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ABSTRACT 

In this study, ternary composite photocatalyst based on copper(I) oxide 

(Cu2O), zinc oxide (ZnO) and polyaniline (PANI) was synthesized using a facile 

one-pot solvothermal method and in-situ polymerization of aniline. At the initial 

stage, binary composites of Cu2O were prepared with titanium dioxide (TiO2) and 

ZnO where the loadings of both TiO2 and ZnO precursors were varied while keeping 

Cu2O precursor constant (0.045 mol). Preliminary photocatalytic activity testing and 

further characterizations of the samples showed that the sample containing equal 

precursor amount of Cu2O and ZnO (CZ(0.045-0.045)) has superior properties. This 

sample was then used to form a ternary nanocomposite with PANI by in-situ 

polymerization of aniline at room temperature (Cu2O/ZnO-PANI), while studying 

the effects of different oxidants and aniline loading. The Cu2O/ZnO-PANI (CZP) 

composite was first produced using ammonium persulfate (APS), and two composite 

oxidants comprising of a mixture of APS and potassium dichromate (K2Cr2O7) as 

well as potassium permanganate (KMnO4), under the same amount of aniline 

monomer to select the best one among the three oxidants. Composite oxidant 

comprising of APS and KMnO4 (APS/KMnO4) was found to be the best, therefore, 

the amount of aniline monomer was then varied (0.13, 0.1, 0.05, and 0.03 mL) while 

using APS/KMnO4 as the oxidant to produce the rest of the CZP composites. The 

composite produced using 0.1 mL aniline (CZP (0.1)) was found to have the best 

photocatalytic activity, so it was subjected to full characterizations as well as a 

photocatalytic test. Meanwhile, the amount of PANI on the optimised composite was 

quantified using thermogravimetric analysis (TGA) and found to be about 28%. 

Furthermore, the photodegradation of Congo Red (CR) dye was studied as a model 

reaction with the optimized catalyst (CZP (0.1)). The CZP (0.1) composite 

demonstrated outstanding adsorption properties, increased photocatalytic activity 

with a percentage degradation of 100% in less than 30 minutes, enhanced stability, 

and reusability on CR dye under visible-light irradiation. The reusability and stability 

studies were conducted by repeating the CR photodegradation experiment for five 

cycles, in which the recovered sample after the fifth cycle was subjected to X-ray 

diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), and 

X-ray photoelectron spectroscopy (XPS) analyses to see if there was a change in its 

structure and stability. The result revealed no significant change in all the analyses 

between the unused and five times reused samples. The photodegradation process of 

CR was further studied using in-situ capture, total organic carbon (TOC), and high 

performance liquid chromatography (HPLC) analyses. In-situ capture studies 

revealed that the holes (h
+
) and superoxide radicals (•O2

−
) were the main active 

species responsible for the degradation of CR using CZP (0.1), while the hydroxyl 

radical (•OH) plays a secondary role in the reaction. Likewise, the TOC studies 

revealed a removal of 90% after 30 min. Meanwhile, HPLC analysis also confirmed 

the degradation of CR by CZP (0.1) and revealed the formation of some possible 

intermediates as evident in the TOC analysis. Finally, the electron transfer 

mechanism was discussed and a double Z-scheme electron transfer mechanism is 

proposed for the CZP (0.1) composite system according to the experimental data, 

sample characterization, and band theory. 
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ABSTRAK 

Dalam kajian ini, fotomangkin komposit pertigaan berasaskan kuprum(I) 

oksida (Cu2O), zink oksida (ZnO) dan polianilina (PANI) telah disintesis 

menggunakan kaedah solvoterma setempat yang mudah dan pempolimeran in-situ 

anilina. Pada peringkat awal, komposit dedua Cu2O telah disediakan dengan titanium 

