SYNTHESIS AND CHARACTERIZATIONS OF COMPOSITE BASED ON Cu₂O-ZnO-POLYANILINE FOR REMOVAL OF CONGO RED DYE

ABDUSSAMAD MUKHTAR MOHAMMED

UNIVERSITI TEKNOLOGI MALAYSIA

SYNTHESIS AND CHARACTERIZATIONS OF COMPOSITE BASED ON Cu_2O-ZnO-POLYANILINE FOR REMOVAL OF CONGO RED DYE

ABDUSSAMAD MUKHTAR MOHAMMED

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > SEPTEMBER 2021

DEDICATION

This thesis is dedicated to my first daughter (Maimoona-Hidaya), who was born while I was away for this study. Although she does not know me yet, because I couldn't go back home to see her, due to the covid-19 pandemic, my love and prayers are always with her. It is also dedicated to my wife (Salma), who endured and encouraged me throughout our trying periods, her endless love and prayers have changed my life and turned me into a better person.

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed to my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Professor Dr. Madzlan Bin Aziz, for encouragement, guidance, critics, and friendship. I am also very thankful to my co-supervisor Dr. Farhana bint Aziz for her guidance, advice, and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

Special thanks go to my parents; Malam Mukhtar Muhammad Gwani and Hajiya Maimuna Zakariyya Yunus, for their prayers and support throughout my studies, they are indeed the architects of my success. I will eternally be grateful to my wife Salma and my daughter Hidaya, for their patience and understanding throughout the period of this study. I am also indebted to my entire family members.

I am also grateful to Nigeria's Tertiary Education Trust Fund (TETFUND) for funding my Ph.D. study. Associate Professor Ali Manzo Usman of Yobe State University deserved special commendation for making this possible. Dr. Safia, Shakhawan, Major Bello Ahmadu, librarians at UTM, technicians at AMTEC, and Faculty of Science also deserve special thanks for their assistance in conducting analysis and supplying the relevant literature.

My fellow postgraduate student should also be recognized for their support. My sincere appreciation also extends to all my colleagues and friends who have assisted on various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

ABSTRACT

In this study, ternary composite photocatalyst based on copper(I) oxide (Cu₂O), zinc oxide (ZnO) and polyaniline (PANI) was synthesized using a facile one-pot solvothermal method and *in-situ* polymerization of aniline. At the initial stage, binary composites of Cu₂O were prepared with titanium dioxide (TiO₂) and ZnO where the loadings of both TiO₂ and ZnO precursors were varied while keeping Cu₂O precursor constant (0.045 mol). Preliminary photocatalytic activity testing and further characterizations of the samples showed that the sample containing equal precursor amount of Cu₂O and ZnO (CZ(0.045-0.045)) has superior properties. This sample was then used to form a ternary nanocomposite with PANI by in-situ polymerization of aniline at room temperature (Cu₂O/ZnO-PANI), while studying the effects of different oxidants and aniline loading. The Cu₂O/ZnO-PANI (CZP) composite was first produced using ammonium persulfate (APS), and two composite oxidants comprising of a mixture of APS and potassium dichromate (K₂Cr₂O₇) as well as potassium permanganate (KMnO₄), under the same amount of aniline monomer to select the best one among the three oxidants. Composite oxidant comprising of APS and KMnO₄ (APS/KMnO₄) was found to be the best, therefore, the amount of aniline monomer was then varied (0.13, 0.1, 0.05, and 0.03 mL) while using APS/KMnO₄ as the oxidant to produce the rest of the CZP composites. The composite produced using 0.1 mL aniline (CZP (0.1)) was found to have the best photocatalytic activity, so it was subjected to full characterizations as well as a photocatalytic test. Meanwhile, the amount of PANI on the optimised composite was quantified using thermogravimetric analysis (TGA) and found to be about 28%. Furthermore, the photodegradation of Congo Red (CR) dye was studied as a model reaction with the optimized catalyst (CZP (0.1)). The CZP (0.1) composite demonstrated outstanding adsorption properties, increased photocatalytic activity with a percentage degradation of 100% in less than 30 minutes, enhanced stability, and reusability on CR dye under visible-light irradiation. The reusability and stability studies were conducted by repeating the CR photodegradation experiment for five cycles, in which the recovered sample after the fifth cycle was subjected to X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses to see if there was a change in its structure and stability. The result revealed no significant change in all the analyses between the unused and five times reused samples. The photodegradation process of CR was further studied using *in-situ* capture, total organic carbon (TOC), and high performance liquid chromatography (HPLC) analyses. In-situ capture studies revealed that the holes (h^+) and superoxide radicals $(\bullet O_2^-)$ were the main active species responsible for the degradation of CR using CZP (0.1), while the hydroxyl radical (•OH) plays a secondary role in the reaction. Likewise, the TOC studies revealed a removal of 90% after 30 min. Meanwhile, HPLC analysis also confirmed the degradation of CR by CZP (0.1) and revealed the formation of some possible intermediates as evident in the TOC analysis. Finally, the electron transfer mechanism was discussed and a double Z-scheme electron transfer mechanism is proposed for the CZP (0.1) composite system according to the experimental data, sample characterization, and band theory.

ABSTRAK

Dalam kajian ini, fotomangkin komposit pertigaan berasaskan kuprum(I) oksida (Cu₂O), zink oksida (ZnO) dan polianilina (PANI) telah disintesis menggunakan kaedah solvoterma setempat yang mudah dan pempolimeran in-situ anilina. Pada peringkat awal, komposit dedua Cu₂O telah disediakan dengan titanium dioksida (TiO₂) dan ZnO di mana muatan pelopor TiO₂ dan ZnO diubah sementara mengekalkan pelopor Cu₂O malar (0.045 mol). Ujian awal aktiviti pemfotomangkin dan pencirian lanjut sampel telah menunjukkan bahawa sampel yang mengandungi amaun pelopor Cu₂O and ZnO yang sama, CZ(0.045-0.045) mempunyai sifat-sifat yang unggul. Sampel ini kemudiannya telah digunakan untuk membentuk nanokomposit pertigaan dengan PANI melalui teknik pempolimeran anilina in situ pada suhu bilik(Cu₂O/ZnO-PANI) sementara mengkaji kesan bahan pengoksidaan dan pemuatan anilina yang berbeza. Komposit Cu₂O/ZnO-PANI (CZP) dihasilkan terlebih dahulu menggunakan ammonium persulfate (APS) dan dua bahan pengoksidaan komposit yang terdiri daripada kalium dikromat (K₂Cr₂O₇) dan kalium permanganate (KMnO₄), di bawah jumlah monomer anilina yang sama untuk memilih bahan pengoksidaan yang terbaik di antara ketiga-tiga bahan pengoksidaan itu. Bahan pengoksidaan yang terdiri daripada APS dan KMnO4 (APS/KMnO₄) didapati adalah yang terbaik, oleh itu, jumlah monomer anilina telah diubah (0.13, 0.1, 0.05, dan 0.03 mL) sementara menggunakan APS/KMnO₄ sebagai bahan pengoksidaan untuk menghasilkan komposit CZP selebihnya. Komposit yang dihasilkan menggunakan 0.1 mL anilin (CZP (0.1)) didapati mempunyai aktiviti pemfotomangkin terbaik, oleh sebab itu ia menjalani pencirian penuh serta ujian pemfotomangkin. Sementara itu, jumlah PANI pada komposit optimum telah dikuantifikasi menggunakan analisis gravimetri terma (TGA) adalah sebanyak kirakira 28%. Tambahan lagi, fotodegradasi Merah Congo (CR) dikaji sebagai model tindak balas dengan mangkin optimum (CZP (0.1)). Komposit CZP (0.1) menunjukkan sifat penjerapan yang cemerlang, peningkatan aktiviti pemfotomangkin dengan peratusan degradasi 100% dalam masa 30 minit, peningkatan kestabilan, dan penggunaan semula mewarna CR di bawah penyinaran cahaya nampak. Kajian kebolehgunaan semula dan kestabilan dilakukan dengan mengulangi eksperimen fotodegradasi CR bagi lima kitaran, di mana sampel yang dipulihkan selepas kitaran kelima telah menjalani analisis spektroskopi pembelauan sinar-X (XRD), spektroskopi inframerah transformasi Fourier (FTIR), dan spektroskopi fotoelektron sinar-X (XPS) untuk melihat sama ada terdapat perubahan struktur dan kestabilannya. Keputusan menunjukkan tiada perubahan ketara dalam semua analisis antara sampel yang belum diguna dan sampel yang telah diguna semula lima kali. Proses fotodegradasi CR dikaji lebih lanjut menggunakan analisis tangkapan in situ, karbon organik keseluruhan (TOC), dan kromatografi cecair berprestasi tinggi (HPLC). Kajian tangkapan *in situ* menunjukkan bahawa lubang (h⁺) dan radikal superoksida $(\bullet O_2)$ adalah spesies aktif utama yang bertanggungjawab untuk degradasi CR menggunakan CZP (0.1), sementara radikal hidroksil (•OH) memainkan peranan sekunder dalam tindak balas itu. Begitu juga, kajian TOC menunjukkan penyingkiran 90% selepas 30 min. Sementara itu, analisis HPLC juga mengesahkan degradasi CR oleh CZP (0.1) dan menunjukkan pembentukan beberapa produk perantara yang mungkin sebagai bukti dalam analisis TOC. Akhirnya, mekanisme perpindahan elektron telah dibincangkan, dan mekanisme perpindahan elektron skema-Z ganda dua telah dicadangkan untuk sistem komposit CZP (0.1) menurut data ujikaji, pencirian sampel, dan teori jalur.

TABLE OF CONTENTS

TITLE

DE	iii		
DE	DEDICATION		
AC	\mathbf{v}		
AB	vi		
AB	vii		
ТА	BLE OF CONTENTS	viii	
LIS	ST OF TABLES	xii	
LIS	ST OF FIGURES	xiii	
LIS	ST OF ABBREVIATIONS	xvi	
LIS	ST OF SYMBOLS	xvii	
LIS	ST OF APPENDICES	xviii	
CHAPTER 1	INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	5	
1.3	Research Objectives	8	
1.4	Scope of the study	9	
1.5	Significance of the study	12	
1.6	Thesis outline	13	
CHAPTER 2	LITERATURE REVIEW	15	
2.1	Textile Industries	15	
2.2	Dyes and their toxicity	16	
2.3	Techniques of dye removal in wastewater	19	

2	.3.1	Physical methods	20
2	.3.2	Biological methods	21
2	.3.3	Chemical methods	22

2.4Advanced Oxidation Processes23

	2.4.1 Photocatalysis	23
	2.4.2 Mechanism of photocatalytic dye degradation	25
2.5	Photocatalytic degradation of congo red and methylene blue dyes	27
2.6	Cu ₂ O as a photocatalyst	29
	2.6.1 Solvothermal synthesis of Cu ₂ O	34
	2.6.2 Problems and strategies for enhancing the photocatalytic activity of Cu ₂ O	38
	2.6.3 p-n heterojunction	40
	2.6.4 Z-scheme heterojunction	45
2.7	PANI as photocorrosion inhibitor	50
	2.7.1 Effects of oxidants on the in-situ polymerization of aniline for PANI synthesis	55
2.8	Scavenger studies	56
2.9	Summary of literature review	58
CHAPTER 3	RESEARCH METHODOLOGY	61
3.1	Introduction	61
3.2	Chemicals and Materials	63
3.3	List of catalysts abbreviations	64
3.4	Catalyst preparation	65
	3.4.1 Solvothermal synthesis of Cu ₂ O	65
	3.4.2 One-pot solvothermal synthesis of Cu_2O/TiO_2 and Cu_2O/ZnO	66
	3.4.3 Synthesis of the ternary composite of Cu_2O (Cu_2O/ZnO -PANI)	67
	3.4.4 Synthesis of Cu ₂ O/ZnO-PANI at different aniline ratio	68
3.5	Characterization of photocatalysts	68
	3.5.1 X-Ray Diffraction (XRD)	69
	3.5.2 Scanning Electron Microscopy (SEM)	69
	3.5.3 Fourier Transformation Infrared (FTIR) and Raman spectroscopy	70
	3.5.4 UV-Visible Near Infrared (UV-Vis-NIR) spectroscopy	71

	3.5.5	Nitrogen Adsorption-desorption analysis	71
	3.5.6	Transmission Electron Microscopy (TEM)	72
	3.5.7	X-ray Photoelectron Spectroscopy (XPS) analysis	72
	3.5.8	Photoluminescence (PL) spectroscopy	73
	3.5.9	Thermal analysis	73
3.6	Photo	catalytic activity testing	74
	3.6.1	Preparation of stock solution and calibration curve	74
	3.6.2	Photolysis reaction	74
	3.6.3	Kinetic study of photocatalytic degradation	76
	3.6.4	Operation parameters	77
	3.6.5	Stability and reusability studies	78
	3.6.6	Radical scavenger studies	78
	3.6.7	High-performance Liquid Chromatography (HPLC)	78
	3.6.8	Total Organic Carbon (TOC)	79
CHAPTER 4	BINA	RY COMPOSITES OF Cu ₂ O	80
4.1	Introd	uction	80
4.1 4.2	Introd The p compo	uction photocatalytic performance of CT and CZ osites at various loadings	80 81
4.1 4.2 4.3	Introd The p compo XRD a	uction photocatalytic performance of CT and CZ osites at various loadings analysis	80 81 84
4.14.24.34.4	Introd The p compo XRD a XPS a	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis	80 81 84 87
 4.1 4.2 4.3 4.4 4.5 	Introd The j compo XRD a XPS a Structu	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis	80 81 84 87 91
 4.1 4.2 4.3 4.4 4.5 4.6 	Introduction The production Composition XRD a XPS a Structure Optica	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis I analysis	80 81 84 87 91 93
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Introduction The j composed XRD a XPS a Structuction Optical FT-IR	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis al analysis and Raman spectra analysis	80 81 84 87 91 93 94
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	Introduction The j composition XRD a XPS a Structuction Optical FT-IR Photol	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis al analysis and Raman spectra analysis luminescence analysis	80 81 84 87 91 93 94 97
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Introduction The production XRD and XPS and Structuction Optical FT-IR Photol Surface	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis al analysis and Raman spectra analysis luminescence analysis ee area, pore-volume, and pore radius analyses	80 81 84 87 91 93 94 97 97
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 CHAPTER 5	Introduction The production XRD and XPS and Structure Optical FT-IR Photol Surface TERN	uction photocatalytic performance of CT and CZ osites at various loadings analysis nalysis ural analysis al analysis and Raman spectra analysis luminescence analysis e area, pore-volume, and pore radius analyses NARY COMPOSITE OF Cu₂O	80 81 84 87 91 93 94 97 97 97 101
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 CHAPTER 5 5.1	Introduction The production XRD and XRD and XPS and Structure Optical FT-IR Photol Surface TERN Introduction	uction photocatalytic performance of CT and CZ osites at various loadings analysis analysis ural analysis al analysis and Raman spectra analysis and Raman spectra analysis uminescence analysis ee area, pore-volume, and pore radius analyses VARY COMPOSITE OF Cu₂O uction	80 81 84 87 91 93 94 97 97 97 101 101

