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ABSTRACT

Preventing the bacterial colonization of different surfaces specially in the 
biomedical field with a technique that avoids the emergence of resistant bacteria is the 
key to limiting the spread of infections. The advancement of an antimicrobial coating 
material with photoactivated properties can be helpful in obviating the misuse or 
overuse of antibacterial substances and, therefore, prevents the development of 
superbugs. As a potential light-activated antibacterial material that employs two 
different antibacterial strategies, poly(methyl methacrylate) (PMMA) nanoparticles 
were impregnated with silver nanoparticles and cationic 5,10,15,20-tetrakis(A- 
methylpyridinium-4-yl)porphyrin (TMPyP) via a novel one-pot miniemulsion 
technique. At first, silver nanoparticles were prepared via chemical and physical 
methods. The resultant colloids were compared based on the particle size and yield of 
the reaction. Chemical reduction of silver was carried out using aniline and sodium 
borohydride (NaBH4) as different reducing agents. The effect of various parameters 
was optimized such as the order of mixing the reactants, presence of a stabilizer and 
time on stability, as well as size and concentration of the silver nanoparticles which 
were studied by UV-Vis. As a comparison, the physical technique was performed with 
ablation of a silver plate in distilled water with Q-switched Nd:YAG laser. The effect 
of ablation time and presence of a stabilizer on the production and stability of silver 
nanoparticles were optimized by using UV-Vis. Afterwards, the silver nanoparticles 
prepared via NaBH4 reduction method were incorporated into PMMA via a novel 
miniemulsion method. The obtained products were then studied using UV-Vis DR, 
FTIR, 1H NMR, FESEM, and TEM to investigate and optimize the polymerization, 
size of the particles and presence of silver in the samples. In the next phase, cationic 
porphyrin of TMPyP was synthesized from tetra pyridinyl porphyrin (TPyP) which 
was initially prepared via Alder-Longo condensation method. The obtained porphyrins 
were then characterized with UV-Vis, 1H NMR, and FTIR. Consequently, 
PMMA/TMPyP and PMMA/TMPyP/silver nanoparticles were synthesized via our 
established miniemulsion method and were studied using UV-Vis DR and TEM to 
investigate the presence of porphyrin and silver in the samples. The antibacterial 
activities for all samples were evaluated by Kirby-Bauer test in dark against Gram- 
negative E. coli and Gram-positive S. aureus. Samples containing porphyrin were 
further tested under illumination to study the photoactivation of porphyrin. Silver 
nanoparticles studies showed that the silver nanoparticles prepared via reduction with 
NaBH4 produced the highest yield with the size ranged between 7-25 nm and hence it 
was used in the production of polymer nanoparticles. Moreover, it was observed that 
in the physical technique, the production of silver nanoparticles increased by the time 
of ablation however, due to blockage of laser beam by silver nanoparticles the 
production was limited. The results of miniemulsion synthesis showed the successful 
production of PMMA/silver, PMMA/TMPyP, and PMMA/TMPyP/silver 
nanoparticles with high yields. The antibacterial test revealed that the use of two 
different antibacterial strategies improved the antibacterial properties of the polymer 
nanoparticles.
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ABSTRAK

