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ABSTRACT 

Transparent electrode materials with the transparency of up to 80% in the 

visible wavelength region and resistivity as low as 10-3
 Ω.cm are in high demand for 

various optoelectronic applications. It is believed that nanostructured Zinc oxide 

(ZnO) with modified electronic structure properties may be a promising alternative to 

Indium tin oxide (ITO). This is due to its similarity in band gap energy. This research 

attempted to improve the structural, morphological, optical and electrical properties of 

ZnO nanostructures by co-doping it with aluminium (Al) and gallium (Ga) (AGZO) in 

order to use the material as a hydrogen gas sensor. To achieve this goal, a series of 

Al/Ga co-doped ZnO nanostructure (NS) films with new morphologies was 

synthesised on the p-type Si (100) substrate using combined sol-gel and spin coating 

methods. Samples were annealed at different temperatures, time durations and laser 

energies to examine their effects on overall properties. The influence of varying Ga 

content was determined. FESEM images showed two new different morphologies for 

two different samples with increasing Ga content nanoleaves Ga (4 at. %) and 

nanopeanuts-like (5 at. %). The optical bandgap energy (3.26 - 3.20 eV) of AGZO 

nanofilms was discerned to be lower than pure ZnO films (3.37 eV). The resistivity of 

the prepared AGZO nanofilms at 1 at. % of Ga was found to be 4.571  10-3 Ω.cm 

which was lower than Ga free (AZO) thin films (6.4 10-2 Ω.cm). The sensing 

performance of the AGZO film was evaluated at (100 and 150) ºC under varying H2 

gas concentrations (250 – 1750 ppm). The best sensitivity was achieved at a H2 gas 

concentration of 1750 ppm. The improvement of overall properties was attributed to 

Ga mediated enhanced polycrystalline growth of the films and the production of new 

two different nanostructures. It was affirmed that the present method of sample 

preparation is simple and economical. The systematic characterisations might 

constitute a basis for producing high-quality ZnO nanofilms suitable for assorted 

applications. The laser annealing is a fast, cheap and better method than the thermal 

annealing method, but the annealing by the thermal method is the best to make a good 

hydrogen gas sensor in this study. 
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ABSTRAK 

Bahan elektrod lutsianr dengan kelutsianran melebihi 80% dalam julat panjang 

gelombang nampak dan kerintangannya serendah 10-3 Ω.cm mempunyai permintaan 

yang tinggi bagi pelbagai aplikasi optoelektronik. Adalah dipercayai Zink oksida 

(ZnO) nanostruktur dengan sifat-sifat struktur elektronik yang diubahsuai mungkin 

merupakan salah satu alternatif yang baik kepada indium tin oksida (ITO). Ini adalah 

disebabkan tenaga jurang jalurnya yang hampir sepadan.  Kajian ini bertujuan untuk 

meningkatkan lagi sifat-sifat ZnO nanostruktur darisegi struktur, morfologi, optik dan 

elektrik melalui dop ber sama dengan alumium (Al) dan gallium (Ga) (AGZO), 

membolehkan bahan tersebut digunakan sebagai sensor gas hidrogen. Untuk mencapai 

matlamat ini, satu siri filem Al/Ga co-dop pada filem ZnO nanostruktur (NS) dengan 

morfologi baru disintesis pada substrat jenis p Si (100) menggunakan kaedah salutan 

gabungan larutan gel dan putaran. Sampel telah disepuhlindap pada suhu, tempoh 

masa dan tenaga laser yang berbeza-beza untuk mengkaji kesan sifat-sifat keseluruhan 

terhadapnya. Pengaruh kandungan Ga yang berbeza-beza terhadapnya telah 

ditentukan. Imej FESEM menunjukkan, dua morfologi yang berbeza untuk dua sample 

berlainan dengan peningkatan Ga mengandungi “nanoleaves” Ga (4 at.%) dan 

“nanopeanuts-like” (5 at.%). Tenaga jurang jalur optik nanofilem AGZO (3.26 - 3.20 

eV) didapati lebih rendah daripada filem ZnO tulen (3.37 eV). Kerintangan nanofilem 

AGZO yang disediakan pada 1 at.% daripada Ga didapati pada 4.571×10-3 Ω.cm lebih 

rendah daripada filem tipis bebas Ga (AZO) (6.4 ×10-2 Ω.cm). Prestasi penderia filem 

AGZO dinilai pada 100 ºC dan 150 ºC di bawah kepekatan gas H2 yang berbeza-beza 

(250 - 1750 ppm). Kepekaan terbaik dicapai pada kepekatan gas H2 1750 ppm. 