LIST OF PUBL	ICATIONS AND CONFERENCE PROCEEDINGS	202
REFERENCES		150
7.2	Recommendations for future research works	147
7.1	Conclusion	145
CHAPTER 7	CONCLUSION AND RECOMMENDATIONS	145
6.6	Charge transfer pathway over CZP (0.1)	142
6.5	HPLC	139
6.4	TOC	139
6.3	Radical scavenger studies	137
6.2	Stability and reusability studies of CZP (0.1) composite	130
6.1	Introduction	130
CHAPTER 6	STABILITY AND REUSABILITY STUDIES	130
	5.4.8 Thermogravimetric analysis	128
	5.4.7 Surface area, pore-volume, and pore radius analysis	125
	5.4.6 Photoluminescence analysis	124
	5.4.5 FT-IR and Raman analysis	122
	5.4.4 Optical analysis	121
	5.4.3 Structural analysis	117
	5.4.2 XPS analysis	114
	5.4.1 XRD analysis	112
5.4	Characterizations of CZP (0.1)	112
	5.3.1 Photocatalytic activity of CZP (0.1) and the effect of the operating parameters	108
5.3	Effects of aniline monomer loading on the in-situ polymerization of aniline to form CZP composite	105

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Examples of dyes	18
Table 2.2	Techniques of dye removal	20
Table 2.3	Methods of synthesis of Cu ₂ O particles	33
Table 2.4	Solvothermal synthesis of Cu ₂ O	37
Table 2.5	Various composites of Cu_2O and their synthesis method	49
Table 2.6	Common scavengers used for active species trapping experiments [236]	57
Table 3.1	List of chemicals	63
Table 3.2	Sample names and details	64
Table 4.1	Surface areas and porosities of Cu_2O , $CT(0.045-0.045)$, and $CZ(0.045-0.045)$ photocatalysts	100
Table 5.1	Surface areas and porosities of CZP-APS, CZP-APS/KMnO ₄ , and CZP-APS/K $_2$ Cr $_2$ O $_7$	105
Table 5.2	Photodegradation of CR dye by Cu_2O and ZnO based composites	108
Table 5.3	Comparison of surface areas and porosities of Cu_2O , CZ , and CZP (0.1)	126

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 2.1	Principle of photocatalysis	24
Figure 2.2	Photocatalytic dye degradation mechanism	27
Figure 2.3	Structure of Cu ₂ O	30
Figure 2.4	Schematic diagram of the solvothermal synthesis method	34
Figure 2.5	Schematic diagram of p-n heterojunction	41
Figure 2.6	Separation of electron and hole pairs after irradiation	42
Figure 2.7	Band edge potentials of Cu_2O , TiO_2 , and ZnO relative to the formation of $\bullet O_2^-$ and $\bullet OH$ radicals	44
Figure 2.8	Schematic diagram of types of Z-scheme heterojunctions and their charge separations	47
Figure 2.9	(a) Band edge potentials of PANI relative to the formation of •O2- and •OH radicals (b) Molecular structure of PANI	52
Figure 3.1	Flowchart of the methodology	62
Figure 3.2	Schematic diagram of the synthesis of Cu ₂ O	65
Figure 3.3	Schematic diagram of the synthesis of $\mbox{Cu}_2\mbox{O}/\mbox{Ti}\mbox{O}_2$ and $\mbox{Cu}_2\mbox{O}/\mbox{Zn}\mbox{O}$	66
Figure 3.4	Schematic diagram of the synthesis of Cu ₂ O/ZnO-PANI	67
Figure 3.5	Experimental set-up for photodegradation test	75
Figure 4.1	(a) Photocatalytic performance of CR dye degradation under visible light, (b) Rate constant of photocatalytic activity on CR by the synthesized catalysts	83
Figure 4.2	XRD patterns of (a) pristine Cu ₂ O, CT($0.045-0.045$), and CZ($0.045-0.045$)	85
Figure 4.3	(a) XPS survey, (b) Cu 2p deconvulation, (c) Cu 2p, and (d) O 1s spectra of Cu_2O	88
Figure 4.4	(a) XPS survey, (b) Cu 2p, (c) Ti 2p, and (d) O 1s spectra of CT(0.045-0.045)	89
Figure 4.5	(a) XPS survey, (b) Cu 2p, (c) Zn 2p, and (d) O 1s spectra of CZ(0.045-0.045)	90

Figure 4.6	 (i) HRTEM, (ii) TEM, and (iii) SAED images of (a) Cu₂O, (b) CT(0.045-0.045), and (c) CZ(0.045-0.045) 	92
Figure 4.7	UV–Vis–NIR absorption spectra of (a) Cu_2O , $CT(0.045-0.045)$, and $CZ(0.045-0.045)$, Tauc's plot of (b) Cu_2O (c) $CT(0.045-0.045)$, and (d) $CZ(0.045-0.045)$	93
Figure 4.8	(a) FTIR spectra of Cu ₂ O, CT(0.045 - 0.045), and CZ(0.045 - 0.045), (b) Raman spectra of Cu ₂ O, CT(0.045 - 0.045), and CZ(0.045 - 0.045), (c) PL spectra of Cu ₂ O, CT(0.045 - 0.045), and CZ(0.045 - 0.045)	96
Figure 4.9	Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curve of (a) Cu_2O , (b) $CT(0.045-0.045)$, and (c) $CZ(0.045-0.045)$	99
Figure 5.1	(a) Photocatalytic performance of CR dye degradation under visible light and (b) Rate constant of photocatalytic activity on CR by CZP at various loadings	106
Figure 5.2	(a) Degradation of MB at different pHs by CZP (0.1) (b) effect of catalyst dosage on the degradation of CR by CZP (0.1) , (c) effect of solution's pH on CR degradation by CZP (0.1) , and (d) effect of initial dye concentration on CR degradation by CZP (0.1)	111
Figure 5.3	(a) XRD patterns of pristine Cu_2O , CZ, and CZP (0.1) and (b) Zoom-in XRD spectra of CZ, CZP (0.1), and PANI	113
Figure 5.4	(a) XPS survey, (b) Cu 2p, (c) Zn 2p, (d) O 1s (e) N 1s, and (f) C 1s spectra of CZP (0.1)	116
Figure 5.5	(a)(i) SEM image and (ii) EDX spectrum of Cu_2O , (b) (i) SEM image and (ii) EDX spectrum of CZ, (c) (i) SEM image and (ii) EDX spectrum of CZP (0.1), and (d) elemental mapping of CZP (0.1)	118
Figure 5.6	(a) (i) HRTEM, (ii) TEM and (iii) SAED images of Cu ₂ O, (b) (i) HRTEM, (ii) TEM and (iii) SAED images CZ, and (c) (i) HRTEM, (ii) TEM and (iii) SAED images CZP (0.1)	120
Figure 5.7	(a) UV–vis–NIR absorption spectra of Cu ₂ O, CZ, and CZP (0.1), Tauc's plot of (b) Cu ₂ O (c) CZ, and (d) CZP (0.1)	121
Figure 5.8	(a) FTIR spectra of Cu ₂ O, CZ, and CZP (0.1), (b) Raman spectra of Cu ₂ O, CZ, and CZP (0.1), (c) PL spectra of Cu ₂ O, CZ, and CZP (0.1)	123
Figure 5.9.1	Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curve of (a) Cu_2O , (b) CZ, and (c) CZP (0.1)	127

Figure 5.9.2	TGA curve showing degradation and decomposition of PANI above $200 ^{\circ}$ C in CZP composite	129
Figure 6.1	Reusability experiments of CZP (0.1) and CZ	131
Figure 6.2	(a) XRD patterns of used and unused CZ samples, (b) FTIR spectra of used and unused CZ samples	132
Figure 6.3	(a) XRD patterns of used and unused CZP (0.1) samples,(b) FTIR spectra of used and unused CZP (0.1) samples	133
Figure 6.4	(a) XPS survey, (b) Cu 2p, and (c) Zn 2p spectra of unused and used CZP (0.1) sample	135
Figure 6.5	(a)(i) Unused O 1s and (ii) used O 1s spectra of CZP (0.1) sample, (b)(i) Unused C 1s and (ii) used C 1s spectra CZP (0.1) sample, (c)(i) Unused N 1s and (ii) used N 1s spectra of CZP (0.1) sample	136
Figure 6.6	(a) Effects of scavengers on the degradation of CR on to CZP (0.1) , and (b) TOC removal of CR dye over CZP (0.1) catalyst	138
Figure 6.7	HPLC chromatograms of CR dye degradation by CZP (0.1)	140
Figure 6.8	Absorption spectrum of CR degradation using CZP (0.1)	142
Figure 6.9	Schematic diagram of the charge transfer pathway over CZP (0.1) heterojunction under visible-light irradiation	144

LIST OF ABBREVIATIONS

AOP	-	Advanced Oxidation Process
APS	-	Ammonium persulfate
BET	-	Brunauer-Emmett-Teller
CB	-	Conduction Band
CR	-	Congo Red
СТ	-	Cu ₂ O/TiO ₂
CZ	-	Cu ₂ O/ZnO
CZP	-	Cu ₂ O/ZnO-PANI
EDS	-	Energy Dispersive Spectroscopy
EDX	-	Energy Dispersive X-ray
SEM	-	Scanning Electron Microscopy
FTIR	-	Fourier Transmission Infrared
GCMS	-	Gas Chromatography-Mass Spectroscopy
HPLC	-	High Performance Liquid Chromatography
HR-TEM	-	High-Resolution Transmission Electron Microscopy
MB	-	Methylene Blue
МО	-	Methyl Orange
NA	-	Nitrogen Absorption-desorption Analysis
NIR-UV	-	Near-Infrared Ultraviolet
NPs	-	Nanoparticles
PANI	-	Polyaniline
SAED	-	Scanning Atomic Electron Diffraction
SEM	-	Scanning Electron Microscopy
UV	-	Ultraviolet
UV-Vis	-	Ultraviolet/visible
VB	-	Valence Band
XPS	-	X-ray Photoelectron Spectroscopy
XRD	-	X-ray Diffraction

LIST OF SYMBOLS

e	-	Electron
h^+	-	Hole
hv	-	Energy (photon)
λ	-	Wavelength
β	-	Peak broadness at full width of half maximum intensity
2 0	-	Bragg diffraction angle
θ	-	Theta angle
nm	-	Nanometers
R^2	-	Coefficient of determination
K	-	Rate constant

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Calibration curve of CR dye at different pHs	191
Appendix B	Calibration curve of MB dye at different pHs	192
Appendix C	Photocatalytic degradation of CR dye by Cu_2O , CT, and CZ composite photocatalysts at 30 mg/L under visible light irradiation	193
Appendix D	Linear correlation coefficients (R^2) and rate constant (K) of the Pseudo-first order kinetic model for photocatalytic degradation of CR by Cu ₂ O, CT, and CZ composites	194
Appendix E	Photocatalytic performance and rate constant of CR dye degradation under visible light by CZP-APS, CZP-APS/KMnO ₄ , and CZP-APS/K $_2$ Cr $_2$ O $_7$	195
Appendix F	XRD patterns and FTIR spectra of CZP-APS, CZP-APS/KMnO ₄ , and CZP-APS/K $_2$ Cr $_2$ O $_7$	196
Appendix G	PL spectra of CZP-APS, CZP-APS/KMnO ₄ , and CZP-APS/K_2Cr ₂ O ₇	197
Appendix H	Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curve of (a) CZP-APS, (b) CZP-APS/KMnO ₄ , and (c) CZP-APS/K ₂ Cr ₂ O ₇	198
Appendix I	Photocatalytic degradation of CR dye by Cu_2O , CZ, and CZP (0.1) photocatalysts at 30 mg/L under visible light irradiation	199
Appendix J	Linear correlation coefficients (\mathbb{R}^2), rate constant (K), and half-life of the Pseudo-first order kinetic model for photocatalytic degradation of CR by CZP (0.03), CZP (0.05), CZP (0.1), and CZP (0.13)	200
Appendix K	Calculation of crystallite size from XRD	201

CHAPTER 1

INTRODUCTION

1.1 Research Background

The industrial revolution has brought about a wide range of problems including water pollution, leading to a significant impact on the environment and living things. Direct discharge of industrial effluents into waterways makes it unfit for consumption, as the water may receive non-biodegradable and undesirable chemicals from the effluents which proved to be hazardous, and death by pollution-related diseases is increasing day by day [1,2].

The textile and dye industries being one of the most chemically intensive industries in the world need much attention due to the large effluents they discharge into waterways which are highly toxic in nature [3]. This leads to the contamination of surface and groundwater as it contains a high concentration of heavy metals and other harmful organic compounds, these compounds are believed to be carcinogenic, mutagenic, and in some cases teratogenic to living things [3,4]. Surprisingly about 72 toxic chemicals were detected from textile effluents, out of which 30 could not be removed [3–5].

Textile and dyeing industries use a lot of water in dyeing and finishing fabrics, approximately about 60 liters of water is required in dyeing 1 kg of clothes, as such World Bank estimated that about 17-20% of Industrial water pollution comes from textile industries [6–8]. Therefore, the search for an alternative, efficient, and cost-effective method for the treatment of textile wastewater or dyes is imperative, to reserve this precious limited natural resource [2,4].

Regular water remediation methods used, like coagulation, flocculation, sedimentation, filtration, and disinfection are not fast and efficient. Some of these

conventional methods, apart from being incompatible with the environment, also require large space that leads to wastage of chemicals and in some cases can't remove a lot of hazardous pollutants, but rather lead to the generation of secondary harmful products [4,9]. Advanced Oxidation Processes (AOPs) are among the new facile water treatment methods developed, it has become popular due to their effectiveness and capability to degrade contaminants through redox reaction in water [10,11].

The AOPs are based on the generation and use of hydroxyl radicals (•OH), due to their high reduction potential (2.80 V vs. Normal hydrogen electrode), they can degrade a wide range of organic pollutants including stable gaseous pollutants like carbon dioxide (CO₂) [12]. Ultraviolet (UV) photolysis, hydrogen peroxide photo-fenton, photo-ozonation, and heterogeneous photocatalysis are the main classes of AOPs. However, heterogeneous photocatalysis has gained more popularity due to the advantage of the usage of sunlight, which is an abundant and free source of energy [13,14].

Photocatalysis is a chemical reaction under photoabsorption of solid material, namely a photocatalyst, that is chemically unaffected during and after the reaction [15,16]. The beginning of research in the field of photocatalysis was started by Fujishima and Honda in 1972 when they used TiO_2 electrodes in the splitting of water [17]. Photocatalysis can mineralize toxic compounds completely at low temperature and pressure and therefore gains much popularity in the treatment of contaminated gaseous and liquid wastes [4,18].

Binary metal oxides ranging from titanium dioxide(TiO₂), tungsten trioxide(WO₃), zinc oxide(ZnO), tin dioxide(SnO₂), ferric oxide(Fe₂O₃), tantalum pentoxide(Ta₂O₅), cupric oxide(CuO), and perovskites metal oxides like bismuth ferrite (BiFeO₃) and lanthanum ferrite (LaFeO₃) are widely used as photocatalysts [19]. Others are heterojunction and composite photocatalysts formed using two or more metal oxides photocatalyst [20–26]. Conductive polymers such as polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT)), and

polythiophene (PTh) are also incorporated with other semiconductors or metal oxides to form stable photocatalysts [27].

Copper(I) oxide, also known as cuprous oxide (Cu₂O), is among the most capable photocatalysts. This promising p-type semiconductor is abundant in nature, has low toxicity, and has high visible light absorptivity with ~2.20 eV direct bandgap [28]. Its ease of production as well as good environmental acceptability makes it one of the most investigated photocatalysts. However, photocorrosion and fast electronhole pair recombination limit Cu₂O efficiency during the photocatalytic reaction [29,30]. Although Cu₂O is thermodynamically stable under the ambient condition, during photoexcitation its activity is greatly suppressed by photocorrosion. Generally, photocorrosion happened through the self-usage of the photoexcited electrons and holes [29].