Pelindungan pelbagai permukaan daripada pembentukan koloni bakteria 
terutamanya dalam bidang bioperubatan dengan teknik yang menghalang peningkatan 
kerintangan bakteria merupakan kunci utama dalam mengawal perebakan jangkitan. 
Kemajuan bahan pelapis antimikrobial dengan sifat yang diaktifkan secara cahaya 
dapat membantu dalam mengatasi masalah penyalahgunaan atau terlebih guna bahan 
antibakteria, justeru menghalang pembentukan bakteria. Sebagai bahan antibakteria 
teraktif cahaya yang berpotensi menggunakan dua strategi antibakteria, nanopartikel 
poli(metil metakrilat) (PMMA) telah diisitepukan bersama nanopartikel perak dan 
porfirin kationik 5,10,15,20-tetrakis(A-metilpiridinium-4-il)porfirin (TMPyP)
menggunakan kaedah baharu satu pot mini-emulsi. Untuk permulaan, nanopartikel 
perak telah disediakan menggunakan kaedah kimia dan kaedah fizikal di mana hasil 
koloid dibandingkan berdasarkan saiz partikel dan jumlah hasil tindak balas. 
Tindakbalas penurunan terhadap perak dijalankan menggunakan anilina dan sodium 
borohidrida (NaBH4) yang bertindak sebagai agen penurun. Pengoptimuman 
parameter dilakukan berdasarkan aturan pencampuran reaktan, kehadiran penstabil 
dan masa penstabilan serta saiz dan kepekatan nanopartikel perak dengan 
menggunakan kaedah UV-Vis. Sebagai perbandingan, teknik fizikal ablasi 
dilaksanakan terhadap plat perak dalam air suling menggunakan laser Q-bersuis Nd: 
YAG. Kesan masa ablasi dan kehadiran penstabil terhadap nanopartikel perak 
dioptimumkan menggunakan kaedah UV-Vis. Seterusnya, nanopartikel perak yang 
disediakan menggunakan kaedah penurunan NaBH4 telah digabungkan dengan 
PMMA menggunakan kaedah baharu mini-emulsi. Hasil gabungan telah dikaji 
menggunakan UV-Vis DR, FTIR, *H NMR, FESEM, dan TEM bagi mengkaji dan 
mengoptimumkan proses pempolimeran, saiz partikel dan kehadiran perak dalam 
sampel. Dalam fasa seterusnya, porfirin kationik TMPyP telah disintesis daripada tetra 
piridinil porfirin (TPyP) yang terlebih awal disediakan daripada tindak balas 
kondensasi Adler-Longo. Semua hasil porfirin dicirikan menggunakan UV-Vis, *H 
NMR, dan FTIR. Kemudian, nanopartikel PMMA/TMPyP dan PMMA/TMPyP/perak 
telah disintesis menggunakan kaedah mini-emulsi yang telah dibangunkan dan 
seterusnya dikaji menggunakan kaedah UV-Vis DR dan TEM bagi menentukan 
kehadiran porfirin dan perak dalam sampel. Aktiviti antibakteria semua sampel telah 
dijalankan menggunakan ujian Kirby-Bauer dalam keadaan gelap terhadap bakteria 
gram negatif E. coli dan gram positif S. aureus. Sampel yang mengandungi porfirin 
dikaji seterusnya dalam keadaan cahaya bagi mengkaji kesan fotoaktif porfirin. Kajian 
menunjukkan nanopartikel perak yang disediakan melalui kaedah penurunan 
menggunakan NaBH4 mempunyai hasil yang tinggi dengan saiz di antara 7-25 nm, 
justeru digunakan untuk penghasilan polimer nanopartikel. Malah, penghasilan 
nanopartikel dengan kaedah fizik juga meningkat dengan peningkatan masa ablasi, 
namun masih terhad kerana sinar laser dihalang oleh nanopartikel perak. Keputusan 
sintesis miniemulsi menunjukkan kejayaan penghasilan nanopartikel PMMA/perak, 
PMMA/TMPyP, and PMMA/TMPyP/perak dengan hasil yang tinggi. Ujian 
antibakteria pula mengesahkan dengan menggunakan dua strategi antibakteria berbeza 
dapat meningkatkan sifat antibakteria nanopartikel polimer.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Microbial contamination on surfaces of different wound dressings, medical 

devices, food packages, industrial pipes, and separation membranes is a serious 

concern worldwide that poses a great threat to their efficiency and lifetime. In general, 

bacteria can adhere on these surfaces and grow under suitable environmental 

conditions to form biofilms. These surface-associated bacterial communities are very 

hard to eradicate due to different factors such as slow growth of bacteria in the 

biofilms, poor penetration of antimicrobials into the biofilm matrix, spatial 

heterogeneity in biofilm structure, formation of persisted cells, and drug tolerant 

physiology of the cells. The effective way to inhibit the biofilm-induced infection or 

contamination is by completely remove the contaminated devices or items and replace 

them with new ones, which is extremely costly and inconvenient. Therefore, there is a 

great necessity to design high-performance antibacterial surface coatings that can 

prevent biofilm formations by either destroying the bacteria or strongly resisting 

bacterial adhesions (Guo et al., 2013 and Sathya et al., 2019).