Peningkatan sifat-sifat keseluruhan adalah disebabkan oleh pengantara Ga yang 

meningkatkan pertumbuhan polikristal bagi filem-filem tersebut dan pengeluaran dua 

nanosturuktur yang berbeza. Ini mengesahkan bahawa kaedah penyediaan sampel 

yang sekarang ini adalah mudah dan menjimatkan. Pencirian-pencirian yang 

sistematik mungkin membentuk asas untuk menghasilkan nanofilem ZnO yang 

berkualiti tinggi sesuai untuk pelbagai aplikasi. Penyepuh laser adalah kaedah yang 

cepat, murah dan lebih baik daripada kaedah penyepuh haba, tetapi penyepuhlindapan 

dengan kaedah termal adalah yang terbaik bagi menghasilkan sensor gas hidrogen 

pada kajian ini. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of the Study 

At present, the sophisticated tools needed for functional materials designs, 

characterisations, synthesis, and applications encompass the manipulation of diverse 

materials in the range of 1 to 100 nm (nanoscale). Distinctive facets including indirect, 

direct and conceptual aspects are exploited for the evolution of nanoscience and 

nanotechnology (Shastri et al., 2010). The indirect aspect of nanotechnology refers to 

the advancement in the miniaturisation of existing technologies which open up new 

avenues of applications. In addition to indirect, direct signifies the appliance of new 

nanoscale objects to develop a novel process, material, mechanism and performance 

for completely exotic purposes. Lastly, the conceptual aspect of nanotechnology 

encompasses all nanomaterials and processing technologies at the molecular or atomic 

level particularly involving the living organism and bio-system. For instance, 

information and communication technology (ICT) benefitted tremendously from 

emerging nanotechnology concepts where novel semiconductor and optoelectronic 

materials were synthesised to achieve new nanodevices      (Michael et al., 2008).  

Nanotechnology has penetrated every field of science and technology 

including the environmental sciences (filtration), the energy sectors (for energy cut, 

tackle increased energy consumption, efficient production of energy, cleaning up 

nuclear accidents and storing and recycling of wastes), heavy industries (aerospace 

engineering and chemicals), consumer products, bio-medicine, food technology, 

forensics, and defence. In the past few decades, rapid progress in nanomaterials 

synthesis and characterisations has opened up several new avenues of nanotechnology. 

Many advanced functional materials with unusual properties have been developed 

(Poole et al., 2003). 
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In the area of wide bandgap semiconductor materials, ZnO thin films have 

extensively been used in many applications including piezoelectric transducers, 

windows in solar panels, gas sensing, devices for the detection of surface acoustic 

waves, optical waveguides, acousto-optic devices, transparent conductive electrodes 

and varistors (Look, 2001). ZnO is a unique semiconductor because of its broad 

bandgap (~3.37 eV) and high exciton binding energy of 60 meV (Triboulet et al., 

2003). Furthermore, it is a potential candidate for blue and ultraviolet (UV) light-

emitting diodes and laser diodes, backlight diodes for liquid crystal display (LCD), 

mobile phones and automotive lighting. Nowadays, it is intensively used in 

optoelectronic devices because of its strong excitonic absorption and recombination at 

room temperature (Yamamoto et al., 2001). 