dioksida (TiO2) dan ZnO di mana muatan pelopor TiO2 dan ZnO diubah sementara 

mengekalkan pelopor Cu2O malar (0.045 mol). Ujian awal aktiviti pemfotomangkin 

dan pencirian lanjut sampel telah menunjukkan bahawa sampel yang mengandungi 

amaun pelopor Cu2O and ZnO yang sama, CZ(0.045-0.045) mempunyai sifat-sifat 

yang unggul. Sampel ini kemudiannya telah digunakan untuk membentuk 

nanokomposit pertigaan dengan PANI melalui teknik pempolimeran anilina in situ 

pada suhu bilik(Cu2O/ZnO-PANI) sementara mengkaji kesan bahan pengoksidaan 

dan pemuatan anilina yang berbeza. Komposit Cu2O/ZnO-PANI (CZP) dihasilkan 

terlebih dahulu menggunakan ammonium persulfate (APS) dan dua bahan 

pengoksidaan komposit yang terdiri daripada kalium dikromat (K2Cr2O7) dan kalium 

permanganate (KMnO4), di bawah jumlah monomer anilina yang sama untuk 

memilih bahan pengoksidaan yang terbaik di antara ketiga-tiga bahan pengoksidaan 

itu. Bahan pengoksidaan yang terdiri daripada APS dan KMnO4 (APS/KMnO4) 

didapati adalah yang terbaik, oleh itu, jumlah monomer anilina telah diubah (0.13, 

0.1, 0.05, dan 0.03 mL) sementara menggunakan APS/KMnO4 sebagai bahan 

pengoksidaan untuk menghasilkan komposit CZP selebihnya. Komposit yang 

dihasilkan menggunakan 0.1 mL anilin (CZP (0.1)) didapati mempunyai aktiviti 

pemfotomangkin terbaik, oleh sebab itu ia menjalani pencirian penuh serta ujian 

pemfotomangkin. Sementara itu, jumlah PANI pada komposit optimum telah 

dikuantifikasi menggunakan analisis gravimetri terma (TGA) adalah sebanyak kira-

kira 28%. Tambahan lagi, fotodegradasi Merah Congo (CR) dikaji sebagai model 

tindak balas dengan mangkin optimum (CZP (0.1)). Komposit CZP (0.1) 

menunjukkan sifat penjerapan yang cemerlang, peningkatan aktiviti pemfotomangkin 

dengan peratusan degradasi 100% dalam masa 30 minit, peningkatan kestabilan, dan 

penggunaan semula mewarna CR di bawah penyinaran cahaya nampak. Kajian 

kebolehgunaan semula dan kestabilan dilakukan dengan mengulangi eksperimen 

fotodegradasi CR bagi lima kitaran, di mana sampel yang dipulihkan selepas kitaran 

kelima telah menjalani analisis spektroskopi pembelauan sinar-X (XRD), 

spektroskopi inframerah transformasi Fourier (FTIR), dan spektroskopi fotoelektron 

sinar-X (XPS) untuk melihat sama ada terdapat perubahan struktur dan 

kestabilannya. Keputusan menunjukkan tiada perubahan ketara dalam semua analisis 

antara sampel yang belum diguna dan sampel yang telah diguna semula lima kali. 

Proses fotodegradasi CR dikaji lebih lanjut menggunakan analisis tangkapan in situ, 

karbon organik keseluruhan (TOC), dan kromatografi cecair berprestasi tinggi 

(HPLC). Kajian tangkapan in situ menunjukkan bahawa lubang (h
+
) dan radikal 

superoksida (•O2
−
) adalah spesies aktif utama yang bertanggungjawab untuk 

degradasi CR menggunakan CZP (0.1), sementara radikal hidroksil (•OH) 

memainkan peranan sekunder dalam tindak balas itu. Begitu juga, kajian TOC 

menunjukkan penyingkiran 90% selepas 30 min. Sementara itu, analisis HPLC juga 

mengesahkan degradasi CR oleh CZP (0.1) dan menunjukkan pembentukan beberapa 

produk perantara yang mungkin sebagai bukti dalam analisis TOC. Akhirnya, 

mekanisme perpindahan elektron telah dibincangkan, dan mekanisme perpindahan 

elektron skema-Z ganda dua telah dicadangkan untuk sistem komposit CZP (0.1) 

menurut data ujikaji, pencirian sampel, dan teori jalur. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The industrial revolution has brought about a wide range of problems 

including water pollution, leading to a significant impact on the environment and 

living things. Direct discharge of industrial effluents into waterways makes it unfit 

for consumption, as the water may receive non-biodegradable and undesirable 

chemicals from the effluents which proved to be hazardous, and death by pollution-

related diseases is increasing day by day [1,2]. 

