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ABSTRACT 

Research octane number (RON) is used as a reference in petrochemical 

refining industries to indicate the quality of fuel. A higher RON can be achieved 

through hydroisomerization. In this study, protonated fibrous silica BEA (HSi@BEA) 

catalyst with unique bicontinuous concentric lamellar structure morphology was 

successfully prepared by microemulsion technique coupled with zeolite BEA seed. 

The HSi@BEA catalyst was compared with protonated commercial BEA zeolite 

(HBEA) on the hydroisomerization of n-hexane and cyclohexane. The catalysts were 

characterized using X-ray diffraction (XRD), surface area analysis, field emission 

scanning electron microscopy (FESEM), transmission electron microscopy (TEM), 

Ultraviolet-Diffuse Reflectance Spectroscopy (UV-DRS), Fourier transform infrared 

spectroscopy (FTIR), pyridine adsorption FTIR, 2,6-lutidine adsorption FTIR, nuclear 

magnetic resonance (NMR), and electron spin resonance (ESR). The catalytic 

performance was conducted in a microcatalytic pulse reactor at 423-623 K under 

atmospheric pressure. The surface area analysis showed that HSi@BEA catalyst 

exhibited higher surface area and bigger average pore size compared to the commercial 

HBEA catalyst. 27Al Magic angle spinning NMR (MAS NMR) results displayed that 

the additional silica lamellar structure of the HSi@BEA catalyst increased the extra-

framework aluminium (EFAl). During hydroisomerization, the additional Lewis acid 

sites in the HSi@BEA generated high amount of protonic acid sites by playing a role 

as electron acceptors after the dissociation of H2 or C6 alkanes. The high amount of 

protonic acid sites in HSi@BEA catalyst enhanced catalytic activity at 523 K with 

isomers yield of 19.8% and 13.2% for n-hexane and cyclohexane respectively, 

compared to 2.50% and 6.64% over commercial HBEA catalyst. Further modification 

of HSi@BEA catalyst with phosphoric acid (P/HSi@BEA) and nitric acid 

(N/HSi@BEA) by wet impregnation further enhanced the catalytic activity which is 

attributed to the different behaviour of the fibrous silica BEA support. FTIR analysis 

showed that the phosphate group favoured to form P-OH species in the catalyst 

framework which resulted in a higher number of weak acid sites. Additionally, the 

nitrate group interacted with EFAl species on HSi@BEA catalyst and increased the 

formation of Brønsted acid sites of the catalyst. In n-hexane and cyclohexane 

hydroisomerization, the P/HSi@BEA catalyst favoured the production of the n-hexane 

isomers, while the N/HSi@BEA were selectively towards production of cyclohexane 

isomers, with isomers yield 50.3% and 48.4%, respectively. This fundamental study 

exhibits that significant interactions given by such phosphate and nitrate groups with 

the unique silica fibrous BEA support could enhanced hydroisomerization which 

contribute to the high RON of fuel. 
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ABSTRAK 