The existence of excess conduction electrons in ZnO nanostructure leads to an 

enhanced electrical conductivity. This is useful in transparent conductive electrodes as 

a substitute to indium tin oxide, commonly referred to as ITO. The primary sources of 

these excess electrons are defects (Kohan et al., 2000), which can be intrinsic or 

extrinsic impurity defects. Extrinsic defects are recognized as dopants when 

deliberately introduced to a system to enhance various properties (Maller, 2016). Three 

types of defects are present in the ZnO crystal: vacancies, interstitial atoms and 

antisites of oxygen and zinc (Flemban, 2017).  

Zinc oxide is a natural wurtzite structure which is an n-type semiconductor due 

to intrinsic defects such as O vacancies (VO) and Zn interstitials (Zni). Al acts as a 

donor on a lattice site [AlZn] and an acceptor on an interstitial site [AlZni]. Al atoms 

are substituted into the structure due to the fact that the Al3+ radius (0.054nm) and Zn2+ 

radius (0.074nm) are similar. Thus, Al3+ ions easily substitute for Zn2+. Zinc has two 

valence electrons and aluminium has three valence electrons.   

It is confirmed that the concentration of oxygen vacancies and Zn interstitials 

are the most abundant native defects and can be changed with the Zn partial pressure. 

The results of an electron concentration displayed that with a high partial pressure of 

Zn, electrons dominate the content of the hole (Kohan et al. 2000). Thus, intrinsic ZnO 

donors do not significantly participate in the electrical conduction in ZnO. Elements 

in-group III (Al, Ga and In) with valence cell configuration of ns2 np1 possess lower 
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ionisation energy compared with Zn (ns2). Thus, such elements can substitute Zn2+ 

ions in the lattice site of ZnO crystal. Donation of excess electrons increases the carrier 

concentrations to a value greater than 1020 cm−3, resulting in an enhancement in 

electrical conductivity (Yamamoto et al., 2001).  

To synthesise ZnO nanoparticles, many researchers have used physical 

methods such as radio frequency (RF) sputtering (Uikey et al., 2016) and molecular 

beam epitaxy (MBE) (Maller, 2016). However, structural inhomogeneity and cost 

remain disadvantageous for large-scale synthesis by physical means (Diaz De Leon et 

al., 2017). On the other hand, many researchers have synthesised ZnO nanoparticles 

using chemical methods such as chemical bath deposition (Flemban, 2017), 

hydrothermal synthesis (Wei et al., 2013) and the sol-gel method (Maache et al., 2017). 

Amongst these techniques, sol-gel is the preferred for the preparation of thin film 

owing to its low cost, outstanding control on the precursor solution stoichiometry, 

simple modifications of compositions, homogeneity, low temperature and non-

requirement of a vacuum (Vajargah et al., 2013). Moreover, sol-gel deposited ZnO 

thin film samples reveal a high performance and a smaller number of defects which 

are beneficial for many applications. Several authors have reported the impact of sol-

gel on controlling ZnO nanoparticle's shape and size (Diaz De Leon et al., 2017). 

Compared to other chemical methods in terms of reaction mechanisms such as 

hydrolysis and condensation, the sol-gel method offers highly uniform dispersion of 

dopants in the ZnO crystal lattice. Some researchers have used the sol-gel method with 

polymerising agents such as starch, nitric acid and dextrose to control the 

nanoparticles’ shape and size (Diaz De Leon et al., 2017). Moreover, wide bandgap 

materials are chemically and thermally more stable, which is an advantage for devices 

operating in harsh environments (Liu et al., 2010). Among these materials is ZnO 

which has been studied extensively in recent years for its unique properties and 

potential application in electronic and optoelectronic devices (Liu et al., 2010). It has 

strong radiation hardness, high chemical stability, low cost and a large bandgap of 3.37 

eV at room temperature (Liu et al., 2010). 

Hydrogen is a non-toxic, non-poisonous, colourless, odourless and tasteless 

gas that cannot be detected by human senses. Hydrogen has a very low density (0.0899 
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kg/m3) with a high diffusion coefficient in the air (0.61 cm2/s). The H2 content in the 

air at sea level is 0.5 ppm and has no threshold limit value (Schwandt & Fary 2000). 