Nanomaterials play an important role in antibacterial applications particularly 

due to their large surface area and size-dependent physiochemical properties. Among 

various materials, polymeric materials are great candidates to form nanocomposites 

with different biocidal agents for antibacterial coatings due to their flexibility, 

tailorability, and availability of various techniques for polymer immobilization 

(Mauter et al., 2011 and Duncan, 2011). These nanocomposite materials have 

strikingly upgraded properties which can be interestingly achieved at low nanoparticle 

concentrations. Polymers can act as surface topping specialist when nanoparticles are 

implanted in them (Puiso et al., 2013). Incorporation of biocidal agents into polymeric



nanomaterials has been commercially applied in drug and pesticide delivery, textiles, 

household goods, surgical implants and other biomedical devices (Sawant et el., 2013).

Poly (methyl methacrylate) PMMA is a biocompatible, low-cost, light-weight, 

mechanically strong, and transparent polymer, most frequently used in medical, 

pharmaceutical, and food packaging industries. In the medical field, PMMA has been 

used as implants, intra ocular lenses, synovial joints, drug delivery agents, dentures 

and wound dressings (Kanie et al., 2004, and Tihan et al., 2009). There have been 

numerous reports on synthesis of PMMA/antibacterial agent nanocomposites for 

active coatings to prevent biofilm formations on different surfaces. For instance, 

PMMA has been loaded with gentamycin in bone cements, PMMA/chitosan 

nanoparticles have been synthesized as coating materials for latex gloves, and 

PMMA/silver nanocomposites have been prepared as a bioactive water filter 

(Arpornwichanop et al., 2014, Alvarez-Paino et al., 2017 and Awad et al., 2019). 

Among various antimicrobial agents, silver nanoparticles are the most widely used as 

polymer additives due to their physiochemical properties and area of use (Siddiqui et 

a l, 2015).

Silver nanoparticles are well-known antibacterial agents that have been used in 

the biomedical field to prevent infectious disease or colonization of biomedical devices 

by pathogenic microorganisms (Carlos et al., 2020). Due to large surface area per 

mass, silver nanoparticles exhibit remarkable antibacterial activity, even at low 

concentration. Moreover, they are low-cost and have shown limitation of developing 

resistant microbial strains, low cytotoxicity and immunological response (Yin et al., 

2020). Materials impregnated with silver nanoparticles may preserve their antibacterial 

activity over a long-time period, hence, combination of polymeric materials with silver 

nanoparticles provides excellent composites for prefect antimicrobial coatings 

(Lyutakov et al., 2015).

Incorporation of silver nanoparticles into polymeric matrices has pronounced 

potential to inhibit aggregation of nanosilver and create uniform surface coatings on 

various substrates. Moreover, these materials can control the release of silver for 

sustained antimicrobial effects, decrease cytotoxicity and more importantly, can be

2



designed to resist adhesion of bacteria and enhance bactericidal properties. Therefore, 

it is highly beneficial to combine silver nanoparticles and polymer matrices to produce 

multifunctional nanocomposite coatings for antibacterial applications (Eby et al., 2009 

and Sur et al., 2010).

Several chemical approaches have been reported to incorporate silver 

nanoparticles into polymer matrices. For all of them, in-situ and ex-situ methods are 

the main route of preparation. In the in-situ approach, either polymerization of 

monomers takes place in the presence of pre-synthesized silver nanoparticles which 

are dispersed in the monomeric solution before polymerization or silver ion reduction 

and polymerization occurs simultaneously. On the other hand, in the ex-situ approach, 

silver nanoparticles and polymer are synthesized separately and subsequently silver 

nanoparticles are incorporated into the polymer via either melt compounding or 

solution blending. The ex-situ synthesis method is more suitable wherever large-scale 

industrial applications are required but the key challenge related to this technique is 

preparing nanoparticles that have higher dispersibility in the polymer and long-term 

stability against aggregation (Tamayo et al., 2019).

In recent years, much effort has been devoted to the studies of in-situ synthesis 

of metal nanoparticles in polymer matrices. The most important advantage of this 

technique is that it prevents particle agglomeration and maintains a good spatial 

distribution of nanoparticles in the polymer matrix whereas, the major drawback of 

this method is the slight probability of the presence of unreacted educts in the course 

of reaction. For instance, according to Yin et al. polyacrylamide/silver nanocomposites 

were prepared by simultaneous reduction of silver ions and polymerization of 

monomers using 60Co Y-ray (Yin et al., 1998). In another work, Huang and Brittain 

prepared PMMA/layered silicate nanocomposites by in situ suspension 

polymerization. Similarly, Yeum and Deng synthesized PMMA/silver microspheres 

by suspension-polymerizing methyl methacrylate in the presence of silver 

nanoparticles (Yeum & Deng 2005, and Sadasivuni et al., 2019). However, 

developing an easy and straightforward method to incorporate silver nanoparticles into 