Nombor oktana penyelidikan (RON) digunakan sebagai rujukan dalam industri 

penapisan petrokimia untuk menunjukkan kualiti bahan api. RON yang lebih tinggi 

boleh dicapai melalui penghidroisomeran. Dalam kajian ini, mangkin BEA silika 

berserabut berproton (HSi@BEA) dengan struktur morfologi lamela sepusat 

dwiselanjar yang unik telah berjaya disediakan melalui teknik mikroemulsi yang 

digandingkan dengan benih zeolit BEA. Mangkin HSi@BEA telah dibandingkan 

dengan zeolit BEA berproton komersial (HBEA) untuk penghidroisomeran n-heksana 

dan sikloheksana. Mangkin telah dicirikan menggunakan pembelauan sinar-X (XRD), 

analisis luas permukaan, mikroskopi elektron pengimbas pancaran medan (FESEM), 

mikroskopi elektron penghantaran (TEM), spektroskopi pantulan serakan 

ultralembayung-cahaya nampak (UV-DRS), spektroskopi inframerah transformasi 

Fourier (FTIR), FTIR penjerapan piridina, FTIR penjerapan 2,6-lutidina, resonans 

magnet nucleus (NMR), dan resonans spin elektron (ESR). Prestasi pemangkin telah 

dijalankan di dalam reaktor denyut pemangkinan mikro pada 423-623 K di bawah 

tekanan atmosfera. Analisis luas permukaan menunjukkan bahawa mangkin 

HSi@BEA memperlihatkan luas permukaan yang lebih tinggi dan saiz liang purata 

yang lebih besar berbanding mangkin HBEA komersial. Keputusan NMR penspinan 

sudut ajaib 27Al (MAS NMR) menunjukkan peningkatan struktur lamela silika 

mangkin HSi@BEA telah meningkatkan aluminium di luar rangka (EFAl). Semasa 

penghidroisomeran, tapak asid Lewis tambahan di dalam HSi@BEA menghasilkan 

jumlah tapak asid proton yang tinggi dengan memainkan peranan sebagai penerima 

elektron selepas penceraian H2 atau alkana C6. Tapak asid proton yang tinggi di dalam 

mangkin HSi@BEA meningkatkan aktiviti pemangkinan pada 523 K dengan hasil 

isomer 19.8% dan 13.2% masing-masing bagi n-heksana dan sikloheksana, 

berbanding 2.50% dan 6.64% bagi mangkin HBEA komersial. Pengubahsuaian 

lanjutan mangkin HSi@BEA dengan asid fosforik (P/HSi@BEA) dan asid nitrik 

(N/HSi@BEA) melalui pengisitepuan basah telah meningkatkan lagi aktiviti 

pemangkinan yang dikaitkan dengan tingkah laku berlainan penyokong BEA silika 

berserabut. Analisis FTIR menunjukkan bahawa kumpulan fosfat memihak untuk 

membentuk spesies P-OH di dalam rangka mangkin yang menyebabkan lebih banyak 

tapak asid lemah. Tambahan lagi, kumpulan nitrat telah berinteraksi dengan spesies 

EFAl pada mangkin HSi@BEA dan meningkatkan pembentukan tapak asid Brønsted 

mangkin. Dalam penghidroisomeran n-heksana dan sikloheksana, mangkin 

P/HSi@BEA memihak kepada pengeluaran isomer n-heksana, manakala 

N/HSi@BEA memilih ke arah pengeluaran isomer sikloheksana masing-masing 

dengan hasil 50.3% dan 48.4%. Kajian asas ini memperlihatkan bahawa interaksi 

penting yang diberikan oleh kumpulan fosfat dan nitrat dengan keunikan penyokong 

BEA silika berserabut dapat meningkatkan penghidroisomeran yang menyumbang 

kepada RON bahan bakar yang tinggi.  
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CHAPTER 1  
 

 

 

INTRODUCTION 

1.1 Background of Study 

Reducing emission from transportation is of great importance due to the 

challenges in climate change and the increasing demand for mobility. Spark ignited 

engines operating on gasoline fuels are primary technology for light duty passenger 

vehicles, and their efficiency is limited by knocking (Kalghatgi, 2014). As a result, 

restrictions are imposed on gasoline to reduce its benzene, heavy aromatics and olefins 

concentrations along with the removal of tetramethyl lead. However, the octane 

number of aromatics and olefins is relatively high, so reducing their concentration in 

gasoline causes a decrease in octane number and, consequently, fuel quality (Naqvi et 

al., 2018). Therefore, numerous studies have been implemented to enhance the quality 

of gasoline by increasing the Research Octane Number (RON), which is used in the 

quality control of gasoline that provide information on the auto ignition (Splitter et al., 

2016). High octane component is a gasoline additive that is needed for the proper 

functioning of modern engines. High octane sources have taken many forms 

throughout the years, both renewable and petroleum-based. They include lead, methyl 

tertiary butyl ether (MTBE), benzene, toluene, ethyl-benzene and xylene, and ethanol 

(a biofuel). However, this method has been under scrutiny due to their deleterious 

environmental effects such as the increase in the nitrogen oxide emission and speeds 

up corrosion (Chambers, 2011). In addition, MTBE is an expensive component that 

can further increase the cost of gasoline from its application.  