Hydrogen can be ignited easily with a very small amount of energy, as low as 0.02 mJ 

(Hübert et al. 2011) and the explosive range is wide, from 4% to 75% (Al-Hardan et 

al. 2010). The monitoring of hydrogen concentration is essential to nuclear reactor 

safety (Hübert et al. 2011). In coal mines, hydrogen can be produced in the ppm2 range 

by methane or coal-dust explosions or by the spontaneous heating and low-temperature 

oxidation of coal (Brungs et al. 1992). 

Hydrogen is an energy carrier and can contribute to overcoming problems of 

dwindling fossil fuel reserves, energy supply security and climate change (Hübert et 

al. 2011). In 2006, 10,638 thousand tons of H2 was produced in the United States. Most 

of this H2 was used in petrochemical plants, fertiliser plants (ammonia production) and 

the methanol industry (Korotcenkov et al. 2009). A minuscule fraction of H2 (50 tons 

in 2006) was used as an alternative fuel for electric power generation and 

transportation. This small fraction of H2 used in power generation and transportation 

is growing rapidly, resulting in a greater presence and distribution of H2 in society. In 

this emerging hydrogen economy, the detection of hydrogen leaks and the 

measurement of hydrogen concentration are necessary during production, storage, 

transportation and use in both stationary and mobile applications (Hübert et al. 2011). 

Sensors will, therefore, be used for safety monitoring of hydrogen production plants, 

pipelines, storage tanks, refuelling stations and automotive vehicles (Hübert et al. 

2011).  

Alternative hydrogen detection methods employ instruments such as gas 

chromatographs, mass spectrometers or specific ionisation gas pressure sensors. 

Traditionally, these instruments are large, expensive, high maintenance and slow in 

terms of their sampling and reaction times (Hübert et al. 2011). Therefore, it has 

become a priority in research to investigate various techniques to develop a H2 sensor 

with a high sensitivity and a fast response time. Hydrogen sensors have several 

advantages over the conventional hydrogen detection methods, including their lower 

cost, smaller size, and faster response. These advantages make them more suitable for 

portable and in situ hydrogen detection in a range of applications (Hübert et al. 2011). 
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Commercially available sensors are primarily based on semiconductor metal 

oxides, electrochemical H2 oxidation, catalytic response, thermal conductivity 

response or optical response technology. Although these sensors are sensitive and 

reliable, electrochemical based sensors particularly suffer from a decrease in 

sensitivity with time due to deterioration of the electrode catalyst. Catalyst based 

sensors are not specific to H2 and often need high temperatures or high power for their 

operation. The most successful commercial sensors based on metal oxides are small in 

size, highly responsive, cheap and operate using a relatively simple electric circuit. 

However, these sensors require a significant pre-heating of the sensing element up to 

300-700 °C to achieve the desired sensitivity and accuracy (Lupan et al. 2010). 

Recently, efforts in H2 sensor development using metal oxides have focused on 

improving the sensitivity and decreasing the operating temperature. In-room 

temperature sensing ZnO has shown improved response and short recovery time due 

to its wide band-gap and surface adsorbed oxygen species. Furthermore, it is a cost-

effective, easy, fast reproducible synthesis in nanostructured form.  

Research has found that the resistivity of AGZO thin films (2.14 x 10-3 Ω-cm) is 

lower than AZO thin films (6.40x10-3 Ω-cm) (Lee et al. 2009). Furthermore, (Han et 

al. 2010) reported that depending on the Ga doping level, the grain size increases to 

reduce grain boundary scattering. In their study, the resistivity of AZO films decreased 

from 3.5 x 10-3 to 8.1 x 10-4 Ω.cm by Ga doping at 2.1 at.%. By Ga doping, the Hall 

mobility was improved, and the carrier concentration was increased. Ga acted as an 

intrinsic donor. Enhancing the conductivity of AZO nanostructures by Ga doping using 

sol-gel and spin coating which can synthesize tow and three-dimensional 

nanostructure, the efficiency of devices can be enhanced. Thus, the synthesis of co-

doped ZnO nanostructures using sol-gel and spin coating is reported. 