As such, illumination causes photostability deterioration, which leads to a considerable detrimental effect on the photocatalytic and photoelectrochemical performances of Cu₂O. An efficient charge transfer that prevents light-induced self-reduction and oxidation of Cu₂O is a vital step in suppressing its photocorrosion. Similarly, the incorporation of secondary components can also enhance their photostability. The formation of composite materials would increase the catalyst's ability to transfer charges, thereby reducing excess photogenerated charges within the particles, thus improving its photocatalytic activity [29,31].

To further improve Cu_2O 's photocatalytic properties, many strategies have been developed like, surface engineering to control the exposed facets [32], coupling with n-type semiconductors e.g. TiO₂ [33], ZnO [25], Ferric oxide [34], and Tantalum oxynitride [35], and binary system formation with noble metals such as aurum (Au) [36], argentum (Ag) [37], and copper (Cu) [38]. However, the long-term efficiency of Cu₂O photocatalyst is generally low due to the occurrence of selfphotodecomposition that constrains its overall performance [24,29].

Recently the fabrication of ternary nanocomposites leading to the formation of a Z-scheme heterojunction especially with conducting polymers is gaining more attention in the improvement of properties of various photocatalysts [39]. The synergetic effect enhancement that occurs among all the three components is responsible for the enhanced activity. Various strategies like metal/semiconductor/polymer and semiconductor/semiconductor/polymer nanocomposites were developed given interesting results [40].

PANI is considered as one of the extremely suitable conductive polymers that can serve as a candidate for ternary nanocomposites with other semiconductors, because it serves as a p-type semiconductor, and has tremendous properties like unique electron-hole transporting ability, simple synthesis methods, high chemical stability, high absorption coefficients in the visible-light range, high mobility of charge carriers and suppression of photocorrosion [27,39]. Similarly, PANI in its undoped or partially doped states is an electron donor upon photoexcitation and is known as a good hole conductor. Likewise, PANI has shown promising results in the suppression of photocorrosion like silver phosphate (Ag_3PO_4) [41] and manganese ferrite (MnFe₂O₄) [42].

Recently, ternary nanocomposites containing PANI and other semiconductor photocatalysts like PANI/Ag₃PO₃/NiFe₂O₄ [40], RuO₂-TiO₂/PANI [43], TiO₂/CoMoO₄/PANI [44], Co₂TiO₄/CoTiO₃/PANI [45] have been synthesized and demonstrated higher photocatalytic activity, enhanced stability, and reusability for pollutants degradation.

As such, this study deals with the preparation of novel ternary nanocomposites of Cu_2O (Cu_2O/ZnO -PANI), with wide bandgap n-type semiconductor (ZnO) and PANI, by a simple solvothermal method and room temperature in-situ polymerization of aniline, for the treatment of textile dyes.

1.2 Problem Statement

Textile and dye industries use a large amount of water and also discharge a large number of toxic effluents into waterways, leading to contamination of surface and ground waters. This leads to so many environmental and health hazards. Regular and conventional water treatment methods are not fast, efficient, and cost-effective. Among the new facile water treatment methods, photocatalysis is seen as a panacea to the problem of wastewater, due to its effectiveness, the capability to degrade contaminants through a redox reaction, and most importantly, the usage of sunlight which is an abundant and free source of energy.

Wide bandgap semiconductors were the first investigated photocatalysts, they have been popular as an effective photocatalyst, and their photocatalytic behavior has been studied extensively. However, the photocatalytic activity of wide bandgap semiconductors is limited to irradiation wavelengths in the UV region. Thus, the optimal use of solar energy is limited to approximately 3-5% of all solar energy, whereas 43% of solar energy comprises visible light, therefore a significant amount of solar radiation is lost. Likewise, the use of UV photocatalysis on an industrial scale is very expensive and its prolonged exposure may cause serious health risks like skin aging, cancers, eye damage, and immune system suppression [46]. Owing to these factors growing interest was also focused on the visible light-driven narrow bandgap semiconductors like Cu₂O.

Cu₂O is a p-type semiconductor with a direct bandgap of 2–2.20 eV. It is seen as an interesting photocatalytic material due to its abundance in nature, low toxicity, and ability to absorb visible light [24,30]. However, despite all its interesting properties and capabilities, Cu₂O particularly those with nanoscale structure has less activity due to easy photocorrosion and loss of light activity in the case of long-term illumination [29]. Apart from that, Cu₂O application is restricted by the fast recombination of electron-hole pairs [47].

It is understood that if two semiconductors are properly integrated into one system, namely composite or heterojunction, this system can be expected to achieve high photocatalytic activity even if none of the semiconductors has high activity, by increasing the efficiency of load separation or visible light absorption [48]. The p-n heterojunction is produced by combining p-type and n-type semiconductors and is seen as one of the effective ways of improving photocatalytic performance [49,50].

Cu₂O p-n heterojunctions have been produced by some researchers and improvement was noticed, however, the Cu₂O p-n type heterojunctions still have some problems of recombination at the heterojunction interface due to an excessive formation of cupric oxide (CuO) on the Cu₂O surface as the illumination of light continues, as well as self-photodecomposition, this limits its efficiency [48]. Apart from that, most of the Cu₂O p-n heterojunctions could not be reused for many times without obvious loss in the photocatalytic activity [51,52]. Likewise, the general issue of most p-n heterojunctions in reducing the redox potential of photogenerated charges all constitute a great drawback to the use of p-n heterojunctions of Cu₂O [53,54].

Sequel to the limitations of p-n heterojunction, ternary Z-scheme heterojunction was constructed to overcome the said problems. It is well known that the Z-scheme photocatalytic mechanism is another important class of composite with excellent photocatalytic activities [39]. Generally, Z-scheme heterojunction comprises semiconductors, with or sometimes without electron acceptor-donor component. Subsequent to the illumination of light, the generated electrons and holes with lower reduction and oxidation ability will move from one semiconductor to the other through the electron acceptor-donor component or directly recombine with each other, thereby leaving behind electrons and holes with higher reduction and oxidation ability. This generates electrons and holes with higher oxidation-reduction ability on the semiconductor, thus achieving effective separation of the charge carriers. Therefore strong redox potential is retained for a large period of time [55,56].

With the formation of ternary Z-scheme heterojunction, the effect of heterojunctions promotes the separation of photogenerated electrons and holes, also the oxidation and reduction ability of photogenerated holes and electrons can be retained for a long period of time [48]. Looking at the problems of Cu_2O and its p-n heterojunctions, a novel technique is needed to effectively form a stable Cu_2O based photocatalyst that can be reused several times in the treatment of textile dyes and wastewater in general. Thus, instead of getting stuck in binary composites, more efforts should be devoted to preparing multicomponent nanocomposites of Cu_2O based photocatalyst, that can be reused several times in the treatment of textile dyes and wastewater, for better functional performance and wider applications. As such, a ternary nanocomposite with Z-scheme heterojunction properties can serve as an alternative and efficient way of improving the photocatalytic properties of Cu_2O .

By virtue of the capabilities of PANI in the suppression of photocorrosion and enhancing photocatalytic activity and reusability in ternary nanocomposites like PANI/Ag₃PO₄/NiFe₂O₄ [40], and other binary composites. PANI can be a suitable candidate to address the problems of Cu₂O, thereby producing very stable Cu₂O ternary nanocomposite photocatalysts, for the degradation of organic pollutants and other photocatalytic applications.

PANI supports photocatalytic activity by acting as a good photosensitizer. It is one of the p-type conjugated polymers with π conjugated electrons present at the major backbone of the molecule with an absorption range lying in the visible light wavelength region. PANI, therefore, exhibits good semiconducting behavior by offering electrons and accepting holes under the excitation of a light source, thereby reducing electron-hole recombination and improving photocatalytic activity [46]. Likewise, due to its amine, imine and π conjugated electrons; PANI can easily bind with other inorganic molecules thereby forming a hybrid composite that can easily adsorb organic pollutants with better visible light absorption property [39]. Thus, in this study ternary nanocomposite of Cu₂O (Cu₂O/ZnO-PANI) was prepared with ZnO and PANI.

Initially, a one-pot solvothermal method was used to prepare Cu_2O/ZnO and Cu_2O/TiO_2 with one solvent acting as both reducing agent and solvent respectively, Cu_2O/ZnO was found to have superior properties than Cu_2O/TiO_2 . Cu_2O/ZnO was then modified with PANI through room temperature in-situ polymerization of aniline

with different oxidants to systematically investigate its effects on the physicochemical properties of the ternary nanocomposite. To the best of my knowledge, there is no systematic study on the ternary nanocomposite of Cu_2O with PANI and ZnO (Cu_2O/ZnO -PANI), and the effects of different oxidants on the insitu polymerization of aniline to form PANI-based Cu_2O composite.

1.3 Research Objectives

The objectives of the research are :

- To synthesize Cu₂O, Cu₂O/TiO₂, and Cu₂O/ZnO using the solvothermal method and identify the effects of different n-type semiconductors (TiO₂ and ZnO) and loadings on the Cu₂O/TiO₂ and Cu₂O/ZnO heterojunction's physicochemical properties and performance.
- 2) To modify the best binary Cu₂O composite with PANI using in-situ polymerization of aniline and investigate the effects of oxidants on the physicochemical properties of the synthesized PANI-based ternary Cu₂O composite
- 3) To evaluate the photocatalytic performance of the synthesized pure and modified Cu₂O on the degradation of textile dyes in aqueous solution under visible light irradiation, its reusability, as well as the impacts of operating parameters such as pH, photocatalysts loading and initial dyes concentrations on the photocatalytic degradation efficiency.
- To study the photodegradation process of the dyes over the best synthesized ternary nanocomposites of Cu₂O via in-situ capture study, total organic carbon (TOC), and High-Performance Liquid Chromatography (HPLC).

1.4 Scope of the study

This research is focused on addressing some major setbacks affecting Cu_2O -based photocatalysts for textile dyes and wastewater applications. The development of the ternary nanocomposite of Cu_2O was done with n-type semiconductors (ZnO) and conductive polymer (PANI) using a solvothermal method and in-situ polymerization of aniline for the photocatalytic degradation of Congo Red (CR) and Methylene Blue (MB) dyes in aqueous solution under visible light irradiation. The scopes of the study are:

 Synthesis of Cu₂O, Cu₂O/TiO₂, and Cu₂O/ZnO using a solvothermal method and identification of the effects of different n-type semiconductors (TiO₂ and ZnO) on the Cu₂O/TiO₂ and Cu₂O/ZnO composites' properties and performance:

The pristine Cu₂O was synthesized by a solvothermal method using absolute ethanol which acts as both solvent and reducing agents, the physicochemical properties of the photocatalyst were determined using various characterization techniques as well as the photocatalytic activity. X-ray diffraction (XRD) analysis was done to study the structure and the crystallite size of the catalyst via Debye-Scherrer's equation. UV-Vis-NIR scanning spectrophotometer was employed for studying the optical properties. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to observe the morphology and lattice distance. Nitrogen adsorption-desorption was done to study the surface area and Fourier Transformed Infrared (FTIR) and Raman spectroscopy were employed to show the type of chemical bonds present in the sample. Energy Dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses were also done to examine the elemental composition and chemical state of the sample.

Likewise, the Cu_2O/TiO_2 and Cu_2O/ZnO composite were all synthesized using a solvothermal process with absolute ethanol. The loadings of both TiO₂ and

ZnO precursors were varied in the preparation while keeping Cu₂O constant to determine the best loading suitable for further treatment. Their photocatalytic activity, as well as the physicochemical properties, were determined using various characterization techniques such as XRD to study the structure and the crystallite size via Debye-Scherrer's equation, UV-Vis-NIR scanning spectrophotometer for studying optical properties, SEM and TEM to observe the morphology and lattice distance, Nitrogen adsorption-desorption to study the surface area while FTIR and Raman spectroscopy were employed to show the type of chemical bonds present in the samples. Photoluminescence (PL) spectroscopy was used to check the charge carrier recombination, while EDX and XPS were employed to examine the elemental composition as well as the chemical state of the composites. From the result obtained the best composite among Cu_2O/TiO_2 and Cu_2O/ZnO was selected for further modification with PANI to form the ternary nanocomposite of Cu_2O .

2. Modification of the best Cu_2O composite with PANI using in-situ polymerization of aniline and investigation of the effects of oxidants on the physicochemical properties of the synthesized PANI-based ternary Cu_2O nanocomposite

The modification of the best composite among Cu_2O/TiO_2 and Cu_2O/ZnO to form a PANI-based ternary Cu_2O nanocomposite was done by in-situ polymerization of aniline. The effect of oxidants on the in-situ polymerization of aniline to form PANI was identified by using three different types of oxidants; one single oxidant and two composite oxidants. Ammonium peroxydisulfate (APS) ($(NH_4)_2S_2O_8$) as the single oxidant, while a mixture of APS and potassium dichromate($K_2Cr_2O_7$) (APS/ $K_2Cr_2O_7$) acts as the first composite oxidant, whereas a mixture of APS and potassium permanganate (KMnO₄) serves as the second composite oxidant (APS/KMnO₄) respectively. The loadings of aniline monomer were varied (0.13, 0.1, 0.05, and 0.03 mL) while using the best oxidant to produce the Cu₂O ternary nanocomposite of PANI.

The physicochemical properties of the optimized ternary composite were then determined using various characterization techniques such as XRD to study the structure and the crystallite size via Debye-Scherrer's equation, SEM, and TEM for imaging the morphology of the surface as well as the lattice distance. EDX and XPS were used to determine the elemental composition and chemical state of the composite. UV-Vis-NIR scanning spectrophotometer was employed to study its optical properties. Nitrogen adsorption-desorption was used to study the surface area, FTIR and Raman spectroscopy were employed to show the type of chemical bonds present in the sample, and PL spectroscopy was done to check the charge carrier recombination.

3. Evaluation of the photocatalytic performance of the synthesized pure Cu_2O and modified Cu_2O on the degradation of Congo red (CR) and methylene blue (MB) dyes in aqueous solution under visible light irradiation, its reusability, as well as the impacts of operating parameters such as pH, photocatalysts loading and initial dyes concentrations on the photocatalytic degradation efficiency.

The photocatalytic activity, photolysis, and adsorption studies were monitored using ultraviolet-visible (UV-Vis) spectrophotometry. Moreover, the operating parameters such as initial dyes concentration (i.e., 30 mg/L, 50 mg/L, and 80 mg/L), photocatalyst loading (i.e., 0.5 g/L, 1 g/L, and 1.5 g/L), and solution pH on the photocatalytic degradation of CR dye were all studied. While for MB, the preliminary result done at 30 mg/L concentration revealed no degradation, so the pH of the solution was varied to pH 3, pH 7, and pH 10, but still, the activity was very low. The reusability was tested by running five times repetitions of the experiment under similar conditions using CR dye over the optimum catalyst. XRD, FTIR, and XPS analyses were finally done to the sample after the reuse to determine whether there are changes in the structure and chemical state of the composite.

4. Study of the photodegradation process of the dyes over the best synthesized ternary nanocomposites of Cu₂O via in-situ capture study, total organic carbon (TOC), and HPLC.

An in-situ capture experiment was conducted to investigate the active species generated during the photocatalytic process. Ammonium oxalate (AO) was used as a hole (h^+) scavenger while benzoquinone (BQ) and isopropyl alcohol (IPA) were used as scavengers introduced into the photocatalytic process to capture superoxide radical ($\bullet O_2^-$) and hydroxyl radical ($\bullet OH$), respectively. Finally, TOC and HPLC analyses were done to ascertain the degradation of the dyes over the optimized ternary nanocomposites of Cu₂O.