The textile and dye industries being one of the most chemically intensive 

industries in the world need much attention due to the large effluents they discharge 

into waterways which are highly toxic in nature [3]. This leads to the contamination 

of surface and groundwater as it contains a high concentration of heavy metals and 

other harmful organic compounds, these compounds are believed to be carcinogenic, 

mutagenic, and in some cases teratogenic to living things [3,4]. Surprisingly about 72 

toxic chemicals were detected from textile effluents, out of which 30 could not be 

removed [3–5]. 

Textile and dyeing industries use a lot of water in dyeing and finishing 

fabrics, approximately about 60 liters of water is required in dyeing 1 kg of clothes, 

as such World Bank estimated that about 17-20% of Industrial water pollution comes 

from textile industries [6–8]. Therefore, the search for an alternative, efficient, and 

cost-effective method for the treatment of textile wastewater or dyes is imperative, to 

reserve this precious limited natural resource [2,4]. 

Regular water remediation methods used, like coagulation, flocculation, 

sedimentation, filtration, and disinfection are not fast and efficient. Some of these 
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conventional methods, apart from being incompatible with the environment, also 

require large space that leads to wastage of chemicals and in some cases can’t 

remove a lot of hazardous pollutants, but rather lead to the generation of secondary 

harmful products [4,9]. Advanced Oxidation Processes (AOPs) are among the new 

facile water treatment methods developed, it has become popular due to their 

effectiveness and capability to degrade contaminants through redox reaction in water 

[10,11]. 

The AOPs are based on the generation and use of hydroxyl radicals (•OH), 

due to their high reduction potential (2.80 V vs. Normal hydrogen electrode), they 

can degrade a wide range of organic pollutants including stable gaseous pollutants 

like carbon dioxide (CO2) [12]. Ultraviolet (UV) photolysis, hydrogen peroxide 

photo-fenton, photo-ozonation, and heterogeneous photocatalysis are the main 

classes of AOPs. However, heterogeneous photocatalysis has gained more popularity 

due to the advantage of the usage of sunlight, which is an abundant and free source 

of energy [13,14]. 

Photocatalysis is a chemical reaction under photoabsorption of solid material, 

namely a photocatalyst, that is chemically unaffected during and after the reaction 

[15,16]. The beginning of research in the field of photocatalysis was started by 

Fujishima and Honda in 1972 when they used TiO2 electrodes in the splitting of 

water [17]. Photocatalysis can mineralize toxic compounds completely at low 

temperature and pressure and therefore gains much popularity in the treatment of 

contaminated gaseous and liquid wastes [4,18]. 

Binary metal oxides ranging from titanium dioxide(TiO2), tungsten 

trioxide(WO3), zinc oxide(ZnO), tin dioxide(SnO2), ferric oxide(Fe2O3), tantalum 

pentoxide(Ta2O5), cupric oxide(CuO), and perovskites metal oxides like bismuth 

ferrite (BiFeO3) and lanthanum ferrite (LaFeO3) are widely used as photocatalysts 

[19]. Others are heterojunction and composite photocatalysts formed using two or 

more metal oxides photocatalyst [20–26]. Conductive polymers such as polyaniline 

(PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT)), and 
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polythiophene (PTh) are also incorporated with other semiconductors or metal oxides 

to form stable photocatalysts [27]. 

Copper(I) oxide, also known as cuprous oxide (Cu2O), is among the most 

capable photocatalysts. This promising p-type semiconductor is abundant in nature, 

has low toxicity, and has high visible light absorptivity with ~2.20 eV direct bandgap 

[28]. Its ease of production as well as good environmental acceptability makes it one 

of the most investigated photocatalysts. However, photocorrosion and fast electron-

hole pair recombination limit Cu2O efficiency during the photocatalytic reaction 

[29,30]. Although Cu2O is thermodynamically stable under the ambient condition, 

during photoexcitation its activity is greatly suppressed by photocorrosion. 