1.2 Problem Statement 

Nanostructured ZnO can be synthesised using a number of methods including 

vapour solid (VS), vapour-liquid-solid (VLS), radio frequency (RF) and sol-gel. VS 

and VLS require high temperatures for the growth of nanostructures. RF requires 
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expensive instruments and specialised laboratory setup. On the contrary, the sol-gel 

method is cost-effective and can synthesise ZnO with controlled nanostructure 

morphology and dopants. However, the sol-gel methods for the synthesis of a ZnO 

nanostructure on Si substrate are not well characterised.  

One dimensional (1D) and two-dimensional (2D) ZnO nanostructures have a 

high surface to volume ratios, which make them valuable for a variety of applications 

(Ali et al., 2010). Although there are different methods used to fabricate 2D ZnO 

nanostructures, the sol-gel spin coating method is the easiest and is able to fabricate 

2D ZnO nanostructures at low temperatures (Cheng, et al., 2009).  

It has been found that the structural, electrical and optical properties of ZNS-

based thin films can remarkably be improved by co-doping with Aluminium and 

Gallium (Al/Ga) but  a few studies have explored this possibility thus far. Moreover, 

the capacity of combined sol-gel and spin-coating (a chemical approach) for the 

preparation of ZNSs-film co-doped with Al/Ga has not been reported in the literature, 

but they were used many (physical approaches) . It is necessary to prepare high-density 

ZnO NSs-film co-doped with Al/Ga using a novel combined technique of laser 

annealing with different energies (Vajargah et al., 2013). This method needs to be 

implemented under different growth conditions to determine the influence of changing 

substrates type, annealing temperature and time, laser annealing energy and Al/Ga 

concentration ratio on the structures, morphologies, electrical as well as optical 

properties of ZnO NSs-film samples co-doped with Al/Ga. Growth optimization is a 

prerequisite to achieving optimum ZnO NSs-film co-doped with Al/Ga which is 

advantageous for high-performance gas sensing applications (Ivanova et al., 2015). 

The limitations associated with the existing synthesis techniques of Al/Ga co-doped 

ZNSs-film must be overcome by developing a simple, economical and eco-friendly 

sol-gel method. For diverse applications, high-density ZnO nanorods are required.  

Moreover, in some cases, the sensor fabrication step requires the addition of 

various dopants which are very complicated and time consuming. The mono-doped 

(single element doping) system including Al:ZnO and Ga:ZnO thin films have some 

issues related to their stability, mechanical strength, efficiency morphology and hall 
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mobility that are disadvantageous for applications. By co-doping ZnO with more than 

one of the group III metallic elements these issues can be resolved (Bu, 2016). In 

addition to this, the expensive nature of Ga limits the mass production of Ga doped 

ZnO nanofilm. The impact of substrate type (Si) and changing laser annealing energy 

on the surface morphology of ZnO thin film grown by sol-gel route remains 

unresolved.  

Researchers have used Al as a substrate to form the porous structure of ZnO 

nanoplates. Using Al as a substrate has some potential problems: (i) Al is quickly 

oxidised by atmospheric oxygen, (ii) Al is a good conductor and therefore a thick layer 

of Al under the ZnO nanostructure might be problematic in its application in electrical 

devices. The substrate used is p-type (Si) and changing laser annealing energy on the 

surface morphology of ZnO thin film grown by the sol-gel route remains unresolved. 

To measure the gas sensing potency of optimum Al/Ga co-doped ZNSs-film 

sample grown by the sol-gel method, a sensor must be indigenously designed, and the 

sensing mechanism must be understood. Sample characterisations are necessary to 

determine the optical, morphological and electrical correlation effects useful for the 

development devices. A comprehensive understanding of the mechanisms behind the 

modifications of the overall characteristics of ZnO NSs-film co-doped with Al/Ga is 

significant. Experimental results must be compared and validated with other similar 

findings. Thus, high-density AGZO nanofilm with diverse morphology was 

synthesised and subsequently characterised to evaluate the structural, optical, electrical 

and gas sensing properties of the NSs-film. However, despite extensive research on 

ZnO nanostructure synthesis and characterisation, well-controlled ZnO 

nanostructures-based films with desirable electrical and optical properties are far from 

being achieved.  