the polymeric matrices is still a challenge.
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The active polymer/silver coatings are mostly based on creating cationic or 

charged surfaces that release silver nanoparticles or silver ions as antibacterial agents 

from their structure. However, for most of these systems the antibacterial properties 

are lost once the silver source is consumed (Zhou et al., 2017). Moreover, silver 

nanoparticles can exhibit different efficiencies towards different kinds of bacteria and 

furthermore towards one stamp to another. Generally, silver nanoparticles have been 

shown to be more effective against Gram-negative bacteria, than Gram-positive strains 

(Lyutakove et al., 2014). Therefore, in order to design an effective antibacterial coating 

that can continuously inactivate both Gram-positive and Gram-negative bacteria, 

employing another antibacterial strategy to the polymeric nanocomposites can be 

beneficial.

One of the antibacterial approaches that has recently attracted great attention is 

antibacterial photodynamic therapy (aPDT). This non-antibiotic treatment modality 

utilizes photosensitizers and visible light to induce an oxidative damage to microbial 

pathogens and due to its multi-target process, it is unlikely that it induces resistance in 

microorganism. As one of the major problems in eradicating biofilms on the surfaces 

is the emergence of resistant bacteria strains due to the use of conventional antibiotics, 

employing aPDT can be a useful alternative (Yu et al., 2008 and Humblin, 2016).

The concept of photodynamic therapy consists of the action of three 

components which are photosensitizer (PS), a light source of appropriate wavelength 

and the presence of oxygen. The interactions between light and PS generates reactive 

oxygen species (ROS) which then destroy a variety of cellular components like 

proteins, nucleic acids and lipids, resulting in cytotoxicity (Mahajan et al. 2019). 

Among the photosensitizer molecules, porphyrins are one of the most commonly used 

photosensitizers in aPDT due to their high frequency, high rate of ROS production and 

easy chemical modifications (Ghorbani et al., 2018).

Generally, porphyrins bind efficiently to Gram-positive bacteria and inactive 

them, however, Gram-negative bacteria are known to be more resistant to treatment 

with porphyrin photosensitizers. Studies show that cationic porphyrins exhibit more 

unique superiority comparing to anionic or neutral porphyrins as they can photo-
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inactivate both Gram-positive and Gram-negative bacteria. The high susceptibility of 

Gram-positive species to porphyrins photosensitizers is attributed to the presence of a 

relatively porous layer of peptidoglycan and lipoteichoic acid in their cell wall, which 

allows the photosensitizer molecules to diffuse to the target sites within the cell. In 

contrast, due to the presence of negatively charged lipopolysaccharides (LPS) in the 

cell wall of Gram-negative bacteria, the permeability of neutral or anionic porphyrins 

in the external environment into the bacterial cell is hindered while cationic porphyrins 

effectively interact with these negatively charged surfaces of Gram-negative bacteria 

and photo-inactivate them (Amos-Tautua et al., 2019).

Antibacterial efficacy of porphyrins in PDT can be further exploited through 

the fixation of these molecules in support materials and the resultant materials appear 

to be effectively self-sterilizing. Different support materials have been proposed and 

studied, including polymers, silica, cellulose, and glass where porphyrins may be 

entrapped, absorbed or covalently attached to the surface of these carriers (Almeida et 

al., 2009). Porphyrin-containing polymers are a promising class of materials for aPDT. 

It has been reported that embedding a porphyrin within a well-defined polymer 

nanoenvironment can greatly decrease aggregation and excited-state quenching, which 

are deleterious to many photophysical processes (Roberts et al., 2014 & Zhou et al., 

2017). For instance, in a study conducted by Zhdanova et al. synthesis of a new 

cationic pyridyl-containing meso-arylporphyrins in polymeric micelles was reported 

and their antibacterial photodynamic activity against both Gram-negative (Escherichia 

coli) and Gram-positive (Staphylococcus aureus) bacteria in solution and biofilm 

modes was evaluated. Their results showed that the inclusion of the photosensitizers 

in polymeric micelles of Pluronic F-127 significantly increased their photodynamic 

activity. Moreover, in vitro experiments showed that the proposed porphyrins quite 

strongly inhibit the growth of Gram-positive S. aureus, however, Gram-negative E. 

coli inhibition was slightly lower (Zhdanova et al., 2020).