Generally, photocorrosion happened through the self-usage of the photoexcited 

electrons and holes [29].  

As such, illumination causes photostability deterioration, which leads to a 

considerable detrimental effect on the photocatalytic and photoelectrochemical 

performances of Cu2O. An efficient charge transfer that prevents light-induced self-

reduction and oxidation of Cu2O is a vital step in suppressing its photocorrosion. 

Similarly, the incorporation of secondary components can also enhance their 

photostability. The formation of composite materials would increase the catalyst’s 

ability to transfer charges, thereby reducing excess photogenerated charges within 

the particles, thus improving its photocatalytic activity [29,31]. 

To further improve Cu2O’s photocatalytic properties, many strategies have 

been developed like, surface engineering to control the exposed facets [32], coupling 

with n-type semiconductors e.g. TiO2 [33], ZnO [25], Ferric oxide [34], and 

Tantalum oxynitride [35], and binary system formation with noble metals such as 

aurum (Au) [36], argentum (Ag) [37], and copper (Cu) [38]. However, the long-term 

efficiency of Cu2O photocatalyst is generally low due to the occurrence of self-

photodecomposition that constrains its overall performance [24,29]. 

Recently the fabrication of ternary nanocomposites leading to the formation 

of a Z-scheme heterojunction especially with conducting polymers is gaining more 
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attention in the improvement of properties of various photocatalysts [39]. The 

synergetic effect enhancement that occurs among all the three components is 

responsible for the enhanced activity. Various strategies like 

metal/semiconductor/polymer and semiconductor/semiconductor/polymer 

nanocomposites were developed given interesting results [40].  

PANI is considered as one of the extremely suitable conductive polymers that 

can serve as a candidate for ternary nanocomposites with other semiconductors, 

because it serves as a p-type semiconductor, and has tremendous properties like 

unique electron-hole transporting ability, simple synthesis methods, high chemical 

stability, high absorption coefficients in the visible-light range, high mobility of 

charge carriers and suppression of photocorrosion [27,39]. Similarly, PANI in its 

undoped or partially doped states is an electron donor upon photoexcitation and is 

known as a good hole conductor. Likewise, PANI has shown promising results in the 

suppression of photocorrosion and enhancing stability in some of the photocatalysts 

having the problem of photocorrosion like silver phosphate (Ag3PO4) [41] and 

manganese ferrite (MnFe2O4) [42]. 

Recently, ternary nanocomposites containing PANI and other semiconductor 

photocatalysts like PANI/Ag3PO3/NiFe2O4 [40], RuO2-TiO2/PANI [43], 

TiO2/CoMoO4/PANI [44], Co2TiO4/CoTiO3/PANI [45] have been synthesized and 

demonstrated higher photocatalytic activity, enhanced stability, and reusability for 

pollutants degradation.  

As such, this study deals with the preparation of novel ternary 

nanocomposites of Cu2O (Cu2O/ZnO-PANI), with wide bandgap n-type 

semiconductor (ZnO) and PANI, by a simple solvothermal method and room 

temperature in-situ polymerization of aniline, for the treatment of textile dyes. 
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1.2 Problem Statement 

Textile and dye industries use a large amount of water and also discharge a 

large number of toxic effluents into waterways, leading to contamination of surface 

and ground waters. This leads to so many environmental and health hazards. Regular 

and conventional water treatment methods are not fast, efficient, and cost-effective. 

Among the new facile water treatment methods, photocatalysis is seen as a panacea 

to the problem of wastewater, due to its effectiveness, the capability to degrade 

contaminants through a redox reaction, and most importantly, the usage of sunlight 

which is an abundant and free source of energy.  

