing the 

substantial dependency on non-renewable energy are an indispensable and urgent 

mission. Syngas (mixture of H2 and CO) emerges as a prospective alternative, which 

provides feasible building blocks for the downstream production such as hydrogen for 

fuel cell, methanol in petrochemical industry and synthetic fuels from Fisher-Tropsch 

synthesis (FTS) (Dos Santos and Alencar, 2020). Although renewable energy is the 

long-term key to overcome the aforementioned problems, syngas is presently the 

feasible short-term solution acting as the cushion to smooth the transition towards an 

effective low-carbon energy system in near future (Minh et al., 2018). To date, the 

market of syngas and its derivatives was predicted at 2,45,557 MWth and was 

forecasted to achieve 4,06,860 MWth by 2025 with a 10.6% of compound annual 

growth rate in between 2020 and 2025 (Research and Markets Ltd, 2020). 

Additionally, there are five existing commercial-scale gas-to-liquids (GTL) plants 

implement FTS coupled with syngas production technologies providing 259 Mbpd of 

synthetic fuel whilst three additional GTL facilities with similar configuration are 

under development across the world (Lee, 2020). 
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Amongst the syngas production technologies, steam reforming of methane 

(SRM) is presently the conventional technology to be deployed in industrial 

applications due to its abundancy of feedstock (i.e., water and methane from natural 

gas) and high selectivity of H2 (Abdullah et al., 2017; Minh et al., 2018). However, 

SRM yields a H2/CO ratio of 3 with considerable amount of concomitant CO2 

emission, making it unfavorable for direct downstream processes. From industrial and 

environmental perspectives, the research emphasis has shifted towards dry reforming 

of methane (DRM) as it transforms greenhouse CO2 into syngas with a ratio of unity. 

Nevertheless, for both SRM and DRM technologies, the requirement of auxiliary 

separation and purification units for tuning syngas ratio to around 2 and high energy 

supply imposes the overall capital cost (Siang et al., 2018; Subraveti et al., 2020). From 

the above reasons, partial oxidation of methane (POM) has appeared as a promising 

candidate to substitute other methane reforming technologies (Elbadawi et al., 2020a). 

In addition, the POM technology reportedly offers 10‒15% and 25‒30% lower in the 

energy requirement and capital investment, respectively compared to SRM (Pantaleo 

et al., 2016). In fact, POM technology has been implemented in twelve world-wide 

industrial plants, namely, POX plants by the Linde group since few decades ago and 

one of the four world's largest POX plants continuously supply 200,000 Nm³/h of 

syngas to the global gas market till today (The Global Syngas Technologies Council, 

2018; Linde, 2020). 

Catalytic POM technology undeniably offers practical syngas content for wide-

ranging downstream industrial applications with higher cost- and energy-efficiency 

but it encounters several challenges adversely affecting its catalysis activity as POM 

owns a complex system consisting of multiple reactions (Enger et al., 2008). In 

general, metal group VIII, IX and X such as Ni, Co, Fe, Ru, Pd, Rh, Ir and Pt, are 

widely recognized as the active metals for methane oxidation studies (Bashan and Ust, 

2019; He et al., 2020). Despite the non-noble metal catalysts are extensively 

investigated for methane oxidation studies, the severe deterioration in catalysis activity 

due to carbon deposition and reoxidation of hosting metal has confined their 

practicability for industrial purposes. In this context, the emphasis on development of 

catalyst design respective to noble metal has been renewed with arising concerns from 

both academic and industrial realms since it possesses great resistance towards 

reoxidation and carbon deposition as well as excellent ability of CH4 scission (Zhu et 
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al., 2013; Kondratenko et al., 2014; Meng et al., 2020; Mishra et al., 2020; Rocha et 

al., 2020). Particularly, carbon deposition is unavoidable during CH4 reforming 

processes at high-temperature zone even though in the presence of noble metal as the 

active hosting material for a catalyst system (Argyle and Bartholomew, 2015). 

Additionally, the competitive adsorption of oxidizing agents on catalyst surface under 

the exceedingly oxidizing environment could affect the carbon elimination associated 

with the activation of oxidants (Minh et al., 2018). Therefore, exploring a novel 

catalyst system presents high accessibility of reactants to active sites at a molecular 

level to facilitate the surface reaction enhancing syngas formation and simultaneously 

suppressing carbon deposition is essential in POM. 