Antibacterial surfaces which work with the PDT principle are of great interest 

due to their preventive character for infections. These surfaces can potentially help to 

reduce the transmission of pathogens, particularly multi-resistant microorganisms, 

which are a huge problem especially in hospital hygiene. As the photodynamic process
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of such surfaces does not necessarily lead to the photosensitizer consumption, self- 

disinfecting coatings could offer a long-term and constant prevention of 

microorganism settlement and growth on any surface (Felgentrager et al., 2014).

In order to create an effective antibacterial coating system for different surfaces 

that battles the emergence of resistant bacteria, in this study, aPDT strategy with the 

use of 5,10,15,20-tetrakis(A-methylpyridinium-4-yl)porphyrin (TMPyP) as a cationic 

photosensitizer was combined with silver nanoparticles containing polymeric material 

via one-pot miniemlusion technique. Integrating these two different antibacterial 

strategies into one system can create a positive synergic effect and overcome the 

possible low efficiency of individual treatments.

1.2 Problem Statement

Antimicrobial resistance (AMR) poses a serious threat of growing concern to 

human, animal, and environment. The challenge of antimicrobial resistance in 

bacterial pathogens is associated with high morbidity and mortality and this is due to 

the emergence, spread and persistence of multidrug-resistance (MDR) bacteria (Aslam 

et al., 2018). Gram-positive and -negative bacteria with multidrug resistance patterns 

are very difficult to treat and might even be untreatable with conventional antibiotics. 

Currently, due to a shortage of effective therapies, lack of successful prevention 

measures, and only a few new antibiotics, there is an urgent need to develop novel 

treatment options and alternative antibacterial therapies (Frieri et al., 2017). The 

biofilms grown on solid substrates have shown extraordinary resistance to 

conventional antibiotic treatments and can present challenges for infection control. As 

a result, the research has been driven towards the development of novel coatings with 

superior antimicrobial properties. These may include not only in the medical area such 

as for surgical tools or implants, but also in a number of technical applications 

including underwater optics or ship hulls (Zhou et al., 2017).

Silver nanoparticles are widely used in industry, mainly because of their 

effective antimicrobial properties, with applications in a growing number of medical
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and consumer products (Diaz et al., 2013). They have also been studied as candidates 

for coating medical devices, however, the results have been disappointing in clinical 

tests. This might be due to inactivation of metallic silver when it comes in contact with 

blood plasma and also the lack of durability of the coatings. Incorporating silver 

nanoparticles with polymers however, has shown promising antibacterial properties 

with a sustained release of silver (Kong & Jang, 2007 and Rai et al., 2008).

Poly(methyl methacrylate) (PMMA) is an important polymeric material that 

has been widely used as additives, coating and polishing agents due to its superior 

characteristics such as high light transmittancy, colourlessness, chemical resistance, 

and weathering corrosion resistance (Nuyken & Lettermann, 1992 and Yeum & Deng,

2005). In the past decade, various attempts have been made to incorporate silver 

nanoparticles into PMMA nanomaterials in order to produce biocidal surfaces and 

coatings. For instance, Damm and co-workers coated PMMA sheets by silver 

dispersion techniques using silver nanoparticles stabilized with various polymers 

(Damm et al., 2006). However, once the silver reservoir in these coatings is consumed, 

the antimicrobial properties of such surfaces are lost (Zhou et al., 2017). Moreover, it 

has been reported that silver nanoparticles in general are more effective against Gram- 

negative bacteria than Gram-positive ones (Lyutakov et al., 2014).

To overcome such problems, antibacterial photodynamic therapy (aPDT) was 

introduced to PMMA/silver substrate by utilizing porphyrins as photosensitizers in 

some studies. It was reported that the photodynamic process of porphyrins 

incorporated into PMMA/silver system does not naturally lead to their consumption, 

hence, they could offer a long-term antimicrobial effect on any surfaces. However, due 

to the use of free base tetraphenylporphyrin (TPP) in these studies, the antibacterial 

properties of the system against Gram-negative bacteria were relatively lower than 

Gram-positive bacteria (Lyutakov et al., 2014 and Elashnikov et al., 2016) as it has 

been shown that neutral porphyrins are not very effective against Gram-negative 

bacteria (Moghnie et al., 2017). Therefore, the challenge of generating a promising 

antibacterial system that can be effective against both Gram-positive and Gram- 

negative bacteria remains elusive.