Wide bandgap semiconductors were the first investigated photocatalysts, they 

have been popular as an effective photocatalyst, and their photocatalytic behavior has 

been studied extensively. However, the photocatalytic activity of wide bandgap 

semiconductors is limited to irradiation wavelengths in the UV region. Thus, the 

optimal use of solar energy is limited to approximately 3-5% of all solar energy, 

whereas 43% of solar energy comprises visible light, therefore a significant amount 

of solar radiation is lost. Likewise, the use of UV photocatalysis on an industrial 

scale is very expensive and its prolonged exposure may cause serious health risks 

like skin aging, cancers, eye damage, and immune system suppression [46]. Owing 

to these factors growing interest was also focused on the visible light-driven narrow 

bandgap semiconductors like Cu2O. 

Cu2O is a p-type semiconductor with a direct bandgap of  2–2.20 eV. It is 

seen as an interesting photocatalytic material due to its abundance in nature, low 

toxicity, and ability to absorb visible light [24,30]. However, despite all its 

interesting properties and capabilities, Cu2O particularly those with nanoscale 

structure has less activity due to easy photocorrosion and loss of light activity in the 

case of long-term illumination [29]. Apart from that, Cu2O application is restricted 

by the fast recombination of electron-hole pairs [47]. 

It is understood that if two semiconductors are properly integrated into one 

system, namely composite or heterojunction, this system can be expected to achieve 
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high photocatalytic activity even if none of the semiconductors has high activity, by 

increasing the efficiency of load separation or visible light absorption [48]. The p-n 

heterojunction is produced by combining p-type and n-type semiconductors and is 

seen as one of the effective ways of improving photocatalytic performance [49,50].  

Cu2O p-n heterojunctions have been produced by some researchers and 

improvement was noticed, however, the Cu2O p-n type heterojunctions still have 

some problems of recombination at the heterojunction interface due to an excessive 

formation of cupric oxide (CuO) on the Cu2O surface as the illumination of light 

continues, as well as self-photodecomposition, this limits its efficiency [48]. Apart 

from that, most of the Cu2O p-n heterojunctions could not be reused for many times 

without obvious loss in the photocatalytic activity [51,52]. Likewise, the general 

issue of most p-n heterojunctions in reducing the redox potential of photogenerated 

charges all constitute a great drawback to the use of p-n heterojunctions of Cu2O 

[53,54]. 

Sequel to the limitations of p-n heterojunction, ternary Z-scheme 

heterojunction was constructed to overcome the said problems. It is well known that 

the Z-scheme photocatalytic mechanism is another important class of composite with 

excellent photocatalytic activities [39]. Generally, Z-scheme heterojunction 

comprises semiconductors, with or sometimes without electron acceptor-donor 

component. Subsequent to the illumination of light, the generated electrons and holes 

with lower reduction and oxidation ability will move from one semiconductor to the 

other through the electron acceptor-donor component or directly recombine with 

each other, thereby leaving behind electrons and holes with higher reduction and 

oxidation ability. This generates electrons and holes with higher oxidation-reduction 

ability on the semiconductor, thus achieving effective separation of the charge 

carriers. Therefore strong redox potential is retained for a large period of time 

[55,56].  

With the formation of ternary Z-scheme heterojunction, the effect of 

heterojunctions promotes the separation of photogenerated electrons and holes, also 

the oxidation and reduction ability of photogenerated holes and electrons can be 
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retained for a long period of time [48]. Looking at the problems of Cu2O and its p-n 

heterojunctions, a novel technique is needed to effectively form a stable Cu2O based 

photocatalyst that can be reused several times in the treatment of textile dyes and 

wastewater in general. Thus, instead of getting stuck in binary composites, more 

efforts should be devoted to preparing multicomponent nanocomposites of Cu2O 

based photocatalyst, that can be reused several times in the treatment of textile dyes 

and wastewater, for better functional performance and wider applications. As such, a 

ternary nanocomposite with Z-scheme heterojunction properties can serve as an 

alternative and efficient way of improving the photocatalytic properties of Cu2O.  