According to the literature (Pantaleo et al., 2016; Ma et al., 2019; Elbadawi et 

al., 2020b), the reforming catalysts with unique morphological structure or/and 

comprising of oxygen vacancy are possibly the key to overcome these adverse effects. 

Wang et al. (2018) reported that fibrous morphology of their nanofibrous-structured 

Ni catalyst is responsible for the robust long-term catalytic activity which overcomes 

the mass transfer limitation during POM reaction at high gas space velocity in order to 

achieve high production. From the computations of Density Functional Theory (DFT) 

performed by Cheng et al. (2016), the presence of oxygen vacancy reportedly not only 

enhances the extent of adsorption for the radical-like CHx (where x = 0‒3) fragments 

from CH4 molecules but also accelerates the carbon radical adsorption. This was 

ascribed to the different chemisorbed oxygen (O*) assisted kinetically relevant C‒H 

bond activation mechanism with various levels of O* coverages on catalyst surface 

depending on the concentration of oxygen vacancy (Chin et al., 2011a; Chin et al., 

2011b; Mihai et al., 2012). However, most of the POM investigations associated to 

oxygen vacancies or distinctive engineered structure of catalyst were studied 

individually and normally carried out over conventional catalysts instead of active 

catalyst produced from hierarchical material and advanced synthesis technique. Thus, 

this study aimed to prepare a highly active and efficient catalyst simultaneously 

possessing these two features to study the combination effect on the POM 

performance, kinetic and mechanism. 
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A new dendritic fibrous nanosilica material, namely KCC-1 (KAUST Catalysis 

Center) with unique fibrous morphology of dendrimeric silica fibers has recently 

emerged as the prospective candidate to fulfill the aforementioned requirements 

(Polshettiwar et al., 2010; Febriyanti et al., 2016). Due to its unique fibrous 

morphology, KCC-1 possesses high accessible surface area resulting in outstanding 

catalysis activity and capture of oxidizing agents (Hamid et al., 2017; Peng et al., 2019; 

Abdulrasheed et al., 2020). Specifically, the silica fibers surrounding the outer surface 

of KCC-1 providing abundant oxygen vacancy sites could act as platforms to supply 

labile oxygen ions from adsorbed O2- species, hence significantly tuning the intrinsic 

nature of hosting metal particles during reaction (Yentekakis et al., 2019; Hussain et 

al., 2020). These characteristics suggest that employment of KCC-1 in POM process 

could enormously promote the POM performance in terms of catalytic stability and 

regenerability. However, comprehensive insight into the correlation between oxygen 

vacancies and metal-support interaction towards catalytic performance as well as 

carbonaceous deposition is still vague for KCC-1 supported catalysts in heterogeneous 

catalytic systems. 

To the best of our knowledge, no experimental works about POM performance 

over dendritic fibrous KCC-1 supported catalysts have been reported to date, 

particularly in association with the concentration of oxygen vacancies and metal-

support interaction. Herein, the POM catalytic behavior of well-characterized M/KCC-

1 (where M represents Ru, Pd or Rh) catalysts was studied. The oxygen ion lability 

characteristic of these materials is greatly reliant on their surface adsorbed oxygen 

species and the concentration of oxygen vacancies, which ascertain their degree of 

metal-support interaction on catalyst surfaces. Factually, the intrinsic catalytic activity 

of catalysts is strongly altered by this property and the investigation of such impacts 

on the KCC-1 catalyzed POM performance is the main focus of current study. The 

correlation between oxygen vacancies and catalytic behavior of M/KCC-1 was 

systematically scrutinized and was rationalized in terms of bifunctional reaction 

mechanism involving combustion-reforming and Mars-van-Krevelen mechanisms. 
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1.2 Problem Statement 

The syngas production of POM reaction has recently acquired significant 

interest from researchers since it can reduce the high dependence on carbon-intensive 

energy systems and produce alternative energy sources, syngas for synthetic fuel 

generation by providing a practical H2/CO ratio of 2. However, the POM reaction also 

faces a number of challenges that need to be addressed, in particular the co-occurrence 

of several side reactions. It is therefore important to investigate and study the catalytic 

POM process for potential industrial application.  