7



In addition, PMMA/porphyrin/nanosilver materials in the literature have been 

reported to be fabricated via spin coating or electrospinning techniques in the form of 

thin films and nanofibers respectively, however, these techniques have certain 

limitations and drawbacks (Lyutakov et al., 2014 and Elashnikov et al., 2016). One of 

the biggest disadvantages of spin coating is its lack of material efficiency. In a typical 

spin coating process, only 2-5% of the material dispensed onto the substrate is utilized, 

while the remaining 95-98% is flung off into the coating bowl and disposed and 

therefore the manufacturing process is costly and not economically feasible (Sahu et 

al., 2009). Electrospinning is also a costly technique with limited application of 

electro-spun nanofibers due to their friability after calcination (Shi et al., 2015). Hence, 

finding an easy straightforward technique to fabricate PMMA/porphyrin/silver 

nanomaterials remains a challenge.

1.3 Research Objectives

The objectives of this research are:

i) To synthesize silver nanoparticles via reduction techniques and laser 

ablation and compare their findings.

ii) To synthesize PMMA/silver nanocomposites via miniemulsion.

iii) To synthesize 5,10,15,20-tetrakis(A-methylpyridinium-4-yl)porphyrin 

(TMPyP) and fabricate PMMA/TMPyP/silver nanocomposites via 

miniemulsion.

iv) To investigate the antibacterial activity of the resultant products against 

Escherichia coli and Staphylococcus aureus bacteria using Kirby-Bauer 

disk diffusion technique.

1.4 Scope of Study

This study initially consists of the synthesis of silver nanoparticles via chemical 

reduction and laser ablation techniques. In the chemical method, AgNO3 was used as
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a metal salt precursor, CTAB and SLS were the stabilizing agents and aniline and 

sodium borohydride were used as two different reducing agents. In the reduction with 

aniline, different modes of mixing of the reagents and the effect of stirring on the size 

of the nanoparticles were studied. The reduction of silver with sodium borohydride 

was carried out using different initial AgNO3 concentrations (0.0001 M, 0.0002 M,

0.0005 M and 0.001 M). Colloidal silver obtained from both reductions were then 

compared based on the size and yield of the nanoparticles. Silver nanoparticles were 

also prepared via laser ablation technique while silver plate was immersed in the 

solution of distilled water and SLS and shot with a Q-switched Nd:YAG laser for 

different durations. Ablation of silver without the use of SLS was also conducted to 

study the effect of the stabilizer on the production of nanoparticles.

The silver nanoparticles with different concentrations obtained from the 

reduction with sodium borohydride were then used as the water phase in miniemulsion 

polymerization of methyl methacrylate and as a result, PMMA/silver nanoparticles 

with different concentrations of silver were produced. Moreover, the pure polymer 

nanoparticles were also synthesized via miniemulsion with deionized water as the 

water phase.

The cationic porphyrin used in this study was 5,10,15,20-tetrakis(A- 

methylpyridinium-4-yl)porphyrin (TMPyP) which was prepared by methylation of 

5,10,15,20-tetrakis(A-methylpyridinium-4-yl)porphyrin (TPyP) using methyl 

toluenesulfonate. Prior to the methylation, TPyP was prepared by using Adler-Longo 

method. Different amounts of as-synthesized TMPyP in deionized water were then 

used as the water phase in the miniemulsion polymerization of MMA to obtain 

PMMA/TMPyP with different concentrations of TMPyP. The polymer nanoparticles 

containing both TMPyP and silver nanoparticles were prepared using different 

amounts of TMPyP solution and different amounts of silver nanoparticles solution as 

the water phase in the miniemulsion process to produce PMMA nanoparticles with 

different combinations of TMPyP and silver nanoparticles.

The antibacterial properties of prepared PMMA, PMMA/silver nanoparticles 

with different concentrations of silver, PMMA/TMPyP nanoparticles containing
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different amounts of TMPyP and PMMA/TMPyP/silver nanoparticles with different 

amounts of TMPyP and silver were evaluated using Kirby-Bauer test against E. coli 

and S. aureus bacteria in dark. The antibacterial properties of samples containing 

porphyrin were further investigated under illumination to study the effect of light in 

the activation of photoinactivation properties of porphyrin.