To summarise the issues that arise in this process, the sensor fabrication step 

requires the addition of various dopants which is very complicated and time-

consuming. Reproducible and controlled growth of ZnO nanostructures with desirable 

attributes using an easy method is necessary for many applications. Although several 

methods have been used to synthesise ZnO nanostructures, they suffer from many 
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challenges. Vapour solid (VS) and vapour-liquid-solid (VLS) require a high 

temperature for the nanostructures’ growth, while radio frequency (RF) sputtering 

requires costly instruments and a particular laboratory setup. The sol-gel method is 

cost-effective and can generate controlled nanostructures of ZnO with morphology and 

dopants. However, the uses of sol-gel method for synthesising are not well described. 

One dimensional (1D) and two dimensional (2D) ZnO nanostructures have high 

surface to volume ratios, which make them valuable for many applications (Ali et al., 

2010). Although there are different methods to fabricate 2D ZnO nanostructures, the 

sol-gel spin coating method is the easiest and is able to fabricate 2D ZnO 

nanostructures at low temperatures. Based on the above-mentioned issues, this 

research proposes alternative methods in order to minimize cost and time.  

1.3 Research Objectives  

Based on the previously mentioned research and the research gaps the 

following objectives are set:  

i) To synthesise pure, ZnO NSs-thin films doped with Al  content from (0 to 

5 at.%), and co-doped with Al/Ga with varying Ga level (0-5) at.% by using 

a combined sol-gel and spin coating technique on Si-substrate by thermal 

annealing. 

 

ii) To determine the processing parameters (annealing temperature, time 

annealing, Ga dopant concentration and laser energy) dependent structure, 

morphology, optical and electrical properties of synthesised AZO samples 

through comprehensive characterisations on Si-substrate. 

 

iii) To measure the hydrogen gas sensitivity of grown AGZO nanofilm 

(containing vertically aligned nanorods morphology) by manufacturing a 

gas sensor for the two types of annealing (thermal and laser). 
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1.4 Scope of the Study 

This research involves the synthesis and thorough characterisations of ZnO 

NSs-thin films doped with Al and co-doped with Al/Ga. Samples will be analysed to 

determine their structural, morphological, optical and electrical features. The design 

of a gas sensor using the optimum AGZO film sample is the application-oriented 

target. The preparation of a series of NSs-thin films of pure zinc-oxide (ZO), Al-doped 

zinc-oxide (AlZO), and ZnO co-doped with Al/Ga (AGZO) with diverse morphologies 

on the p-type Si (100) substrates will be carried out using combined sol-gel and spin-

coating techniques. Raw materials of zinc-acetate-dehydrate, ZnAc 

[Zn(CH3COO)2.2H2O], aluminium-nitrate-nonahydrate [Al(NO3)3·9H2O], gallium 

nitrate nonahydrate [Ga(NO3)3·9H2O], 2-propanol [C3H8O] and ethanolamine (EA) 

will be used for growing such ZnO thin films. Zn precursor solution will be prepared 

by the dissolution of [Zn(CH3COO)2.2H2O] in 2-propanol (0.1 M) and EA. Spin-

coating at 3000 rpm speed and drying at 300 °C for 20 min on Si wafer will be 

completed. Furthermore, the execution of thermal and laser annealing treatment on the 

prepared thin films for the improvement of properties will be carried out. Samples of 

thermal annealing will performed at different temperature (425, 450, 475 and 500) ºC 

and for varying time durations (between 0 to 3 h) and for the laser energy annealing to 

examine their impact of overall properties. Al doping concentration will fixed at 1 at.% 

and Ga contents will varied (0 to 5 at.%) to optimize the composition of AGZO 

nanofilms.  