1.5 Significance of the study

A newly improved ternary nanocomposite of Cu_2O photocatalyst was developed by incorporating PANI and ZnO, to overcome the issues of photocorrosion and fast charged carrier (electrons and holes) recombination of Cu_2O , as well as improving its stability. Photodegradation of CR dye serves as a model reaction because it is one of the prominent hazardous anionic azo dyes resistant to many treatment methods, which is widely used in textile industries. The effective removal of such dye is sorely needed for the purification of wastewater. This study will provide insights into the development of efficient and stable nanocomposite for the treatment of textile effluents and subsequently combat the problem of water pollution.

Last but not least, this research will give insight into the functions of PANI and other conducting polymers, in enhancing the properties of nanocomposites photocatalysts, for degradation of various contaminants and to enhance the feasibility of AOP technologies in wastewater treatment.

1.6 Thesis outline

The research is targeted at the development of efficient ternary Cu_2O -PANI based photocatalyst, by one-pot solvothermal method and room temperature in-situ polymerization of aniline, for efficient degradation of textile dyes. The modification with ZnO and PANI was done to improve the electrons and holes separation ability and prevent the occurrence of photocorrosion of the catalyst, for increased activity and reusability. This thesis consists of seven chapters. The research background of the study area, problem statement, objectives, scope, and significance of this research was elaborately discussed in Chapter 1.

Chapter 2 presents a literature review on textile industries as well as dyes and their methods of removal. Potentials and challenges in the usage of Cu_2O photocatalyst were also discussed in the chapter, methods of synthesis and strategies used in improving the properties of Cu_2O were all discussed. Chapter 3 comprises the overall description of materials, methodology, characterizations, and experimental procedures applied during the course of the research. Chapter 4 covers the entire result of the binary composites (Cu_2O/ZnO and Cu_2O/TiO_2), as well as the discussions, and the analysis conducted to compare the two composites, leading to the selection of the best one suitable for further modification with PANI.

Chapter 5 covers the result of the ternary composite ($Cu_2O/ZnO-PANI$) formed with Cu_2O/ZnO and PANI, through in-situ polymerization of aniline. Discussions of the analysis conducted were made with reference and comparison between Cu_2O and Cu_2O/ZnO throughout the chapter. Chapter 6 comprises the results of in-situ capture studies, TOC, HPLC as well as the study of the stability of the optimized ternary composite. The possible charge transfer mechanism over the optimized catalyst was also discussed in the chapter. Finally, Chapter 7 provides the conclusions drawn from this study and some recommendations proposed for future work.

REFERENCES

- R.C. Pawar, C.S. Lee, Basics of Photocatalysis, *Heterog. Nanocomposite-Photocatalysis Water Purif.* (2015) 1–23.
- [2] P. Chowdhary, R.N. Bharagava, S. Mishra, N. Khan, Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health, in: Environ. *Concerns Sustain. Dev., Springer Singapore*, 2020: pp. 235–256.
- [3] T. Hussain, A. Wahab, A critical review of the current water conservation practices in textile wet processing, *J. Clean. Prod.* 198 (2018) 806–819.
- [4] C.N.C. Hitam, A.A. Jalil, A review on exploration of Fe₂O₃ photocatalyst towards degradation of dyes and organic contaminants, *J. Environ. Manage*. 258 (2020) 110050.
- [5] R. Franca, N. Lourenço, H. Pinheiro, Recent developments in textile wastewater biotreatment: dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles, *Review in Env. Sci. and Biotech* 19 (2020) 149-190
- [6] K. Rita, Textile dyeing industry: An environmental hazard, *Nat. Sci.* 4 (2012) 22–26.
- [7] H. Zheng, J. Zhang, J. Yan, L. Zheng, An industrial scale multiple supercritical carbon dioxide apparatus and its eco-friendly dyeing production, *J. CO₂ Util.* 16 (2016) 272–281.
- [8] C.R. Holkar, A.J. Jadhav, D. V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: Possible approaches, J. *Environ. Manage.* 182 (2016) 351–366.

- [9] S. Mani, R.N. Bharagava, Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, in: *Rev. Environ. Contam. Toxicol., Springer New York LLC*, 2016: pp. 71–104.
- [10] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, *Nat. Nanotechnol.* 13 (2018) 642–650.
- [11] A.H. Khan, N.A. Khan, S. Ahmed, A. Dhingra, C.P. Singh, S.U. Khan, A.A. Mohammadi, F. Changani, M. Yousefi, S. Alam, S. Vambol, V. Vambol, A. Khursheed, I. Ali, Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment, *J. Clean. Prod.* 269 (2020).
- [12] A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review, J. Clean. Prod. 87 (2015) 826–838.
- [13] D. Ghernaout, N. Elboughdiri, Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends, *OALib.* 07 (2020) 1–15.
- [14] J. Zhang, W. Hu, S. Cao, L. Piao, Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting, *Nano Res.* 13 (2020) 2313–2322.
- B. Ohtani, Principle of Photocatalysis and Design of Active Photocatalysts, In:
 S. L. Suib, *New and future development of photocatalysis*, Elsevier B.V. 121-144, 2013.
- [16] V. Augugliaro, G. Palmisano, L. Palmisano, J. Soria, Heterogeneous Photocatalysis and Catalysis, In: *Heterogeneous photocatalysis*, Elsevier B.V. 1-24, 2019.

- [17] K. Fujishima, A., & Honda, Electrochemical Photolysis of Water One and Two-dimensional Structure of Poly (L-Alanine) shown by Specific Heat Measurements at Low, *Nature*. 238 (1972) 37–38.
- [18] R.K. Sharma, B. Arora, S. Dutta, M.B. Gawande, Photo-oxidation Technologies for Advanced Water Treatment, *Springer, Cham*, 2020: pp. 221– 255.
- [19] N. Shaheen, M.A. Yousuf, I. Shakir, S. Zulfiqar, P.O. Agboola, M.F. Warsi, Wet chemical route synthesis of spinel oxide nano-catalysts for photocatalytic applications, *Phys. B Condens. Matter.* 580 (2020) 411820.
- [20] E. Grabowska, M. Marchelek, M. Paszkiewicz-Gawron, A. Zaleska-Medynska, Metal oxide photocatalysts, In: *Metal oxide based photocatalysis*, Elsevier Inc., 2018.
- [21] Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy, *Adv. Mater.* 27 (2015) 5309–5327.
- [22] B. Lucas-Granados, R. Sánchez-Tovar, R.M. Fernández-Domene, J. García-Antón, Study of the annealing conditions and photoelectrochemical characterization of a new iron oxide bi-layered nanostructure for water splitting, *Sol. Energy Mater. Sol. Cells.* 153 (2016) 68–77.
- [23] J. Zhang, H. Ma, Z. Liu, Highly efficient photocatalyst based on all oxides WO₃/Cu₂O heterojunction for photoelectrochemical water splitting, Appl. *Catal. B Environ.* 201 (2017) 84–91.
- [24] T. Kulandaivalu, S. Abdul Rashid, N. Sabli, T.L. Tan, Visible light assisted photocatalytic reduction of CO₂ to ethane using CQDs/Cu₂O nanocomposite photocatalyst, *Diam. Relat. Mater.* 91 (2019) 64–73.

- [25] Y. Wang, S. Li, H. Shi, K. Yu, Facile synthesis of p-type Cu₂O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities, *Nanoscale*. 4 (2012) 7817–7824.
- [26] J. Guan, H. Wang, J. Li, C. Ma, P. Huo, Enhanced photocatalytic reduction of CO₂ by fabricating In₂O₃/CeO₂/HATP hybrid multi-junction photocatalyst, J. *Taiwan Inst. Chem. Eng.* 99 (2019) 93–103.
- [27] S.L. Lee, C.J. Chang, Recent developments about conductive polymer based composite photocatalysts, *Polymers (Basel)*. 11 (2019).
- [28] C.H. Kuo, M.H. Huang, Morphologically controlled synthesis of Cu₂O nanocrystals and their properties, *Nano Today*. 5 (2010) 106–116.
- [29] C.Y. Toe, J. Scott, R. Amal, Y.H. Ng, Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion, J. Photochem. Photobiol. C Photochem. Rev. (2018) 1–21.
- [30] Z. Zolfaghari-Isavandi, Z. Shariatinia, Enhanced efficiency of quantum dot sensitized solar cells using Cu₂O/TiO₂ nanocomposite photoanodes, *J. Alloys Compd.* 737 (2018) 99–112.
- [31] S. Kumar, C.M.A. Parlett, M.A. Isaacs, D. V. Jowett, R.E. Douthwaite, M.C.R. Cockett, A.F. Lee, Facile synthesis of hierarchical Cu₂O nanocubes as visible light photocatalysts, *Appl. Catal. B Environ.* 189 (2016) 226–232.
- [32] Y. Su, H. Li, H. Ma, J. Robertson, A. Nathan, Controlling Surface Termination and Facet Orientation in Cu₂O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study, ACS Appl. Mater. Interfaces. 9 (2017) 8100–8106..
- [33] X.Y. Liu, W.D. Wei, S.C. Cui, J.G. Liu, A Heterojunction Cu₂O/N-

TiO2Photocatalyst for Highly Efficient Visible Light-Driven Hydrogen Production, *Catal. Letters.* 146 (2016) 1655–1662.

- [34] J.C. Wang, L. Zhang, W.X. Fang, J. Ren, Y.Y. Li, H.C. Yao, J.S. Wang, Z.J. Li, Enhanced Photoreduction CO Activity over Direct Z-Scheme #-FeO/CuO Heterostructures Under Visible Light Irradiation, ACS Appl. Mater. Interfaces. 7 (2015) 8631–8639.
- [35] J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, High-performance p-Cu₂O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting, *Energy Environ. Sci.* 7 (2014) 3758–3768.
- [36] Q. Hua, F. Shi, K. Chen, S. Chang, Y. Ma, Z. Jiang, G. Pan, W. Huang, Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity, *Nano Res.* 4 (2011) 948– 962.
- [37] W. Zhang, X. Yang, Q. Zhu, K. Wang, J. Lu, M. Chen, Z. Yang, One-pot room temperature synthesis of Cu₂O/Ag composite nanospheres with enhanced visible-light-driven photocatalytic performance, *Ind. Eng. Chem. Res.* 53 (2014) 16316–16323.
- [38] B. Zhou, H. Wang, Z. Liu, Y. Yang, X. Huang, Z. Lü, Y. Sui, W. Su, Enhanced photocatalytic activity of flowerlike Cu₂O/Cu prepared using solvent-thermal route, *Mater. Chem. Phys.* 126 (2011) 847–852.
- [39] X. Liu, L. Cai, A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, *Appl. Surf. Sci.* 483 (2019) 875–887.
- [40] Y. Chen, P. Zhu, M. Duan, J. Li, Z. Ren, P. Wang, Fabrication of a magnetically separable and dual Z-scheme PANI/Ag₃PO₄/NiFe₂O₄ composite

with enhanced visible-light photocatalytic activity for organic pollutant elimination, *Appl. Surf. Sci.* 486 (2019) 198–211.

- [41] Y. Bu, Z. Chen, Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light, ACS Appl. Mater. Interfaces. 6 (2014) 17589–17598.
- [42] S. Zeng, J. Yang, X. Qiu, Z. Liang, Y. Zhang, Magnetically recyclable MnFe₂O₄/polyaniline composite with enhanced visible light photocatalytic activity for rhodamine B degradation, *J. Ceram. Soc. Japan.* 124 (2016) 1152– 1156.
- [43] F. Mousli, M. Jouini, F. Maurel, Polyaniline-Grafted RuO₂-TiO₂ Heterostructure for the Catalysed Degradation of Methyl Orange in Darkness, *Catalysts*, 578 (2019).
- [44] S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, S. Vadivel, Fabrication of TiO₂/CoMoO₄/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light, *Mater. Chem. Phys.* 224 (2019) 10–21.
- [45] M.R. Nasrabadi, A. Ghaderi, H.R. Banafshe, M.E. Arani, Preparation of Co₂TiO₄/CoTiO₃/Polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation, *J. Mater. Sci.* 17 (2019) 15854–15868.
- [46] M. Anjum, M. Oves, R. Kumar, M.A. Barakat, Fabrication of ZnO-ZnS@polyaniline nanohybrid for enhanced photocatalytic degradation of 2chlorophenol and microbial contaminants in wastewater, *Int. Biodeterior. Biodegrad.* 119 (2017) 66–77.
- [47] P. Wang, C. Qi, L. Hao, P. Wen, X. Xu, Sepiolite/Cu₂O/Cu photocatalyst: Preparation and high performance for degradation of organic dye, *J. Mater.*
Sci. Technol. 35 (2019) 285–291.

- [48] S. Meng, J. Zhang, S. Chen, S. Zhang, W. Huang, Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers, *Appl. Surf. Sci.* 476 (2019) 982–992.
- [49] K. Dong, J. He, J. Liu, F. Li, L. Yu, Y. Zhang, X. Zhou, Photocatalytic performance of Cu₂O-loaded TiO₂/rGO nanoheterojunctions obtained by UV reduction, *J. Mater. Sci.* 52 (2017) 6754–6766.
- [50] H.M. Cao, Z. Liu, L. Huang, T. Liu, S. Duo, Y. Huang, X. Zhou, Y. Chen, Construction of carboxyl position-controlled Z-scheme n-ZnO/p-Cu₂O heterojunctions with enhanced photocatalytic property for different pollutants, *Colloids Surfaces A Physicochem. Eng. Asp.* 605 (2020) 125373.
- [51] Y.H. Zhang, X.L. Cai, Y.L. Li, M.M. Liu, C.L. Ding, J.L. Chen, S.M. Fang, Facile synthesis of hollow p-Cu₂O/n-ZnO microspheres with enhanced photocatalytic H₂ production, *Chem. Phys. Lett.* 734 (2019) 136748.
- [52] J. Ke, C. Zhao, H. Zhou, X. Duan, S. Wang, Enhanced solar light driven activity of p-n heterojunction for water oxidation induced by deposition of Cu₂O on Bi₂O₃ microplates, *Sustain. Mater. Technol.* 17 (2018) e00088.
- [53] Z. Xi, C. Li, L. Zhang, M. Xing, J. Zhang, Synergistic effect of Cu₂O/TiO₂ heterostructure nanoparticle and its high H2 evolution activity, *Int. J. Hydrogen Energy.* 39 (2014) 6345–6353.
- [54] T.N.Q. Trang, L.T.N. Tu, T. V Man, M. Mathesh, N.D. Nam, V.T.H. Thu, A high-efficiency photoelectrochemistry of Cu₂O/TiO₂ nanotubes based composite for hydrogen evolution under sunlight, *Composites part B: Eng.* 174 (2019) 106969

- [55] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction Photocatalysts, *Adv. Mater.* 29 (2017) 1–20.
- [56] C. Yu, K. Wang, P. Yang, S. Yang, C. Lu, Y. Song, S. Dong, J. Sun, J. Sun, One-pot facile synthesis of Bi₂S₃/SnS₂/Bi₂O₃ ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation, *Appl. Surf. Sci.* 420 (2017) 233–242.
- [57] F. Wei, M.J. Shahid, G.S.H. Alnusairi, M. Afzal, A. Khan, M.A. El-Esawi, Z. Abbas, K. Wei, I.E. Zaheer, M. Rizwan, S. Ali, Implementation of floating treatment wetlands for textile wastewater management: A review, *Appl. Sci.* 12 (2020) 1–35.
- [58] T. Rasheed, S. Shafi, M. Bilal, T. Hussain, F. Sher, K. Rizwan, Surfactantsbased remediation as an effective approach for removal of environmental pollutants—A review, *J. Mol. Liq.* 318 (2020).
- [59] N.N. J, A.P. M, P. Vignesh, B.P. M, V. Kirubakaran, Renewable Energy Integrated Waste Water Treatment For Handloom Dying Units: An Experimental Study, *Res. J. Chem. Environ.* 24 (2020) 66–69.
- [60] M.T.A. Queiroz, C.A. Queiroz, L.B. Alvim, M.G. Sabará, M.M.D. Leão, C.C. de Amorim, Restructuring in the flow of textile wastewater treatment and its relationship with water quality in Doce River, MG, Brazil, *Gest. e Prod.* 26 (2019).
- [61] I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of soil and water contaminated with petroleum hydrocarbon: A review, *Environ. Technol. Innov.* 17 (2020) 100526.
- [62] S. Khan, A. Malik, Environmental and health effects of textile industry wastewater, in: *Environ. Deterior. Hum. Heal. Nat. Anthropog. Determ.*, *Springer Netherlands*, 2014: pp. 55–71.