By virtue of the capabilities of PANI in the suppression of photocorrosion 

and enhancing photocatalytic activity and reusability in ternary nanocomposites like 

PANI/Ag3PO4/NiFe2O4 [40], and other binary composites. PANI can be a suitable 

candidate to address the problems of Cu2O, thereby producing very stable Cu2O 

ternary nanocomposite photocatalysts, for the degradation of organic pollutants and 

other photocatalytic applications.  

PANI supports photocatalytic activity by acting as a good photosensitizer. It 

is one of the p-type conjugated polymers with π conjugated electrons present at the 

major backbone of the molecule with an absorption range lying in the visible light 

wavelength region. PANI, therefore, exhibits good semiconducting behavior by 

offering electrons and accepting holes under the excitation of a light source, thereby 

reducing electron-hole recombination and improving photocatalytic activity [46]. 

Likewise, due to its amine, imine and π conjugated electrons; PANI can easily bind 

with other inorganic molecules thereby forming a hybrid composite that can easily 

adsorb organic pollutants with better visible light absorption property [39]. Thus, in 

this study ternary nanocomposite of Cu2O (Cu2O/ZnO-PANI) was prepared with 

ZnO and PANI.  

Initially, a one-pot solvothermal method was used to prepare Cu2O/ZnO and 

Cu2O/TiO2 with one solvent acting as both reducing agent and solvent respectively, 

Cu2O/ZnO was found to have superior properties than Cu2O/TiO2. Cu2O/ZnO was 

then modified with PANI through room temperature in-situ polymerization of aniline 
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with different oxidants to systematically investigate its effects on the 

physicochemical properties of the ternary nanocomposite. To the best of my 

knowledge, there is no systematic study on the ternary nanocomposite of Cu2O with 

PANI and ZnO (Cu2O/ZnO-PANI), and the effects of different oxidants on the in-

situ polymerization of aniline to form PANI-based Cu2O composite. 

 

1.3 Research Objectives 

The objectives of the research are : 

1) To synthesize Cu2O, Cu2O/TiO2, and Cu2O/ZnO using the solvothermal 

method and identify the effects of different n-type semiconductors (TiO2 and 

ZnO) and loadings on the Cu2O/TiO2 and Cu2O/ZnO heterojunction’s 

physicochemical properties and performance. 

2) To modify the best binary Cu2O composite with PANI using in-situ 

polymerization of aniline and investigate the effects of oxidants on the 

physicochemical properties of the synthesized PANI-based ternary Cu2O 

composite 

3) To evaluate the photocatalytic performance of the synthesized pure and 

modified Cu2O on the degradation of textile dyes in aqueous solution under 

visible light irradiation, its reusability, as well as the impacts of operating 

parameters such as pH, photocatalysts loading and initial dyes concentrations 

on the photocatalytic degradation efficiency. 

4) To study the photodegradation process of the dyes over the best synthesized 

ternary nanocomposites of Cu2O via in-situ capture study, total organic 

carbon (TOC), and High-Performance Liquid Chromatography (HPLC). 
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1.4 Scope of the study 

This research is focused on addressing some major setbacks affecting Cu2O-based 

photocatalysts for textile dyes and wastewater applications. The development of the 

ternary nanocomposite of Cu2O was done with n-type semiconductors (ZnO) and 

conductive polymer (PANI) using a solvothermal method and in-situ polymerization 

of aniline for the photocatalytic degradation of Congo Red (CR) and Methylene Blue 

(MB) dyes in aqueous solution under visible light irradiation. The scopes of the study 

are: 

 

1. Synthesis of Cu2O, Cu2O/TiO2, and Cu2O/ZnO using a solvothermal method 

and identification of the effects of different n-type semiconductors (TiO2 and 

ZnO) on the Cu2O/TiO2 and Cu2O/ZnO composites’ properties and 

performance: 

The pristine Cu2O was synthesized by a solvothermal method using absolute ethanol 

which acts as both solvent and reducing agents, the physicochemical properties of the 

photocatalyst were determined using various characterization techniques as well as 

the photocatalytic activity. X-ray diffraction (XRD) analysis was done to study the 

structure and the crystallite size of the catalyst via Debye-Scherrer's equation. UV-

Vis-NIR scanning spectrophotometer was employed for studying the optical 

properties. Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) were used to observe the morphology and lattice distance. 