In fact, trade-offs between the efficiency and stability of heterogeneous 

catalysts remain the major drawback for the implementation of syngas production 

through POM. As a mildly exothermic reaction, the equilibrium reactant conversion is 

favourably achieved at moderated temperatures for POM process. However, numerous 

undesired parallel side reactions including CH4 decomposition, reverse Boudouard 

reaction and reverse water-gas shift, are inevitable at such reaction conditions which 

eventually adversely affect the product selectivity and catalyst lifespan. In this context, 

a number of thermodynamic works on operating parameters for POM have been 

conducted. However, the bibliography of thermodynamic evaluation on POM is still 

little-known. Therefore, it is important to investigate the thermodynamic behavior of 

POM under different conditions in order to comprehensively understand its pathway 

with respect to elimination of carbon deposit and syngas ratio appropriate for FTS 

application. 

Catalyst lifespan is closely depended on the degree of deactivation induced by 

deposition of carbonaceous species and metal sinterization. Numerous efforts have 

been dedicated towards enhancement of catalyst stability, many of which have been 

found to be detrimental to the catalyst activity and similar trends were also obtained 

vice versa. Hence, it is essential to develop robust catalysts with the required activity 

and stability suitable of industrial application for the process. Selection of catalytic 

support for POM reactions is important as it greatly affects the internal and external 

mass transfer of reactants during reactions. In this study, silica material will be 

employed as a support due to its crucial silica–metal interface in heterogeneous 
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catalysis. However, the original silica structure is less active for anchoring the loaded 

metal particles and hence, the modification of pristine silica material is needed to 

enhance its catalytic behavior. In this regard, the use of two-dimensional (2D) 

mesoporous silica supports (i.e., MCM-41 and SBA-15) has been extensively 

employed in POM due to their high surface area, great thermal resistibility and high 

pore volume with uniform pore size leading to more accessible active sites. However, 

these mesoporous silica materials constituents of close-packed spherical empty 

channels encounter a challenging issue, where the clogging of channels due to partial 

damage of thin wall or partial metal sintering will results in a loss in catalytic activity.  

Apart from support, the active metal acts as the active site is indispensable for 

POM as it is widely recognized that CH4 dissociation is a rate-determining step. In 

general, d-group transition metals such as Rh, Ru, Pd, Pt, Ni, Co, Cu and Fe are widely 

used as an active metal in POM system. However, similar to the support these 

transition metals also suffer from numerous setbacks including deposition of 

carbonaceous species, metal sintering and reoxidation of active metal to inactive metal 

oxide during POM process. Thus, exploring a novel catalyst system with an effective 

combination of support and metal is essential to resist the abovementioned problems 

and simultaneously to achieve an excellent catalytic performance. 

Catalyst performance is undeniably depending on the intrinsic behavior of 

catalyst and operating parameters of reaction. Hence, the screening operating 

conditions for reaction evaluation is indispensable to attain the best POM performance. 

Additionally, the bibliographic knowledge about POM mechanistic and kinetic is still 

vague because of its complexity, particularly for dendritic fibrous transition metal 

catalysts. The published literature relates to kinetic parameters for POM reaction is 

still scarce for advanced kinetic evaluation compared to other reforming reactions. 

Therefore, the best-fit kinetic model based on POM mechanistic is necessitated in 

order to attain the valuable kinetic parameters benefits the reactor design and 

optimization of catalyst synthesis.  
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1.3 Research Hypothesis 

The spontaneity and selectivity of POM in comparison to other side reactions 

to produce the desired product ratio is a function of the Gibbs free energy 

minimisation, equilibrium temperature and reaction temperature. From the 

thermodynamic simulations, the range of the suitable operating conditions is 

determined in terms of minimization of carbon formation and a practical H2/CO ratio 

around 2. The uniqueness of the fibrous morphology for mesoporous siliceous KCC-

1 support enable a homogeneous dispersion of active metals on the surface of support. 

In addition, it allows a high accessibility of bulk gaseous reactant to active metallic 

phase for catalytic heterogeneous reaction due to its non-restricted three-dimensional 

open structure. As a result, the rate of CH4 and O2 adsorption can be extensively 

accelerated and thus, improvement in kinetic reaction. In comparison with 

conventional silica-supported catalysts, employment of fibrous KCC-1 is estimated to 

give a greater catalytic performance owing to its dendritic fibres effectively anchoring 

metal particles on the site. Subsequently, the resulting fine dispersion of metals can 

suppress the catalyst deactivation arising from carbonaceous species formation on the 

surface of catalyst and hence, prolong catalyst lifespan. Additionally, tuning the silica 

morphology from 2D porous silica to fibrous morphology can raise the basic sites of 

catalyst that benefits catalytic activity by acting as an active surface for adsorption of 