- [63] N.M. Sivaram, P.M. Gopal, D. Barik, Toxic waste from textile industries, in: Energy from Toxic Org. Waste Heat Power Gener., Elsevier, 2018: pp. 43–54.
- [64] Y. Huang, B. Sheng, F. Yang, Z. Wang, Y. Tang, Q. Liu, X. Wang, J. Liu, Chlorine incorporation into dye degradation by-product (coumarin)in UV/peroxymonosulfate process: A negative case of end-of-pipe treatment, *Chemosphere*. 229 (2019) 374–382.
- [65] Y. Hu, Q. Yang, Y. Guo, J. Xu, W. Zhou, J. Li, E.R. Blatchley, Volatile organic chloramines formation during ClO₂ treatment, *J. Environ. Sci.* (*China*). 92 (2020) 256–263.
- [66] B.J. McCarthy, An Overview of the Technical Textiles Sector, in: *Handb. Tech. Text.* Second Ed., Elsevier Inc., 2016: pp. 1–20.
- [67] M.A. Hassaan, A. El Nemr, Advanced Oxidation Processes for Textile Wastewater Treatment, *Int. J. Photochem. Photobiol.* 2 (2017) 85–93.
- [68] M.A. Hassaan, A. El Nemr, Health and Environmental Impacts of Dyes: Mini Review, Am. J. Environ. Sci. Eng. 1 (2017) 64–67.
- [69] Ratna, P.B. S, Pollution due to synthetic dyes toxicity & amp; carcinogenicity studies and remediation, *Int. J. Environ. Sci.* 3 (2012) 940–955.
- [70] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO₂ based photocatalysts: A comparative overview, *RSC Adv.* 4 (2014) 37003–37026.
- [71] N. Muhd Julkapli, S. Bagheri, S. Bee Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, *Sci. World J.* 2014 (2014).

- [72] K.G. Pavithra, S.K. P., V. Jaikumar, S.R. P., Removal of colorants from wastewater: A review on sources and treatment strategies, *J. Ind. Eng. Chem.* 75 (2019) 1–19.
- [73] H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A.C.K. Yip, Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges, *Nano Res.* 12 (2019) 955–972.
- [74] O. León, A. Muñoz-Bonilla, D. Soto, D. Pérez, M. Rangel, M. Colina, M. Fernández-García, Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans, *Carbohydr. Polym.* 194 (2018) 375–383.
- [75] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci. 209 (2014) 172–184.
- [76] S. Bhattacharya, R. Shunmugam, Polymer based gels and their applications in remediation of dyes from textile effluents, J. Macromol. Sci. Part A Pure Appl. Chem. 57 (2020) 906–926.
- [77] L.L. Jiang, K. Li, D.L. Yan, M.F. Yang, L. Ma, L.Z. Xie, Toxicity Assessment of 4 Azo Dyes in Zebrafish Embryos, *Int. J. Toxicol.* 39 (2020) 115–123.
- [78] F.F. Karam, N.H.M. Saeed, A.H. Al-Yasari, L.M. Ahmed, H.M. Saleh, Kinetic study for reduced the toxicity of textile dyes (reactive yellow 14 dye and reactive green dye) using UV-A Light/ZnO system, *Egypt. J. Chem.* 63 (2020) 1–12.
- [79] J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, *Heliyon*. 6 (2020) e04691.
- [80] S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic-aerobic sequential

biological treatment: a review, Int. J. Environ. Sci. Technol. 12 (2015) 405–420.

- [81] Y.W. Berkessa, B. Yan, T. Li, V. Jegatheesan, Y. Zhang, Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics, *Chemosphere*. 238 (2020).
- [82] A.M. Herrera-González, M. Caldera-Villalobos, A.A. Peláez-Cid, Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite, *J. Environ. Manage.* 234 (2019) 237–244.
- [83] M. Nasrollahzadeh, M. Sajjadi, M. Maham, S.M. Sajadi, A.A. Barzinjy, Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium(VI), nitro compounds and organic dyes, *Mater. Res. Bull.* 102 (2018) 24–35.
- [84] J. Jaafari, H. Barzanouni, S. Mazloomi, N. Amir Abadi Farahani, K. Sharafi, P. Soleimani, G.A. Haghighat, Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology, *Int. J. Biol. Macromol.* 164 (2020) 344–355.
- [85] S. Varjani, P. Rakholiya, H.Y. Ng, S. You, J.A. Teixeira, Microbial degradation of dyes: An overview, *Bioresour. Technol.* 314 (2020) 123728.
- [86] H. Gu, X. Zhou, S. Lyu, D. Pan, M. Dong, S. Wu, T. Ding, X. Wei, I. Seok, S. Wei, Z. Guo, Magnetic nanocellulose-magnetite aerogel for easy oil adsorption, *J. Colloid Interface Sci.* 560 (2020) 849–856.
- [87] I.D. Tegladza, Q. Xu, K. Xu, G. Lv, J. Lu, Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal, *Process Saf. Environ. Prot.* 146 (2021) 169–189.

- [88] M. Ağtaş, Ö. Yılmaz, M. Dilaver, K. Alp, İ. Koyuncu, Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system, J. Clean. Prod. 256 (2020) 120359.
- [89] M.T. Veit, Í.G.V. Novais, P.T. Juchen, S.M. Palácio, G. da Cunha Gonçalves, J.C. Zanette, Automotive Wash Effluent Treatment Using Combined Process of Coagulation/Flocculation/Sedimentation–Adsorption, *Water. Air. Soil Pollut.* 231 (2020). https://doi.org/10.1007/s11270-020-04862-x.
- [90] Z. Liu, K.M. Lompe, M. Mohseni, P.R. Bérubé, S. Sauvé, B. Barbeau, Biological ion exchange as an alternative to biological activated carbon for drinking water treatment, *Water Res.* 168 (2020) 115148.
- [91] H. Peng, J. Guo, Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review, *Environ. Chem. Lett.* (2020).
- [92] Z.U. Rehman, B. Khojah, T. Leiknes, S. Alsogair, M. Alsomali, Removal of Bacteria and Organic Carbon by an Integrated Ultrafiltration—Nanofiltration Desalination Pilot Plant, *Membranes (Basel)*. 10 (2020) 223.
- [93] I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches, *Environ. Technol. Innov.* 19 (2020) 101026.
- [94] Z. Pan, F. Yu, L. Li, M. Liu, C. Song, J. Yang, H. Li, C. Wang, Y. Pan, T. Wang, Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding, *Chem. Eng. J.* 385 (2020) 123928.
- [95] H. Zhang, X. Yuan, T. Xiong, H. Wang, L. Jiang, Bioremediation of cocontaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods, *Chem. Eng. J.* 398 (2020) 125657.

- [96] A. Zulfiqar, A. Yasmin, Microbiological Aspects of Pesticide Remediation, in: *Bioremediation Biotechnol.* Vol 3, Springer International Publishing, Cham, 2020: pp. 139–171.
- [97] B.S. Goud, H.L. Cha, G. Koyyada, J.H. Kim, Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative, *Curr. Microbiol.* 77 (2020) 3240–3255.
- [98] Z. Maqbool, M. Shahid, F. Azeem, T. Shahzad, F. Mahmood, M. Rehman, T. Ahmed, M. Imran, S. Hussain, Application of a Dye-Decolorizing Pseudomonas aeruginosa Strain ZM130 for Remediation of Textile Wastewaters in Aerobic/Anaerobic Sequential Batch Bioreactor and Soil Columns, *Water. Air. Soil Pollut.* 231 (2020) 1–18.
- [99] J. Cai, A. Pan, Y. Li, Y. Xiao, Y. Zhou, C. Chen, F. Sun, X. Su, A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors, *Chemosphere*. 263 (2021) 127922.
- [100] I. Khouni, G. Louhichi, A. Ghrabi, Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: Influence of dye mass loading rate and biomass concentration, *Process Saf. Environ. Prot.* 135 (2020) 364–382.
- [101] G.S. Vishwakarma, G. Bhattacharjee, N. Gohil, V. Singh, Current status, challenges and future of bioremediation, in: *Bioremediation Pollut.*, Elsevier, 2020: pp. 403–415.
- [102] J. Wang, J. Yao, L. Wang, Q. Xue, Z. Hu, B. Pan, Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater, *Sep. Purif. Technol.* 230 (2020) 115851.
- [103] B. Ozbey Unal, Z. Bilici, N. Ugur, Z. Isik, E. Harputlu, N. Dizge, K.

Ocakoglu, Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate, *J. Water Process Eng.* 32 (2019) 100897.

- [104] A. Muniyasamy, G. Sivaporul, A. Gopinath, R. Lakshmanan, A. Altaee, A. Achary, P. Velayudhaperumal Chellam, Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process Ozonation: Experimental & partial derivative modelling approach, J. Environ. Manage. 265 (2020) 110397.
- [105] D. Ghernaout, N. Elboughdiri, Towards Enhancing Ozone Diffusion for Water Disinfection—Short Notes, OALib. 07 (2020) 1–13.
- [106] J. Dotto, M.R. Fagundes-Klen, M.T. Veit, S.M. Palácio, R. Bergamasco, Performance of different coagulants in the coagulation/flocculation process of textile wastewater, J. Clean. Prod. 208 (2019) 656–665.
- [107] H.A. Oliveira, A. Azevedo, J. Rubio, Innovative Precipitation-Flocculation Process for Treating Turbid Waters from Gualaxo do Norte River, Brazil, Mining, *Metall. Explor.* 36 (2019) 851–856.
- [108] N. Nippatla, L. Philip, Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater, *Process Saf. Environ. Prot.* 125 (2019) 143–156.
- [109] B. Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, F. Ghanbari, UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater, J. *Environ. Chem. Eng.* 8 (2020) 104244.
- [110] J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, *Chem. Eng. J.* 401 (2020) 126158.

- [111] Y. Yang, X. Li, C. Zhou, W. Xiong, G. Zeng, D. Huang, C. Zhang, W. Wang, B. Song, X. Tang, X. Li, H. Guo, Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review, *Water Res.* 184 (2020) 116200.
- [112] E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, *Water (Switzerland)*. 12 (2020) 102.
- [113] Q. Wang, Q. Gao, A.M. Al-Enizi, A. Nafady, S. Ma, Recent advances in MOF-based photocatalysis: Environmental remediation under visible light, *Inorg. Chem. Front.* 7 (2020) 300–339.
- [114] Y. Chi, S. Xu, M. Li, M. He, H. Yu, L. Li, Q. Yue, B. Gao, Effective blockage of chloride ion quenching and chlorinated by-product generation in photocatalytic wastewater treatment, *J. Hazard. Mater.* 396 (2020) 122670.
- [115] R. Tomar, A.A. Abdala, R.G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials, in: *Mater. Today Proc.*, Elsevier Ltd, 2020: pp. 967–973.
- [116] X. Li, J. Yu, C. Jiang, Principle and surface science of photocatalysis, in: *Interface Sci. Technol.*, Elsevier B.V., 2020: pp. 1–38.
- [117] A. Saravanan, P.S. Kumar, D.V.N. Vo, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, B. Gayathri, V.D. Bharathi, Photocatalysis for removal of environmental pollutants and fuel production: a review, *Environ. Chem. Lett.* 1 (2020) 3.
- [118] V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, *J. Hazard. Mater.* 175 (2010) 33–44.

- [119] M. Shaban, M.R. Abukhadra, A. Hamd, R.R. Amin, A. Abdel Khalek, Photocatalytic removal of Congo red dye using MCM-48/Ni₂O₃ composite synthesized based on silica gel extracted from rice husk ash; fabrication and application, *J. Environ. Manage.* 204 (2017) 189–199.
- [120] S. Gao, J. Zhang, W. Li, S. Jiao, Y. Nie, H. Fan, Z. Zeng, Q. Yu, J. Wang, X. Zhang, Near room temperature and large-area synthesis of ZnO/Cu₂O heterojunction for photocatalytic properties, *Chem. Phys. Lett.* 692 (2018) 14–18.
- [121] Y.L. Pang, S.F. Tee, S. Lim, A.Z. Abdullah, H.C. Ong, C.H. Wu, W.C. Chong, A.W. Mohammad, E. Mahmoudi, Enhancement of photocatalytic degradation of organic dyes using ZnO decorated on reduced graphene oxide (rGO), *Desalin. Water Treat.* 108 (2018) 311–321.
- [122] T.F. Khan, M. Muhyuddin, S.W. Husain, M. Abdul Basit, Synthesis and Characterization of ZnO-ZnS Nanoflowers for Enhanced Photocatalytic Performance : ZnS Decorated ZnO Nanoflowers, Proc. 2019 16th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2019. (2019) 60–65.
- [123] A. Thakur, A. Kumar, P. Kumar, V.H. Nguyen, D.V.N. Vo, H. Singh, T.D. Pham, N. Thi Thanh Truc, A. Sharma, D. Kumar, Novel synthesis of advanced Cu capped Cu₂O nanoparticles and their photo-catalytic activity for mineralization of aqueous dye molecules, *Mater. Lett.* 276 (2020) 128294.
- [124] Y. Yue, P. Zhang, W. Wang, Y. Cai, F. Tan, X. Wang, X. Qiao, P.K. Wong, Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu₂S decorated Cu₂O nanocomposites for efficient removal of organic pollutants, *J. Hazard. Mater.* 384 (2020) 121302.
- [125] A. Krishna Moorthy, B. Govindarajan Rathi, S.P. Shukla, K. Kumar, V. Shree Bharti, Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae, *Environ. Toxicol. Pharmacol.*

- [126] J. Nie, C. yu Li, Z. yuan Jin, W. ting Hu, J. hao Wang, T. Huang, Y. Wang, Fabrication of MCC/Cu₂O/GO composite foam with high photocatalytic degradation ability toward methylene blue, *Carbohydr. Polym.* 223 (2019) 115101.
- [127] W. Zou, L. Zhang, L. Liu, X. Wang, J. Sun, S. Wu, Y. Deng, C. Tang, F. Gao,
 L. Dong, Engineering the Cu₂O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, *Appl. Catal. B Environ.* 181 (2016) 495–503.
- [128] Y. Cheng, Y. Lin, J. Xu, J. He, T. Wang, G. Yu, D. Shao, W.H. Wang, F. Lu, L. Li, X. Du, W. Wang, H. Liu, R. Zheng, Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu₂O microspheres for degrading organic pollutants, *Appl. Surf. Sci.* 366 (2016) 120–128.
- [129] S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO₃ nanoparticles under sunlight irradiation, *Heliyon.* 6 (2020) e03663.
- [130] R.J.B. Butalid, A.P.S. Cristobal, A.D.S. Montallana, M.R. Vasquez, Stability of TiO₂-coated ZnO photocatalytic thin films for photodegradation of methylene blue, *J. Vac. Sci. Technol. B.* 38 (2020) 062205.
- [131] S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson, Recent advances on TiO₂-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies, *Catal. Rev. - Sci. Eng.* 62 (2020) 1–65.
- [132] S. Alizadeh, N. Fallah, M. Nikazar, Photocatalytic degradation of dimethyl sulphoxide by CdS/TiO₂ core/shell catalyst: A novel measurement method, Can. J. Chem. Eng. 98 (2020) 491–502.