Nitrogen adsorption-desorption was done to study the surface area and Fourier 

Transformed Infrared (FTIR) and Raman spectroscopy were employed to show the 

type of chemical bonds present in the sample. Energy Dispersive X-ray (EDX) and 

X-ray photoelectron spectroscopy (XPS) analyses were also done to examine the 

elemental composition and chemical state of the sample. 

Likewise, the Cu2O/TiO2 and Cu2O/ZnO composite were all synthesized 

using a solvothermal process with absolute ethanol. The loadings of both TiO2 and 
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ZnO precursors were varied in the preparation while keeping Cu2O constant to 

determine the best loading suitable for further treatment. Their photocatalytic 

activity, as well as the physicochemical properties, were determined using various 

characterization techniques such as XRD to study the structure and the crystallite 

size via Debye-Scherrer's equation, UV-Vis-NIR scanning spectrophotometer for 

studying optical properties, SEM and TEM to observe the morphology and lattice 

distance, Nitrogen adsorption-desorption to study the surface area while FTIR and 

Raman spectroscopy were employed to show the type of chemical bonds present in 

the samples. Photoluminescence (PL) spectroscopy was used to check the charge 

carrier recombination, while EDX and XPS were employed to examine the elemental 

composition as well as the chemical state of the composites. From the result obtained 

the best composite among Cu2O/TiO2 and Cu2O/ZnO was selected for further 

modification with PANI to form the ternary nanocomposite of Cu2O.  

 

2. Modification of the best Cu2O composite with PANI using in-situ 

polymerization of aniline and investigation of the effects of oxidants on the 

physicochemical properties of the synthesized PANI-based ternary Cu2O 

nanocomposite 

The modification of the best composite among Cu2O/TiO2 and Cu2O/ZnO to form a 

PANI-based ternary Cu2O nanocomposite was done by in-situ polymerization of 

aniline. The effect of oxidants on the in-situ polymerization of aniline to form PANI 

was identified by using three different types of oxidants; one single oxidant and two 

composite oxidants. Ammonium peroxydisulfate (APS) ((NH4)2S2O8) as the single 

oxidant, while a mixture of APS and potassium dichromate(K2Cr2O7) 

(APS/K2Cr2O7)  acts as the first composite oxidant, whereas a mixture of APS and 

potassium permanganate (KMnO4) serves as the second composite oxidant 

(APS/KMnO4) respectively. The loadings of aniline monomer were varied (0.13, 0.1, 

0.05, and 0.03 mL) while using the best oxidant to produce the Cu2O ternary 

nanocomposite of PANI. 
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The physicochemical properties of the optimized ternary composite were then 

determined using various characterization techniques such as XRD to study the 

structure and the crystallite size via Debye-Scherrer's equation, SEM, and TEM for 

imaging the morphology of the surface as well as the lattice distance. EDX and XPS 

were used to determine the elemental composition and chemical state of the 

composite. UV-Vis-NIR scanning spectrophotometer was employed to study its 

optical properties. Nitrogen adsorption-desorption was used to study the surface area, 

FTIR and Raman spectroscopy were employed to show the type of chemical bonds 

present in the sample, and PL spectroscopy was done to check the charge carrier 

recombination. 

 

3. Evaluation of the photocatalytic performance of the synthesized pure Cu2O 

and modified Cu2O on the degradation of Congo red (CR) and methylene 

blue (MB) dyes in aqueous solution under visible light irradiation, its 

reusability, as well as the impacts of operating parameters such as pH, 

photocatalysts loading and initial dyes concentrations on the photocatalytic 

degradation efficiency. 