Silver nanoparticles were characterized and studied using UV-Vis 

spectroscopy and Transmission Electron Microscope (TEM). Polymer 

nanocomposites were characterized using UV-Vis DR spectroscopy, 1HNMR, FTIR, 

FESEM and TEM.

1.5 Significance of Study

Currently, the second leading cause of death worldwide is infectious diseases 

and this is directly related to the constant growth in the resistance of many pathogens 

to current antibiotics (Fischbach et al., 2009 and Garcia-Alvarez et al., 2012). 

Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide problem that 

leads to high morbidity and mortality and this because of the emergence, spread, and 

persistence of multidrug- resistance bacteria or “superbugs”. The tenable causes of 

AMR or “the global resistome” include the excessive use of antibiotics in animals 

(food, pets, aquatic) and humans, sale of antibiotics without prescription, increased 

international travels, poor hygiene, and release of nonmetabolized antibiotics or their 

residues into the environment through manure or feces (Aslam et al., 2018).

The spread of many of these infectious diseases are associated with 

contaminated surfaces such as medical devices, implants, water filters, and food 

packages. The growth of bacteria on these surfaces and formation of biofilms are 

notoriously difficult to be removed as biofilms provide ideal shelters for bacteria to 

metabolize safely with much tolerance to antibiotics (Yuan et al., 2008 and Lichter et 

al., 2009). Therefore, there is an expanding interest in the development and design of 

new coating materials that are effective killing bacteria and preventing the spread of 

pathogens without creating antibacterial resistance (Vasilev, 2019).
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In order to develop an effective antimicrobial material, recent studies have been 

focused on integrating different biocidal techniques into polymeric matrices in order 

to take advantage of various approaches at once (Levy et al., 2004). Among the 

antibacterial agents, silver nanoparticles have been found to be excellent antimicrobial 

agents due to their effective biocidal ability which makes it hard for bacteria to develop 

resistance and nontoxicity to human cells (Kong & Jang, 2007). On the other hand, in 

the field of antibacterial photodynamic therapy (aPDT), cationic porphyrins have 

received great attentions due to their ability to produce reactive oxygen species and 

effectively inactivate both Gram-positive and -negative bacteria in the presence of 

light (Goncalves et al., 2020). Employing these two different antibacterial strategies 

into a polymeric matrix, can potentially create a more effective antibacterial material 

for coating applications (Creanga et al., 2013).

In order to accomplish this goal, finding an easy synthetic route that is 

straightforward is crucial. The miniemulsion technique is a particular heterophase 

polymerization which allows the formation of functionalized polymers by 

polymerization or modification of polymers in stable nanodroplets. The use of water 

rather than organic solvents makes miniemulsion polymerization an environmentally 

friendly technique. Moreover, miniemulsion is a one-pot synthetic route with high 

polymer yield that is easy to perform and cost effective (Crespy & Landfester, 2010). 

The water phase in the miniemulsion enables the use of water-soluble antibacterial 

agents in the reaction mixture. Therefore, it is a suitable technique to employ for 

incorporation of antibacterial agents into the polymer matrix.

In this research, in order to combine aPDT strategy with PMMA/silver 

nanoparticles system, 5,10,15,20-tetrakis(A-methylpyridinium-4-yl)porphyrin

(TMPyP) was used as a cationic photosensitizer, as it has been observed that cationic 

porphyrins can successfully photoinactivate both Gram-positive and Gram-negative 

bacteria, as well as fungi. Moreover, fabrication of PMMA/silver, PMMA/TMPyP, 

and PMMA/TMPyP/silver nanoparticles systems was delivered using a one-pot 

miniemulsion method which is an easy environmentally friendly process that 

simultaneously polymerizes MMA and incorporates silver nanoparticles and the 

porphyrin into the polymer nanoparticles. Finally, the switchable antibacterial
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properties of the resultant nanocomposites were evaluated against E. coli and S. aureus 

bacteria in absence and presence of light.

This study enables the development of antibacterial materials that get use of 

two different strategies against formation of biofilms for coating purposes. In addition, 

this work can be used as a synthesis model to fabricate new and more effective 

antimicrobial nanocomposites.

1.6 Project Outline

Synthesis of silver nanoparticles via Characterization with UV-Vis, and
reduction method and laser ablation 4 TEM

♦

♦
Preparation of porphyrin Characterization with UV-Vis, FTIR,

4 and 'HNMR

♦

♦
Antibacterial test against E. coli and S. 
aureus under illumination and in dark
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