- [133] R. Ma, J. Sun, D.H. Li, J.J. Wei, Review of synergistic photo-thermocatalysis: Mechanisms, materials and applications, *Int. J. Hydrogen Energy*. (2020).
- [134] A.M. Taddesse, M. Alemu, T. Kebede, Enhanced photocatalytic activity of pn-n heterojunctions ternary composite Cu₂O/ZnO/Ag₃PO₄ under visible light irradiation, *J. Environ. Chem. Eng.* 8 (2020) 104356.
- [135] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances, *Chem. Soc. Rev.* 43 (2014) 5234–5244.
- [136] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, M. Bayer, Giant Rydberg excitons in the copper oxide Cu₂O, *Nature*. 514 (2014) 343–347.
- [137] M. Heinemann, B. Eifert, C. Heiliger, Band structure and phase stability of the copper oxides Cu₂O, CuO, and Cu₄O₃, Phys. Rev. B Condens. Matter Mater. Phys. 87 (2013) 3–7.
- [138] H. Gao, J. Zhang, R. Wang, M. Wang, Highly efficient hydrogen production and formaldehyde degradation by Cu₂O microcrystals, *Appl. Catal. B Environ*. 172–173 (2015) 1–6.
- [139] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. Van De Krol, The Origin of Slow Carrier Transport in BiVO₄ Thin Film Photoanodes :, J. Phys. Chem. Lett. 4 (2013) 2752–2757.
- [140] H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Electrical and optical properties of TiO₂ anatase thin films, *J. Appl. Phys.* 75 (1994) 2042–2047.
- [141] A. Paracchino, J.C. Brauer, J.E. Moser, E. Thimsen, M. Graetzel, Synthesis and characterization of high-photoactivity electrodeposited Cu₂O solar

absorber by photoelectrochemistry and ultrafast spectroscopy, J. *Phys. Chem. C.* 116 (2012) 7341–7350.

- [142] M. Bagherzadeh, N. alsadat Mousavi, M. Amini, S. Gautam, J.P. Singh, K.H.
 Chae, Cu₂O nanocrystals with various morphology: Synthesis, characterization and catalytic properties, *Chinese Chem. Lett.* 28 (2017) 1125–1130.
- [143] L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, *Solid State Sci.* 11 (2009) 129–138.
- [144] X. Wang, M. Chen, Y. He, J. Zhu, Shape-controlled preparation of Cu₂O crystals and their growth mechanism, *J. Alloys Compd.* 628 (2015) 50–56.
- [145] R. Xue, X. Fan, Y. Liu, P. Li, Q. Liu, F. Liu, Research on catalytic performance and mechanism of Cu₂O in dark environment and visible light, *Chem. Phys. Lett.* 730 (2019) 45–53.
- [146] M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, C. Lin, P-n Heterojunction photoelectrodes composed of Cu₂O-loaded TiO₂ nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities, *Energy Environ. Sci.* 6 (2013) 1211–1220.
- [147] C.M. McShane, K.S. Choi, Photocurrent enhancement of n-type Cu₂O electrodes achieved by controlling dendritic branching growth, J. Am. Chem. Soc. 131 (2009) 2561–2569.
- [148] L. Liu, X. Gu, C. Sun, H. Li, Y. Deng, F. Gao, L. Dong, In situ loading of ultra-small Cu₂O particles on TiO₂ nanosheets to enhance the visible-light photoactivity, *Nanoscale*. 4 (2012) 6351–6359.

- [149] H. Li, J. Zhong, H. Zhu, Y. Yang, M. Ding, L. Luo, Y. Huo, H. Li, Hybrid Cu₂O/TiO₂ Nanocomposites with Enhanced Photocatalytic Antibacterial Activity toward Acinetobacter Baumannii, ACS Appl. Bio Mater. 2 (2019) 4892–4903.
- [150] V.X. Hien, J.L. You, K.M. Jo, S.Y. Kim, J.H. Lee, J.J. Kim, Y.W. Heo, H2Ssensing properties of Cu₂O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering, *Sensors Actuators, B Chem.* 202 (2014) 330–338.
- [151] E.G. Ponyatovskii, G.E. Abrosimova, A.S. Aronin, V.I. Kulakov, I. V. Kuleshov, V. V. Sinitsyn, Nanocrystalline Cu₂O prepared under high pressures, *Phys. Solid State*. 44 (2002) 852–856.
- [152] Q. Chen, X. Shen, H. Gao, Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons, J. Colloid Interface Sci. 312 (2007) 272–278.
- [153] I. Gurrappa, L. Binder, Electrodeposition of nanostructured coatings and their characterization - A review, *Sci. Technol. Adv. Mater.* 9 (2008).
- [154] G. Bräuer, Magnetron Sputtering, in: *Compr. Mater. Process.*, Elsevier Ltd, 2014: pp. 57–73.
- [155] W. Zhang, Z. Yin, A. Chun, J. Yoo, G. Diao, Y.S. Kim, Y. Piao, Rose rockshaped nano Cu₂O anchored graphene for high-performance supercapacitors via solvothermal route, *J. Power Sources*. 318 (2016) 66–75.
- [156] L. Nassaji Jahromi, R. Fazaeli, R. Behjatmanesh-Ardakani, M. Taghdiri, Photocatalytic mineralization of disperse red 167.1 by cubic Cu₂O nanoparticles: Experimental and theoretical approach, J. Photochem. Photobiol. A Chem. 392 (2020) 1–12.

- [157] A. Regmi, J. Bhandari, S. Bhattarai, S.K. Gautam, Synthesis, Characterizations and Antimicrobial Activity of Cuprous Oxide (Cu₂O) Nanoparticles, J. Nano Mat. 0304 (2019).
- [158] M. Mallik, S. Monia, M. Gupta, A. Ghosh, M.P. Toppo, H. Roy, Synthesis and characterization of Cu₂O nanoparticles, *J. Alloys Compd.* 829 (2020) 154623.
- [159] T. Li, W. Zeng, L. Chen, C. Wang, Facile synthesis of hollow Cu₂O polyhedron without template or etchant, *Mater. Lett.* 164 (2016) 225–228.
- [160] J. Yang, X. Wan, S. Tie, S. Lan, X. Gao, Crystal-facet-controllable synthesis of Cu₂O micron crystals by one-step, surfactant- and capping agent-free method and the formation mechanism, *Solid State Sci.* 104 (2020) 106203.
- [161] Y. Gao, Q. Wu, X. Liang, Z. Wang, Z. Zheng, P. Wang, Y. Liu, Y. Dai, M.H. Whangbo, B. Huang, Cu₂O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO₂ Electroreduction to Ethylene, *Adv. Sci.* 7 (2020) 1–7.
- [162] T. Yang, Y. Ding, C. Li, N. Yin, X. Liu, P. Li, Potentiostatic and galvanostatic two-step electrodeposition of semiconductor Cu₂O films and its photovoltaic application, *J. Alloys Compd.* 727 (2017) 14–19.
- [163] A. Hossain, R. Al-gaashani, H. Hamoudi, M.J. Al Marri, I.A. Hussein, A. Belaidi, B.A. Merzougui, F.H. Alharbi, N. Tabet, Controlled growth of Cu₂O thin films by electrodeposition approach, *Mat. Sci. Semicon. Pro.* 63 (2017) 203–211.
- [164] M. Huang, T. Wang, W. Chang, J. Lin, C. Wu, I. Chen, K. Peng, S. Lee, Applied Surface Science Temperature dependence on p-Cu₂O thin film electrochemically deposited onto copper substrate, *Appl. Surf. Sci.* 301 (2014) 369–377.

- [165] S. Shyamal, A. Maity, A. Kumar, C. Bhattacharya, Development of Cu₂O thin films under the in fl uence of electrochemical impedance : Applications in improved photoelectrochemical water reduction, *Electrochemica Acta*. 308 (2019) 384–391.
- [166] A.A. Hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar, K. Bouabid, Structural and optical properties of electrodeposited Cu₂O thin films, *Mater. Today Proc.* 22 (2020) 89–92.
- [167] A. Venkatesan, E.S. Kannan, Highly ordered copper oxide (Cu₂O) nanopillar arrays using template assisted electrodeposition technique and their temperature dependent electrical characteristics, *Curr. Appl. Phys.* 17 (2017) 806–812.
- [168] Y. Qu, P. Zhang, J. Liu, L. Zhao, X. Song, L. Gao, Facile fabrication and hydrophobic properties of Cu₂O nanowire films on Cu substrates, *Mater. Chem. Phys.* 226 (2019) 88–94.
- [169] B. Wang, Y. Xie, T. Yang, L. Wang, L. Wang, D. Jin, Synthesis and photocatalytic properties of flexible Cu₂O thin film, *Surf. Eng.* 36 (2020) 199– 205.
- [170] S. Dolai, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cuprous oxide (Cu₂O) thin films prepared by reactive d.c. sputtering technique, *Vacuum*. 141 (2017) 296–306.
- [171] G. Lai, Y. Wu, L. Lin, Y. Qu, F. Lai, Low resistivity of N-doped Cu₂O thin films deposited by rf-magnetron sputtering, *Appl. Surf. Sci.* 285 (2013) 755– 758.
- [172] J. Sun, R. Pode, K. Bae, Stoichiometric p-type Cu₂O thin fi lms prepared by reactive sputtering with facing target, *Thin Solid Films*. 623 (2017) 121–126.

- [173] Y. Wang, J. Ghanbaja, F. Soldera, P. Boulet, D. Horwat, F. Mu, Controlling the preferred orientation in sputter-deposited Cu₂O thin films : Influence of the initial growth stage and homoepitaxial growth mechanism, *Acta Mat.* 76 (2014) 207–212.
- [174] S.S. Guru, B. Govardhanan, P. Aabel, M. Ashok, M.C.S. Kumar, Effect of oxygen partial pressure on the tuning of copper oxide thin fi lms by reactive sputtering for solar light driven photocatalysis, *Sol. Energy.* 187 (2019) 368– 378.
- [175] M.A.B. Ávila, R.C. Pérez, J.M. Marín, G.T. Delgado, Tailoring of electrical properties of Cu₂O thin films fabricated by oxygen injection after argon plasma reduction of CuO films, *J. Mater. Sci. Mater. Electron.* (2020).
- [176] P. Sawicka-Chudy, G. Wisz, M. Sibinski, M. Cholewa, P. Potera, L. Glowa, R. Pawelek, Optical and structural properties of Cu₂O thin film as active layer in solar cells prepared by dc reactive magnetron sputtering, *Mat. Sci.* 64 (2019) 243–250.
- [177] A.A. Ejigu, Growth of Cu₂O Nanopyramids by Ion Beam Sputter Deposition, Adv. Cond. Mat. Phy. 2019 (2019).
- [178] Y. Zhu, J. Ma, L. Zhou, Y. Liu, M. Jiang, Cu₂O porous nanostructured films fabricated by positive bias sputtering deposition, *Nanotech.* 30(2019).
- [179] H. Dizajghorbani Aghdam, S. Moemen Bellah, R. Malekfar, Surfaceenhanced Raman scattering studies of Cu/Cu₂O Core-shell NPs obtained by laser ablation, *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* 223 (2019) 117379.
- [180] E. Luévano-Hipólito, L.M. Torres-Martínez, D. Sánchez-Martínez, M.R. Alfaro Cruz, Cu₂O precipitation-assisted with ultrasound and microwave radiation for photocatalytic hydrogen production, *Int. J. Hydrogen Energy.* 42

(2017) 12997–13010.

- [181] X.L. Luo, M.J. Wang, Y. Chen, Morphological evolution of Cu₂O based on a solvent effect in a microwave-assisted system, *Solid State Sci.* 50 (2015) 101–106.
- [182] M.A. Badillo-Ávila, R. Castanedo-Pérez, G. Torres-Delgado, J. Márquez-Marín, O. Zelaya-Ángel, Cu₂O thin films obtained from sol-gel cuo films using a simple argon/dry-air microwave plasma, *Mater. Sci. Semicond. Process.* 74 (2018) 203–209.
- [183] L. Veiga, O. Garate, P. Lloret, C. Moina, G. Ybarra, U.T. Nanomateriales, I. Super, One-Pot Ultrafast Microwave-Assisted Synthesis of Copper and Copper Oxide Nanoparticles, 18 (2019) 1–5. https://doi.org/10.1142/S0219581X18500345.
- [184] K. Kaviyarasan, S. Anandan, R. Viswanathan, Ultrasonics Sonochemistry Sonochemical synthesis of Cu₂O nanocubes for enhanced chemiluminescence applications, *Ultrason. - Sonochemistry.* 29 (2016) 388–393.
- [185] R. Chen, Z. Wang, Q. Zhou, J. Lu, M. Zheng, A Template-Free Microwave Synthesis of One-Dimensional Cu₂O Nanowires with Desired Photocatalytic Property, *Materials (Basel)* (2018) 1–11.
- [186] M.A. Bhosale, B.M. Bhanage, A simple approach for sonochemical synthesis of Cu₂O nanoparticles with high catalytic properties, *Adv. Powder Technol.* 27 (2016) 238–244.
- [187] L. Sun, Q. Deng, Y. Li, L. Deng, Y. Wang, X. Ren, P. Zhang, Solvothermal synthesis of ternary Cu₂O-CuO-RGO composites as anode materials for high performance lithium-ion batteries, *Electrochim. Acta.* 222 (2016) 1650–1659.

- [188] M. Wei, J. Huo, Preparation of Cu₂O nanorods by a simple solvothermal method, *Mater. Chem. Phys.* 121 (2010) 291–294.
- [189] F. Zhang, G. Dong, M. Wang, Y. Zeng, C. Wang, Efficient removal of methyl orange using Cu₂O as a dual function catalyst, *Appl. Surf. Sci.* 444 (2018) 559–568.
- [190] M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu₂O/TiO₂ heterostructures for CO₂ reduction through a direct Z-scheme: Protecting Cu₂O from photocorrosion, *Appl. Catal. B Environ.* 217 (2017) 485–493.
- [191] Y. Xu, X. Jiao, D. Chen, PEG-Assisted Preparation of Single-Crystalline Cu₂O Hollow Nanocubes, J. Phys. Chem. C. 112 (2008) 16769–16773.
- [192] M. Wei, N. Lun, X. Ma, S. Wen, A simple solvothermal reduction route to copper and cuprous oxide, *Mater. Lett.* 61 (2007) 2147–2150.
- [193] G. Demazeau, Solvothermal reactions: an original route for the synthesis of novel materials, J. Mater. Sci. 7 (2008) 2104–2114.
- [194] K. Nakashima, Y. Toshima, Y. Kobayashi, M. Kakihana, Effects of raw materials on NaNbO₃ nanocube synthesis via the solvothermal method, J. Asian Ceram. Soc. 7 (2019) 36–41.
- [195] J. Khatter, R.P. Chauhan, Effect of temperature on properties of cadmium sulfide nanostructures synthesized by solvothermal method, J. Mater. Sci. Mater. Electron. 31 (2020) 2676–2685.
- [196] M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts, J. Saudi Chem. Soc. 19 (2015) 462–464.
- [197] X. Lu, M. Li, S. Hoang, S.L. Suib, P.X. Gao, Solvent effects on the

heterogeneous growth of TiO_2 nanostructure arrays by solvothermal synthesis, *Catal. Today.* (2020).