Room temperature structural and morphological characterisations of the as-

grown thin films samples will be taken using atomic force microscopy (AFM), 

scanning electron microscopy (SEM), field emission scanning electron microscopy 

(FESEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) spectroscopy. 

The optical properties of these samples will be examined using photoluminescence 

(PL), Raman and UV-Vis spectroscopy. The 4-point probe method will be used to 

measure the electrical resistivity and (I-V) characteristics of samples. Finally, a 

hydrogen gas sensor will be designed based on the optimum AGZO nanofilm sample 

to demonstrate its potential for gas sensing. The sensing performance of the synthetic 
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AGZO NSs film will be evaluated at 100 ºC and 150 ºC under varying hydrogen gas 

concentrations of 250, 500, 1250 and 1750 ppm. 

1.5 Significance of the Study 

Understanding the growth mechanism and improvement of various properties 

of AGZO nanofilm is fundamentally important. Despite this, a systematic approach 

for depositing such film with high quality and desired morphology using the sol-gel 

assisted method has not yet been developed. Thus, this study is significant in terms of 

developing a systematic method for the synthesis of good quality AGZO films required 

for diverse applications especially for gas sensors and transparent electrodes. This 

study is expected to resolve some of the issues related to traditional growth methods. 

Furthermore, the achieved new findings will contribute towards the development of 

ZnO-NSs thin films co-doped with Al/Ga which are useful for efficient gas sensors. 

So far, the effects of substrate, annealing laser shooting, growth time and temperature 

on the structure, morphology, optical and electrical properties of AGZO films have not 

been systematically determined. Growth of high quality samples requires careful 

optimization of the processing parameters.  

Controlled morphology and structure with high crystallinity required for the 

optoelectronic industries are believed to be achievable by sol-gel assisted spin-coating 

and laser annealing methods. The performance evaluation of the deposited AGZO 

nanofilms in terms of efficiency, cost, large scale reproducibility and environmental 

friendliness will be an interesting aspect to investigate. Using the proposed 

characterisation tools, it is possible to measure the defects, crystallinity, NSs 

morphology, optical band gap, optical absorbance, elemental traces, NPs shape, size 

and distribution, surface roughness, crystal density, Hall mobility, resistivity, carrier 

concentrations and gas sensing attributes. Furthermore, the proposed method can also 

be extended to grow another kind of semiconductor NSs in a well-controlled and 

reproducible manner.  
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1.6 Thesis Outline 

This thesis is composed of five chapters with the following highlights:  

Chapter 1 provides a brief research background to introduce the problem and 

to show why this research topic is relevant and worth undertaking. A brief review is 

provided to show the existing research gap and the issues to be resolved. The problem 

statement, research objectives, scope of the research and the significance are described. 

Chapter 2 presents a detailed literature review to justify the problem statement 

and the need for further research to fill the current gaps in the literature. A gentle 

introduction will be presented to the development of ZnO NSs, various methods of 

synthesis with their notable merits and demerits, characterisation tools, un-doped and 

doped ZnO films, and applications of these NSs. Detailed theories of ZnO 

nanostructure growth mechanisms, the principle of the techniques used to grow ZnO 

films and the mechanisms for gas sensing are discussed.  

Chapter 3 describes the research methodology in terms of raw materials, 

compositions, sample preparation techniques, optimization procedure, 

characterisation tools and their models, methods of data collection and subsequent 

analysis.  

Chapter 4 discusses the experimental results and analysis, interpreting them 

using various mechanisms, and comparing the present results with earlier findings in 

the literature. This chapter demonstrates how the results obtained can fulfil the 

proposed research objectives. The role of different annealing temperatures, time and 

laser energy shoots on the surface morphological, structural, electrical and optical 

behaviours of ZnO-NSs thin films co-doped with Al/Ga synthesised by sol-gel and 

laser annealing are underlined. Furthermore, the gas sensing attributes of the optimum 

sample are discussed. 

Chapter 5 concludes the thesis by proposing recommendations for future 

research in this field.  
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