The photocatalytic activity, photolysis, and adsorption studies were monitored using 

ultraviolet-visible (UV-Vis) spectrophotometry. Moreover, the operating parameters 

such as initial dyes concentration (i.e., 30 mg/L, 50 mg/L, and 80 mg/L), 

photocatalyst loading (i.e., 0.5 g/L, 1 g/L, and 1.5 g/L), and solution pH on the 

photocatalytic degradation of CR dye were all studied. While for MB, the 

preliminary result done at 30 mg/L concentration revealed no degradation, so the pH 

of the solution was varied to pH 3, pH 7, and pH 10, but still, the activity was very 

low. The reusability was tested by running five times repetitions of the experiment 

under similar conditions using CR dye over the optimum catalyst. XRD, FTIR, and 

XPS analyses were finally done to the sample after the reuse to determine whether 

there are changes in the structure and chemical state of the composite. 
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4. Study of the photodegradation process of the dyes over the best synthesized 

ternary nanocomposites of Cu2O via in-situ capture study, total organic 

carbon (TOC), and HPLC. 

An in-situ capture experiment was conducted to investigate the active species 

generated during the photocatalytic process. Ammonium oxalate (AO) was used as a 

hole (h
+
) scavenger while benzoquinone (BQ) and isopropyl alcohol (IPA) were used 

as scavengers introduced into the photocatalytic process to capture superoxide 

radical (•O2
-
) and hydroxyl radical (•OH), respectively. Finally, TOC and HPLC 

analyses were done to ascertain the degradation of the dyes over the optimized 

ternary nanocomposites of Cu2O. 

 

1.5 Significance of the study 

A newly improved ternary nanocomposite of Cu2O photocatalyst was 

developed by incorporating PANI and ZnO, to overcome the issues of 

photocorrosion and fast charged carrier (electrons and holes) recombination of Cu2O, 

as well as improving its stability. Photodegradation of CR dye serves as a model 

reaction because it is one of the prominent hazardous anionic azo dyes resistant to 

many treatment methods, which is widely used in textile industries. The effective 

removal of such dye is sorely needed for the purification of wastewater. This study 

will provide insights into the development of efficient and stable nanocomposite for 

the treatment of textile effluents and subsequently combat the problem of water 

pollution.  

Last but not least, this research will give insight into the functions of PANI 

and other conducting polymers, in enhancing the properties of nanocomposites 

photocatalysts, for degradation of various contaminants and to enhance the feasibility 

of AOP technologies in wastewater treatment. 
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1.6 Thesis outline 

The research is targeted at the development of efficient ternary Cu2O-PANI 

based photocatalyst, by one-pot solvothermal method and room temperature in-situ 

polymerization of aniline, for efficient degradation of textile dyes. The modification 

with ZnO and PANI was done to improve the electrons and holes separation ability 

and prevent the occurrence of photocorrosion of the catalyst, for increased activity 

and reusability.  This thesis consists of seven chapters. The research background of 

the study area, problem statement, objectives, scope, and significance of this research 

was elaborately discussed in Chapter 1.  

Chapter 2 presents a literature review on textile industries as well as dyes and 

their methods of removal. Potentials and challenges in the usage of Cu2O 

photocatalyst were also discussed in the chapter, methods of synthesis and strategies 

used in improving the properties of Cu2O were all discussed. Chapter 3 comprises 

the overall description of materials, methodology, characterizations, and 

experimental procedures applied during the course of the research. Chapter 4 covers 

the entire result of the binary composites (Cu2O/ZnO and Cu2O/TiO2), as well as the 

discussions, and the analysis conducted to compare the two composites, leading to 

the selection of the best one suitable for further modification with PANI.  

Chapter 5 covers the result of the ternary composite (Cu2O/ZnO-PANI) 

formed with Cu2O/ZnO and PANI, through in-situ polymerization of aniline. 

Discussions of the analysis conducted were made with reference and comparison 

between Cu2O and Cu2O/ZnO throughout the chapter. Chapter 6 comprises the 

results of in-situ capture studies, TOC, HPLC as well as the study of the stability of 

the optimized ternary composite. The possible charge transfer mechanism over the 

optimized catalyst was also discussed in the chapter. Finally, Chapter 7 provides the 

conclusions drawn from this study and some recommendations proposed for future 

work.  
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