- [198] Y. Wang, Z.G. Bajestani, J. Lhoste, S. Auguste, A. Hémon-Ribaud, M. Body, C. Legein, V. Maisonneuve, A. Guiet, S. Brunet, The effects of various parameters of the microwaveassisted solvothermal synthesis on the specific surface area and catalytic performance of MgF₂ nanoparticles, *Materials* (*Basel*). 13 (2020).
- [199] H.G. Zhang, Q. Zhu, Y. Wang, C.Y. Zhang, L. Tao, Low-cost synthesis of hollow Cu₂O octahedra with more than one shell, *Mater. Lett.* 61 (2007) 4508–4511.
- [200] C.-M. Wang, C.-Y. Wang, Photocorrosion of plasmonic enhanced Cu_xO photocatalyst, J. Nanophotonics. 8 (2014) 084095–1.
- [201] W.C.J. Ho, Q. Tay, H. Qi, Z. Huang, J. Li, Z. Chen, Photocatalytic and adsorption performances of faceted cuprous oxide (Cu₂O) particles for the removal of methyl orange (MO) from aqueous media, *Molecules*. 22 (2017).
- [202] T. Kita, Y. Harada, S. Asahi, Fundamentals of Semiconductors, in: Green Energy Technol., Springer Verlag, 2019: pp. 157–202.
- [203] L. Yang, J. Liu, L. Yang, M. Zhang, H. Zhu, F. Wang, J. Yin, Co₃O₄ imbedded g-C₃N₄ heterojunction photocatalysts for visible-light-driven hydrogen evolution, *Renew. Energy.* 145 (2020) 691–698.
- [204] A.G. Tamirat, J. Rick, A.A. Dubale, W.N. Su, B.J. Hwang, Using hematite for photoelectrochemical water splitting: A review of current progress and challenges, *Nanoscale Horizons*. 1 (2016) 243–267.
- [205] J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A Review of

Direct Z-Scheme Photocatalysts, Small Methods. 1 (2017) 1–21.

- [206] A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors, *J. Photochem.* 10 (1979) 59–75.
- [207] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Zscheme in CdS-Au-TiO₂ three-component nanojunction system, *Nat. Mater.* 5 (2006) 782–786.
- [208] J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C₃N₄-TiO₂ photocatalysts for the decomposition of formaldehyde in air, *Phys. Chem. Chem. Phys.* 15 (2013) 16883–16890.
- [209] M. Xu, J. Yang, C. Sun, Y. Cui, L. Liu, H. Zhao, B. Liang, Facile assembly of BiVO₄/protonated g-C₃N₄/AgI with a novel dual Z-scheme mechanism for visible-light photocatalytic degradation of Rhodamine B, *J. Mater. Sci.* 56 (2021) 1328–1346.
- [210] H. Shen, G. Liu, Y. Zhao, D. Li, J. Jiang, J. Ding, B. Mao, H. Shen, K.S. Kim,
 W. Shi, Artificial all-solid-state system by RGO bridged Cu₂O and Bi₂WO₆ for Z-scheme H₂ production and tetracycline degradation, *Fuel.* 259 (2020).
- [211] X. Xu, L. Meng, Y. Dai, M. Zhang, C. Sun, S. Yang, H. He, S. Wang, H. Li, Bi spheres SPR-coupled Cu₂O/Bi₂MoO₆ with hollow spheres forming Zscheme Cu₂O/Bi/Bi₂MoO₆ heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II), *J. Hazard. Mater.* 381 (2020) 120953.
- [212] L.I. Ibarra-Rodríguez, A.M. Huerta-Flores, L.M. Torres-Martínez, Development of Na₂Ti₆O₁₃/CuO/Cu₂O heterostructures for solar photocatalytic production of low-carbon fuels, *Mater. Res. Bull.* 122 (2020) 110679.

- [213] H. Yoo, S. Kahng, J. Hyeun Kim, Z-scheme assisted ZnO/Cu₂O-CuO photocatalysts to increase photoactive electrons in hydrogen evolution by water splitting, *Sol. Energy Mater. Sol. Cells.* 204 (2020) 110211.
- [214] F. Zhang, Y.H. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Boosting the activity and stability of Ag-Cu₂O/ZnO nanorods for photocatalytic CO₂ reduction, *Appl. Catal. B Environ.* 268 (2020) 118380.
- [215] G. Chen, H. Wang, X. Wei, Y. Wu, W. Gu, L. Hu, D. Xu, C. Zhu, Efficient Z-Scheme heterostructure based on TiO₂/Ti₃C₂T_x/Cu₂O to boost photoelectrochemical response for ultrasensitive biosensing, *Sensors Actuators, B Chem.* 312 (2020).
- [216] X. Tang, X. Guo, Z. Chen, Y. Liu, W. Zhang, Y. Wang, Y. Zheng, M. Zhang, Z. Peng, R. Li, Y. Zhao, Facile preparation of Cu₂O nanoparticles/Bi₂WO₆/rGO hybrid with enhanced photoelectrochemical performance, *Appl. Surf. Sci.* 510 (2020) 145447.
- [217] H. Gong, Y. Zhang, Y. Cao, M. Luo, Z. Feng, W. Yang, K. Liu, H. Cao, H. Yan, Pt@Cu₂O/WO₃ composite photocatalyst for enhanced photocatalytic water oxidation performance, *Appl. Catal. B Environ.* 237 (2018) 309–317.
- [218] C. Janáky, N.R. De Tacconi, W. Chanmanee, K. Rajeshwar, Bringing conjugated polymers and oxide nanoarchitectures into intimate contact: Lightinduced electrodeposition of polypyrrole and polyaniline on nanoporous WO₃ or TiO₂ nanotube array, *J. Phys. Chem. C.* 116 (2012) 19145–19155.
- [219] Y. Xu, Y. Ma, X. Ji, S. Huang, J. Xia, M. Xie, J. Yan, H. Xu, H. Li, Conjugated conducting polymers PANI decorated Bi₁₂O₁₇Cl₂ photocatalyst with extended light response range and enhanced photoactivity, *Appl. Surf. Sci.* 464 (2019) 552–561.
- [220] W.J. Yu, Y. Cheng, T. Zou, Y. Liu, K. Wu, N. Peng, Preparation of BiPO₄-

Polyaniline Hybrid and its Enhanced Photocatalytic Performance, *Nano*. 13 (2018) 1–10.

- [221] C. Yan, Z. Zhang, W. Wang, T. Ju, H. She, Q. Wang, Synthesis and characterization of polyaniline-modified BiOI: a visible-light-response photocatalyst, J. Mater. Sci. Mater. Electron. 29 (2018) 18343–18351.
- [222] D. V. Šojić Merkulov, V.N. Despotović, N.D. Banić, S.J. Armaković, N.L. Finčur, M.J. Lazarević, D.D. Četojević-Simin, D.Z. Orčić, M.B. Radoičić, Z. V. Šaponjić, M.I. Čomor, B.F. Abramović, Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO₂/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment, *Environ. Pollut.* 239 (2018) 457–465.
- [223] F. Chen, W. An, Y. Li, Y. Liang, W. Cui, Fabricating 3D porous PANI/TiO₂ graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA, *Appl. Surf. Sci.* 427 (2018) 123–132.
- [224] M. V. Carević, N.D. Abazović, M.N. Mitrić, G. Ćirić-Marjanović, M.D. Mojović, S.P. Ahrenkiel, M.I. Čomor, Properties of Zirconia/Polyaniline hybrid nanocomposites and their application as photocatalysts for degradation of model pollutants, *Mater. Chem. Phys.* 205 (2018) 130–137.
- [225] S. Bhadra, D. Khastgir, N.K. Singha, J. Hee, Progress in Polymer Science Progress in preparation, processing and applications of polyaniline, 34 (2009) 783–810.
- [226] S. Bhadra, N.K. Singha, S. Chattopadhyay, D. Khastgir, Effect of Different Reaction Parameters on the Conductivity and Dielectric Properties of Polyaniline Synthesized Electrochemically and Modeling of Conductivity Against Reaction Parameters Through Regression Analysis, (2007) 2046– 2059.

- [227] B. Massoumi, R. Mohammadi, Synthesis of nanostructured polyaniline via chemical oxidative polymerization: Investigation of morphology and conductivity of the prepared polymers, *Polym. Sci. - Ser. B.* 55 (2013) 593– 600.
- [228] C. Dhand, M. Das, M. Datta, B.D. Malhotra, Biosensors and Bioelectronics Recent advances in polyaniline based biosensors, *Biosens. Bioelectron.* 26 (2011) 2811–2821.
- [229] X. Wang, G. Chen, J. Zhang, Synthesis and characterization of novel Cu 2 O/PANI composite photocatalysts with enhanced photocatalytic activity and stability, *Catal. Commun.* 31 (2013) 57–61.
- [230] Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application, *Polym. Sci. Ser. C.* 56 (2014) 144–153.
- [231] R. Zhang, Q. Han, Y. Li, T. Zhang, Y. Liu, K. Zeng, C. Zhao, Solvothermal synthesis of a peony flower-like dual Z-scheme PANI/BiOBr/ZnFe₂O₄ photocatalyst with excellent photocatalytic redox activity for organic pollutant under visible-light, *Sep. Purif. Technol.* 234 (2020).
- [232] S. Bhadra, N.K. Singha, D. Khastgir, Electrochemical Synthesis of Polyaniline and Its Comparison with Chemically Synthesized Polyaniline Sambhu, J. *Appl. Polym. Sci.* 104 (2007) 1900–1904.
- [233] C. Ramesh, K. Gopalakrishnan, M.H. Prasad, V. Ragunathan, Synthesis and characterization of green Cu₂O/PANI nanocomposites, (2018) 79–84.
- [234] F. Zeng, Z. Qin, B. Liang, T. Li, N. Liu, M. Zhu, Polyaniline nanostructures tuning with oxidants in interfacial polymerization system, *Prog. Nat. Sci. Mater. Int.* 25 (2015) 512–519.

- [235] M.J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A.S. Susha, A.L. Rogach, F. Jäckel, J. Feldmann, Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation, *Appl. Phys. Lett.* 100 (2012) 2–5.
- [236] Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, *Catalysts*. 9 (2019).
- [237] Y.C. Pu, H.Y. Chou, W.S. Kuo, K.H. Wei, Y.J. Hsu, Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu₂O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis, *Appl. Catal. B Environ.* 204 (2017) 21–32.
- [238] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C₃N₄ under visible light irradiation, *Langmuir*. 26 (2010) 3894–3901.
- [239] R. Cao, H. Yang, X. Deng, S. Zhang, X. Xu, In-situ synthesis of amorphous silver silicate/carbonate composites for selective visible-light photocatalytic decomposition, *Sci. Rep.* 7 (2017) 1–12.
- [240] P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, Y. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, *J. Mater. Chem. A.* 3 (2015) 24237–24244.
- [241] Y. Tian, B. Chang, Z. Yang, B. Zhou, F. Xi, X. Dong, Graphitic carbon nitride-BiVO₄ heterojunctions: Simple hydrothermal synthesis and high photocatalytic performances, *RSC Adv.* 4 (2014) 4187–4193.
- [242] M.H. Habibi, A. Hassanzadeh, S. Mahdavi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO₂ suspensions, J. Photochem. Photobiol. A Chem. 172 (2005) 89–

- [243] N. Yahya, F. Aziz, J. Jaafar, W.J. Lau, N. Yusof, W.N.W. Salleh, A.F. Ismail,
 M. Aziz, Impacts of Annealing Temperature on Morphological, Optical and
 Photocatalytic Properties of Gel-Combustion-Derived LaFeO₃ Nanoparticles,
 Arab. J. Sci. Eng. (2020).
- [244] C.H. Cho, D.K. Kim, D.H. Kim, Photocatalytic Activity of Monodispersed Spherical TiO₂ Particles with Different Crystallization Routes, 45 (2003) 1138–1145.
- [245] C. Ma, Z. Yang, W. Wang, M. Zhang, X. Hao, S. Zhu, S. Chen, Fabrication of Ag-Cu₂O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity, *J. Mater. Chem. C.* 8 (2020) 2888–2898.
- [246] A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J.P. Jolivet, Synthesis of brookite TiO₂ nanoparticles by thermolysis of TiCl₄ in strongly acidic aqueous media, *J. Mater. Chem.* 11 (2001) 1116–1121.
- [247] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO₂ photocatalyst, 2013.
- [248] M. Hezam, S.M.H. Qaid, I.M. Bedja, F. Alharbi, M.K. Nazeeruddin, A. Aldwayyan, Synthesis of pure brookite nanorods in a nonaqueous growth environment, *Crystals*. 9 (2019) 1–8.
- [249] T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Brookite versus anatase TiO₂ photocatalysts: Phase transformations and photocatalytic activities, *Photochem. Photobiol. Sci.* 12 (2013) 602–609.
- [250] P.M. Perillo, M.N. Atia, D.F. Rodríguez, Studies on the growth control of ZnO nanostructures synthesized by the chemical method, *Rev. Mater.* 23

(2018).

- [251] M.H. Jung, M.J. Chu, Synthesis of hexagonal ZnO nanodrums, nanosheets and nanowires by the ionic effect during the growth of hexagonal ZnO crystals, J. *Mater. Chem. C.* 2 (2014) 6675–6682.
- [252] S. Pal, S. Maiti, U. Maiti, Low temperature solution processed ZnO / CuO heterojunction photocatalyst for visible light induced photo-degradation of organic pollutants †, (2015).
- [253] K.P. Sapkota, I. Lee, M.A. Hanif, M.A. Islam, J. Akter, J.R. Hahn, Enhanced visible-light photocatalysis of nanocomposites of copper oxide and singlewalled carbon nanotubes for the degradation of methylene blue, *Catalysts*. 10 (2020).
- [254] W. Lv, L. Li, Q. Meng, X. Zhang, Molybdenum-doped CuO nanosheets on Ni foams with extraordinary specific capacitance for advanced hybrid supercapacitors, J. Mater. Sci. 55 (2020) 2492–2502.
- [255] A.A. Dubale, C.J. Pan, A.G. Tamirat, H.M. Chen, W.N. Su, C.H. Chen, J. Rick, D.W. Ayele, B.A. Aragaw, J.F. Lee, Y.W. Yang, B.J. Hwang, Heterostructured Cu₂O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction, *J. Mater. Chem. A.* 3 (2015) 12482–12499.
- [256] K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, Single step fabrication of CuO-MnO₂-TiO₂ composite thin films with improved photoelectrochemical response, *RSC Adv.* 7 (2017) 15885–15893.
- [257] R.X. Chen, S.L. Zhu, J. Mao, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, Synthesis of CuO/Co₃O₄ coaxial heterostructures for efficient and recycling photodegradation, *Int. J. Photoenergy*. 2015 (2015).

- [258] G. Li, J. Huang, J. Chen, Z. Deng, Q. Huang, Z. Liu, W. Guo, R. Cao, Highly Active Photocatalyst of Cu₂O/TiO₂ Octahedron for Hydrogen Generation, (2019).
- [259] X.S. Wang, Y.D. Zhang, Q.C. Wang, B. Dong, Y.J. Wang, W. Feng, Photocatalytic activity of Cu₂O/ZnO nanocomposite for the decomposition of methyl orange under visible light irradiation, *Sci. Eng. Compos. Mater.* 26 (2019) 104–113.
- [260] S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrodeposition of polyhedral Cu₂O on TiO₂ nanotube arrays for enhancing visible light photocatalytic performance, *Electrochem. Commun.* 13 (2011) 861–864.
- [261] K. Kaviyarasan, V. Vinoth, T. Sivasankar, A.M. Asiri, J.J. Wu, S. Anandan, Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu₂O@TiO₂ heterojunction nanocomposites, *Ultrason. Sonochem.* 51 (2019) 223–229.
- [262] J. Zhang, W. Liu, X. Wang, X. Wang, B. Hu, H. Liu, Enhanced decoloration activity by Cu₂O@TiO₂ nanobelts heterostructures via a strong adsorptionweak photodegradation process, *Appl. Surf. Sci.* 282 (2013) 84–91.
- [263] N. Salvaggio, Basic Photographic Materials and Processes, *Routledge*, 2013.
- [264] M. Muthukumaran, S. Niranjani, K.S. Barnabas, V. Narayanan, T. Raju, K. Venkatachalam, Green Route Synthesis and Characterization of Cuprous Oxide (Cu₂O): Visible light Irradiation photocatalytic activity of MB Dye, *Mater. Today Proc.* 14 (2019) 563–568.
- [265] A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and raman characterization of TiO₂ nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, *Appl. Sci.* 7 (2017) 1–9.