CH4 and O2 in POM reaction. In fact, tuning the electronic structure and surface 

morphology of the catalyst support will influence specific defect sites formation of the 

catalyst, which can increase the basicity of the catalyst due to increasing oxygen 

deficit. In addition, appropriate selection of metals will promote the reaction activity 

via facilitation of CH4 dissociation as the first step of activation for POM. With the 

employment of response surface methodology (RSM) approach, optimization of POM 

reaction by selecting appropriate operating conditions (i.e., gas hourly space velocity, 

temperature and reactant feed composition) will be distinctly ascertained in order to 

attain the highest reforming performance in terms of syngas yield and syngas ratio. 

Additionally, the attained data from the various operating parameters can be further be 

used to fundamentally determine the kinetic parameters with the best-fit kinetic model. 
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1.4 Research Objectives 

The aim of this research work is to synthesize fibrous silica (KCC-1) supported 

transition metal catalysts with high activity and stability for optimum syngas 

production via partial oxidation of methane. This is achieved through the following 

objectives: 

1. To evaluate the thermodynamic behavior of POM under various operating 

conditions including temperature, pressure and reactant feed composition. 

2. To compare metal-free (i.e., SiO2, MCM-41 and KCC-1) and metal-based (i.e., 

Ru, Pd, Rh) catalysts in terms of their physicochemical attributes and catalytic 

performances. 

3. To optimize the POM process by response surface methodology (RSM) 

approach for the outperforming fibrous KCC-1 supported catalyst. 

4. To determine the kinetics and mechanistic of POM reaction over the 

outperforming fibrous KCC-1 supported catalyst. 

1.5 Research Scope 

The emphasis of this study is overcoming some major setbacks encountered by 

reforming catalyst for syngas production via POM. In this context, thermodynamics of 

POM, effects of support morphology, effects of active metal catalysts, optimization of 

POM process, kinetic and mechanistic study of POM have been deliberated upon. The 

details of the specific research scope are as follows: 

1. The thermodynamic behavior of POM reaction was studied by HSC Chemistry 

software. In this study, few independent variables are chosen, namely, pressure 

(1‒50 bar) (Jang et al., 2016; Nikoo et al., 2011), reaction temperature (from 

200 to 1000 oC) (Jang et al., 2016; Nikoo et al., 2011) and feedstock ratio 

(CH4:O2 = 0.5‒5) (Jang et al., 2016; Nikoo et al., 2011). 
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2. Various silica support with different morphology (viz., SiO2, MCM-41 and 

KCC-1) and KCC-1 supported noble metal catalysts (i.e., 0.5%Ru/KCC-1, 

0.5%Pd/KCC-1, 0.5%Rh/KCC-1) were synthesized by using wetness 

impregnation technique. Subsequently, their physicochemical attributes were 

examined. For instance, textural properties (BET surface area, average pore 

diameter and total pore volume) using Brunauer-Emmett-Teller (BET) method, 

X-Ray Diffraction (XRD) measurements for crystallinity, Fourier-transform 

infrared (FTIR) spectroscopy, Raman spectroscopy and electron spinning 

resonance (ESR) analyses for surface chemistry, H2 Temperature-Programmed 

Reduction (H2-TPR) analyses for catalyst reducibility properties, Transmission 

Electron Microscopy (TEM) measurements and Field Emission Scanning 

Electron Microscopy (FESEM) for surface morphology. In addition, deposited 

carbon quantification and qualification on spent catalyst was ascertained using 

Temperature-Programmed Oxidation (TPO) measurements, X-ray 

photoelectron spectroscopy (XPS), XRD, FESEM and TEM. The catalytic 

performance of all catalysts in POM was scrutinized at gas hourly space 

velocity of 18000 mL gcat
-1 h-1 (Singha et al., 2017; Wang et al., 2018), reaction 

temperatures of 800 oC (Singha et al., 2017; Wang et al., 2018) and 

stoichiometric feedstock ratio (CH4:O2 = 2:1) (Singha et al., 2017; Wang et al., 

2018) for 10 h on-stream. 