- [266] G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective, *Phys. Status Solidi Curr. Top. Solid State Phys.* 3 (2006) 3577–3581.
- [267] M.S. Hutson, M.S. Braiman, Direct Phase Correction of Differential FT-IR Spectra, Applied spec. 52 (1998) 974–984.
- [268] Y. Zeng, T. Wang, S. Zhang, Y. Wang, Q. Zhong, Sol gel synthesis of CuO-TiO₂ catalyst with high dispersion CuO species for selective catalytic oxidation of NO Applied Surface Science Sol – gel synthesis of CuO-TiO₂ catalyst with high dispersion CuO species for selective catalytic oxidation of NO, *Appl. Surf. Sci.* 411 (2017) 227–234.
- [269] T.H. Gfroerer, Photoluminescence in Analysis of Surfaces and Interfaces, Encycl. Anal. Chem. (2006) 1–23.
- [270] B. Valeur, M.N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J. Chem. Educ. 88 (2011) 731–738.
- [271] M. Gusain, R. Nagarajan, S.K. Singh, Highly ordered polyaniline: synthesis, characterization and electrochemical properties, *Polym. Bull.* (2019).
- [272] M.R. Saeb, P. Zarrintaj, P. Khandelwal, N.P.S. Chauhan, Synthetic route of polyaniline (I): *Conventional oxidative polymerization*, Elsevier Inc., 2019.
- [273] Z. Sun, Y. Geng, L. Ji, X. Wang, X. Jing, F. Wang, Catalytic oxidization polymerization of aniline in an H₂O₂-Fe²⁺ system, J. Appl. Polym. Sci. 72 (1999) 1077–1084.
- [274] M.R. Abhilash, G. Akshatha, S. Srikantaswamy, Photocatalytic dye degradation and biological activities of the Fe₂O₃/Cu₂O nanocomposite, *RSC*

- [275] T. Li, Z. Qin, B. Liang, F. Tian, J. Zhao, N. Liu, M. Zhu, Morphologydependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media, *Electrochim. Acta.* 177 (2015) 343–351.
- [276] U.S. Waware, R. Arukula, A.M.S. Hamouda, P. Kasak, Electrochemical and X-ray photoelectron spectroscopic investigations of conductive polymers, *Ionics (Kiel)*. 26 (2020) 831–838.
- [277] H. Huang, S.C. Abbas, Q. Deng, Y. Ni, S. Cao, X. Ma, An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers, J. Power Sources. 498 (2021) 229886.
- [278] R. Hatada, S. Flege, W. Ensinger, S. Hesse, S. Tanabe, Y. Nishimura, K. Baba, Preparation of aniline-based nitrogen-containing diamond-like carbon films with low electrical resistivity, *Coatings*. 10 (2020).
- [279] S. Liu, D. Liu, Z. Pan, The effect of polyaniline (PANI) coating via dielectricbarrier discharge (DBD) plasma on conductivity and air drag of polyethylene terephthalate (PET) yarn, *Polymers (Basel)*. 10 (2018).
- [280] B. Mu, J. Tang, L. Zhang, A. Wang, Facile fabrication of superparamagnetic graphene/polyaniline/Fe₃O₄ nanocomposites for fast magnetic separation and efficient removal of dye, *Sci. Rep.* 7 (2017) 1–12.
- [281] L. Gu, J. Wang, R. Qi, X. Wang, P. Xu, X. Han, A novel incorporating style of polyaniline/TiO₂ composites as effective visible photocatalysts, *J. Mol. Catal. A Chem.* 357 (2012) 19–25.
- [282] J.L. Solomon, R.J. Madix, J. Stöhr, Orientation and absolute coverage of

benzene, aniline, and phenol on Ag(110) determined by NEXAFS and XPS, *Surf. Sci.* 255 (1991) 12–30.

- [283] M. Kooti, L. Matouri, Fabrication of nanosized cuprous oxide using fehling's solution, *Sci. Iran.* 17 (2010) 73–78.
- [284] Y. Zou, X. Zhang, J. Liang, C. Xiang, H. Chu, H. Zhang, F. Xu, L. Sun, Encapsulation of hollow Cu₂O nanocubes with Co₃O₄ on porous carbon for energy-storage devices, *J. Mater. Sci. Technol.* 55 (2020) 182–189.
- [285] V. K T, S.L. Belagali, Characterization of Polyaniline for Optical and Electrical Properties, *IOSR J. Appl. Chem.* 08 (2015) 53–56.
- [286] J. Liu, C. Yang, Y. Shang, P. Zhang, J. Liu, J. Zheng, Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide, *Microchim. Acta.* 185 (2018).
- [287] G.Z. Yuan, C.F. Hsia, Z.W. Lin, C. Chiang, Y.W. Chiang, M.H. Huang, Highly Facet-Dependent Photocatalytic Properties of Cu₂O Crystals Established through the Formation of Au-Decorated Cu₂O Heterostructures, *Chem. - A Eur. J.* 22 (2016) 12548–12556.
- [288] A. Abdolhoseinzadeh, S. Sheibani, Enhanced photocatalytic performance of Cu₂O nano-photocatalyst powder modified by ball milling and ZnO, Adv. Powder Technol. 31 (2020) 40–50.
- [289] X. Zhang, Y. Zhang, D. Wang, F. Qu, Investigation of adsorption behavior of Cu₂O submicro-octahedra towards congo red, *J. Nanomater.* 2014 (2014).
- [290] T. Minoru, The Infrared Absorption Spectrum of Cuprous Oxide, Bull. Chem. Soc. Japan. 37 (1964) 766–767. 9.

- [291] A. Norouzi, A. Nezamzadeh-Ejhieh, R. Fazaeli, A Copper(I) oxide-zinc oxide nano-catalyst hybrid: Brief characterization and study of the kinetic of its photodegradation and photomineralization activities toward methylene blue, *Mater. Sci. Semicond. Process.* 122 (2021).
- [292] M. Trchová, Z. Morávková, M. Bláha, J. Stejskal, Raman spectroscopy of polyaniline and oligoaniline thin films, *Electrochim. Acta.* 122 (2014) 28–38.
- [293] Z. Morávková, P. Bober, Writing in a polyaniline film with laser beam and stability of the record: A Raman spectroscopy study, *Int. J. Polym. Sci.* 2018 (2018).
- [294] S. Sharma, S. Singh, N. Khare, Synthesis of polyaniline/CdS (nanoflowers and nanorods) nanocomposites: a comparative study towards enhanced photocatalytic activity for degradation of organic dye, *Colloid Polym. Sci.* 294 (2016) 917–926.
- [295] P.P. Pednekar, S.C. Godiyal, K.R. Jadhav, V.J. Kadam, Mesoporous silica nanoparticles: A promising multifunctional drug delivery system, in: *Nanostructures Cancer Ther.*, Elsevier Inc., 2017: pp. 593–621.
- [296] S.A. Hashemifard, T. Matsuura, A.F. Ismail, M. Rezaei, A novel approach to predict the skin layer porosity of porous asymmetric membranes via gas permeation test, *Chem. Eng. Res. Des.* (2020).
- [297] C. Scherdel, G. Reichenauer, M. Wiener, Microporous and Mesoporous Materials Relationship between pore volumes and surface areas derived from the evaluation of N 2 -sorption data by DR-, BET- and t-plot, *Microporous Mesoporous Mater*. 132 (2010) 572–575.
- [298] D. Shafaei, S. Yang, L. Berlouis, J. Minto, Multiscale pore structure analysis of nano titanium dioxide cement mortar composite, *Mater. Today Commun.* 22 (2020) 100779.

- [299] C.Y. Yang, M. Reghu, A.J. Heeger, Y. Cao, Thermal stability of polyaniline networks in conducting polymer blends, *Syn. Met.* 79 (1996) 27–32.
- [300] N. Chandrakanthi, M.A. Careem, Thermal stability of polyaniline, *Polym. Bull.* 44 (2000) 101–108.
- [301] A. Kumar, A. Kumar, H. Mudila, K. Awasthi, V. Kumar, Synthesis and thermal analysis of polyaniline (PANI), *J. Phys. Conf. Ser.* 1531 (2020).
- [302] X. Wang, L. Zhang, Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system, *RSC Adv.* 8 (2018) 40632–40638.
- [303] K. Krumova, G. Cosa, J. Aubry, J.R. Kanofsky, Overview of Reactive Oxygen Species Katerina, Singlet Oxyg. Appl. Biosci. Nanosci. (2016) 1–4.
- [304] C.C. Winterbourn, Biological chemistry of superoxide radicals, *ChemTexts*. 6 (2020) 1–13.
- [305] N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, J. Iqbal, S. Arshad, M. Junaid, H.M. Khan, Synergistic effects of H₂O₂ and S₂O₈₂- in the gamma radiation induced degradation of congo-red dye: Kinetics and toxicities evaluation, *Sep. Purif. Technol.* 233 (2020) 115966.
- [306] D. Selva Raj, R. Jaisy Prabha, R. Leena, Analysis of bacterial degradation of azo dye congo red using HPLC, J. Ind. Pollut. Control. 28 (2012) 57–62.
- [307] S. Chakraborty, B. Basak, S. Dutta, B. Bhunia, A. Dey, Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6, *Bioresour. Technol.* 147 (2013) 662–666.
- [308] R.G. Saratale, S.S. Gandhi, M. V. Purankar, M.B. Kurade, S.P. Govindwar, S.E. Oh, G.D. Saratale, Decolorization and detoxification of sulfonated azo

dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS, *J. Biosci. Bioeng.* 115 (2013) 658–667.

- [309] H. Ma, M. Wang, R. Yang, W. Wang, J. Zhao, Z. Shen, S. Yao, Radiation degradation of Congo Red in aqueous solution, *Chemosphere*. 68 (2007) 1098–1104.
- [310] C. Reichardt, Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes, *Green Chem.* 7 (2005) 339–351.
- [311] Q. Xu, J. Sun, Y. you Hu, J. Chen, W. jun Li, Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization, *Bioresour*. *Technol.* 142 (2013) 101–108.
- [312] N. Wang, Y. Chu, F. Wu, Z. Zhao, X. Xu, Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches, *Int. Biodeterior. Biodegrad.* 117 (2017) 236–244.
- [313] S. Satheesh Babu, C. Mohandass, A.S. Vijayaraj, M.A. Dhale, Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)- A microcosm approach, *Ecotoxicol. Environ. Saf.* 114 (2015) 52–60.
- [314] N. Asses, L. Ayed, N. Hkiri, M. Hamdi, Congo Red Decolorization and Detoxification by Aspergillus niger: Removal Mechanisms and Dye Degradation Pathway Nedra, *Biomed Res. Int.* 2018 (2018).
- [315] J. Lalevée, J.P. Fouassier, *Dyes and chomophores in polymer science*, John and Wiley. 2015.
- [316] S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide

nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting, *Int. J. Hydrogen Energy.* 41 (2016) 21088–21098.

- [317] S. Singh, N. Khare, CdS/ZnO core/shell nano-heterostructure coupled with reduced graphene oxide towards enhanced photocatalytic activity and photostability, *Chem. Phys. Lett.* 634 (2015) 140–145.
- [318] Y.L. Pang, A.Z. Abdullah, Current status of textile industry wastewater management and research progress in malaysia: A review, *Clean - Soil, Air, Water.* 41 (2013) 751–764.

LIST OF PUBLICATIONS AND CONFERENCE PROCEEDINGS

List of publications:

- Abdussamad Mukhtar Mohammed, Safia Syazana Mohtar, Farhana Aziz, Shakhawan Ahmad Mhamad, Madzlan Aziz, *Review of various strategies to boost the photocatalytic activity of the cuprous oxide-based photocatalyst*, JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 9(2), 105138, 2021, Q1 (IF 4.300) – Published
- 2. Abdussamad Mukhtar Mohammed, Safia Syazana Mohtar, Farhana Aziz, Madzlan Aziz, Anwar Ul-Hamid, *Cu₂O/ZnO-PANI ternary nanocomposite as an efficient photocatalyst for the photodegradation of Congo Red dye*, JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 9(2), 105065, 2021, Q1 (IF 4.300) – Published
- 3. Abdussamad Mukhtar Mohammed, Safia Syazana Mohtar, Farhana Aziz, Madzlan Aziz, Anwar Ul-Hamid, Wan Norharyati Wan Salleh, Norhaniza Yusof, Juhana Jaafar, Ahmad Fauzi Ismail, *Ultrafast degradation of Congo Red dye using a facile one-pot solvothermal synthesis of cuprous oxide/titanium dioxide and cuprous oxide/zinc oxide pn heterojunction photocatalyst,* MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 122 (105481), 2020, Q2 (IF 3.085) – Published
- Abdussamad Mukhtar Mohammed, Safia Syazana Mohtar, Farhana Aziz, Madzlan Aziz, Mustapha Usman Nasir, *Effects of oxidants on the in-situ* polymerization of aniline to form Cu₂O/ZnO/PANI composite photocatalyst, MATERIALS TODAY: PROCEEDINGS, (2021) Scopus (CiteScore 1.3) – Published
- Abdussamad Mukhtar Mohammed, Rohul Hayat Adnan, Farhana Aziz, Madzlan Aziz, A Novel Gold doped Cu₂O photocatalyst for efficient degradation of anionic dyes, MALAYSIAN JOURNAL OF CATALYSIS, 4 (2), 2020, (Non-index) – Published
- Shakhawan Ahmad Mhamad, Abdussamad Mukhtar Mohammed, Madzlan Aziz, Farhana Aziz, Impact of Electron Transport Layers (ETLs) and Hole Transport Layers (HTLs) on Perovskite Solar Cells Performance, NANOSTRUCTURED MATERIALS FOR NEXT-GENERATION ENERGY AND STORAGE CONVERSION, (227-246), 2019, (Scopus) – Published.
Conference proceedings:

- 1. Abdussamad Mukhtar Mohammed, Safia Syazana Mohtar, Farhana Aziz, Madzlan Aziz, Mustapha Usman Nasir, (2021). Effects of oxidants on the insitu polymerization of aniline to form Cu₂O/ZnO/PANI composite photocatalyst. *Regional Congress on Membrane Technology 2020 (RCOM* 2020) and Regional Conference Environmental Engineering (RCEnvE 2020).Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru
- 2. Abdussamad Mukhtar Mohammed, Shakhawan Ahmad Mhamad, Safia Syazana Mohtar, Farhana Aziz, Khuzaifa Yahuza Muhammad, Madzlan Aziz, (2021). Study of the stability of Cu₂O photocatalyst against photocorrosion by the formation of ternary composite. *International Symposium of Reaction Engineering, Catalysis and Sustainable Energy (RECaSE 2020).* Universiti Malaysia Pahang (UMP), Kuantan, Pahang, Malaysia