3. The optimum condition for POM reaction over fibrous KCC-1 supported 

catalyst (the representative 0.5%M/KCC-1 with best catalytic performance 

from previous section) was determined by RSM using central composite design 

(CCD). In this study, few independent variables were chosen for the 

optimization, namely, gas hourly space velocities (from 15000 to 45000 mL 

gcat
-1 h-1) (Singha et al., 2017; Wang et al., 2018), reaction temperature (from 

600 to 900 oC) (Singha et al., 2017; Wang et al., 2018) and feedstock ratio 

(CH4:O2 = 1‒3) (Singha et al., 2017; Wang et al., 2018). 

4. The study of kinetic rate expressions including simplified power law, Eley 

Rideal (ER) and Langmuir-Hinshelwood (LH) models was conducted. The 

best-fit kinetic modelling was determined based on the mechanism derived 

kinetic rate expressions for POM over the optimum 0.5%M/KCC-1 catalyst. 
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1.6 Research Significance 

In this study, the fibrous siliceous KCC-1 supported catalyst has recently 

appeared as a new emerging morphology of modified structure for silica materials 

compared to other material supports. Due to the revolution in microemulsion 

technique, the formation of fibrous morphology on advanced material is now possible 

for heterogeneous catalytic system. The uniqueness of fibrous morphology remarkably 

improves the catalyst properties, which allows bulky mass transfer of gas reactants 

into the active sites, high thermal stability and high basic sites induced by high oxygen-

deficient. As POM is a mild exothermic and short contact time reaction, volume 

expansion after reaction is inevitable, resulting in competitive adsorption of reactants 

on catalyst surface, particularly at high temperature. Given the specific feature of 

fibrous morphology, the accessibility of reactants to the active sites on catalyst surface 

within short contact time is guaranteed under strongly oxidative surrounding and as a 

result, the long-term POM activity is sustained.   

Additionally, silica fibers of KCC-1 not only offer fibrous morphology but also 

provide high concentration of oxygen vacancy sites. Since POM also constitutes of 

indirect combustion-reforming pathway, the employment of fibrous KCC-1 supported 

catalyst predictably accelerate the oxidant (viz, O2, CO2 and H2O) adsorption-

desorption cycle time of catalytic POM reaction leading to an enhancement in reaction 

kinetics rate, which governs the high POM activity. In the presence of oxygen 

vacancies, involvement of evolution for secondary catalytic reforming of methane, 

namely, SRM and DRM will be promoted to boost the conversion of reactants to 

syngas. Moreover, the labile oxygen ions stored in the oxygen vacancies can largely 

contribute to the carbon gasification and regenerate the vacancies. This repetitive cycle 

can further prolong the catalyst lifespan during reaction. Thus, the fundamental studies 

into the oxygen vacancy effect of fibrous KCC-1 and its synergistic effect with 

transition metals on CH4 oxidation can provide applicable guidance to the design and 

development of catalyst in POM process.  
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1.7 Thesis Outline 

The research is targeted on the development of oxygen vacancy-rich KCC-1 

supported catalyst for efficient and sustained syngas production via POM. The 

thermodynamics of POM and major side reactions were studied to get preliminary 

information on the dynamics of the POM reaction under various reaction conditions. 

The dendritic fibrous KCC-1 morphology was not only to enhance the metal dispersion 

but also to provide high density of oxygen vacancies for facilitating the surface 

reaction of POM. Introduction of oxygen vacancy sites was done primarily to improve 

the electrostatic interaction between the support and hosting metal particles, thus 

leading to ab enhancement in the POM performance. The optimization of process 

parameters, kinetic and mechanistic evaluations were conducted to ensure an optimum 

operational condition and gain an insight into the fundamental mechanistic 

understanding for the synthesized catalyst in respect of catalysis, particularly from 

catalyst synthesis, characterization and application point of view. This thesis therefore 

consists of five chapters. 

Research background of the study area, problem statement, hypothesis, 

objectives, scope and significance of this research were elaborately discussed in 

Chapter 1. Chapter 2 presents literature review on contemporary research outputs in 

areas of global energy demand and its impacts, global syngas market, methods to 

syngas production, thermodynamic of POM, challenges in POM reaction, strategic 

design for POM catalyst and reaction kinetics and mechanism. Chapter 3 entails the 

overall description of materials, methodology, characterizations and experimental 

procedures applied during the course of the research. Chapter 4 covers the entire 

results, discussions and their analysis conducted. This includes results on 

characterization, activity, stability and selectivity of synthesized catalysts, kinetic and 

mechanism study. Finally, Chapter 5 provides the conclusions drawn from this study 

and some recommendations proposed for future work. 
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