In this regard, high octane components can be obtained by the 

hydroisomerization of n-alkanes with low carbon numbers, relieving the increasing 

severe legal restrictions on the use of environmentally-unfriendly aromatics in high-

octane gasoline (Zhang et al., 2019). This process is able to convert the n-alkanes into 

corresponding branched isomers which possess a higher octane number compared to 

the linear alkanes. Therefore, hydroisomerization is an alternative technology to 
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produce high quality gasoline to meet the needs of the automobile industry. However, 

the process mainly depends on the catalysts and how efficient they are in their activity 

and selectivity. 

Hydroisomerization of n-alkanes generally occurs on bifunctional catalysts, 

which consist of the metal constituent providing the hydrogenation/dehydrogenation 

functions, and the acid constituent for skeletal transformations of alkene intermediates 

via carbenium ions rearrangement. Previously, chloride alumina-based catalysts have 

been extensively applied in industrial production, however, they have common 

drawbacks of high cost and tolerance to sulfur and water because the active 

components of them are generally noble metals such as Pt (Ono, 2003). Furthermore, 

hydroisomerization catalyst requires a solid support with acidic function where several 

supports have been reported such as SAPO-11 (Liu et al., 2008), MOR (Konnov et al., 

2012), ZrO2 (Ruslan et al., 2012), alumina (Vandegehuchte et al., 2014), ZSM-5 

(Setiabudi et al., 2013), HY(Aziz et al., 2012) and HBEA (Kamarudin et al., 2012). 

Currently, the catalysts used for hydroisomerization are facing problems such as low 

surface area, rapid deactivation, unstable structure, high temperature reaction and low 

selectivity of desired product and conversion of reactants.  

More recently, bifunctional metal catalysts supported on zeolites are widely 

used in a number of industrial processes such as catalysis, separation and adsorption 

(Rahimi and Karimzadeh, 2011; Wang et al., 2016; Gao et al., 2018). Various 

reactions used zeolite as active supports for reactions such as cracking, alkylation, 

aromatization and hydroisomerization of hydrocarbons. This is due to the presence of 

dual properties of acidic and basic sites which play an important role in many catalytic 

reactions. Besides, zeolites provide uniformity in micropore size and shape which 

makes zeolite a suitable catalyst in the oil refining. However, due to the constraints in 

pore diameter, the catalytic activity of zeolite dropped when bulkier molecule are used 

(Pérez-Ramírez et al., 2008). Microporous structure and strong acidic properties of 

microporous zeolite such as ZSM-5, Y and β are important properties for catalysts in 

petrochemical industry. The improvement from microporosity to mesoporosity in 

zeolite was aimed to solve the problem of diffusion limitation and pore blockage 

incurred from the use of conventional zeolite (Firmansyah et al., 2016). Thus, 
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extensive effort has been made to develop new support material that can overcome the 

aforementioned limitations by considering the aspects of mesoporosity and balanced 

acidity properties. 

Fibrous material was initially developed by Polshettiwar, et al. in 2010. Several 

studies showed the potential of fibrous material in photocatalysis (Seo et al., 2017; 

Singh et al., 2018), CO2 methanation (Hamid et al., 2017), alkane hydrogenolysis 

(Fihri et al., 2012), cumene hydrocracking (Firmansyah et al., 2016), and phenol 

hydrogenation (Karakhanov et al., 2017). The unique bicontinuous silica lamellar 

morphology provides large surface area with more mesopores, high accessibility of 

bulky reactants to the active sites and tuneable acidity could improves their catalytic 

activity. Analogous to the structure of KCC-1, zeolite-based fibrous support using 

BEA as a seed was synthesized to cover some limitations from the use of silica-based 

fibrous for application in acid catalyzed reaction such as hydroisomerization.   

In order to improve the performance of hydroisomerization using fibrous silica 

BEA (Si@BEA), the loading of oxoanions such as SO4
2-, PO4

3- and NO3
- could be 

useful to improve the acidic property of supports. Sulfated catalyst was enormously 

studied in alkane hydroisomerization especially loaded on zirconia as a support 

(Triwahyono et al., 2003a; Triwahyono et al., 2010) or promoter (Tamizhdurai et al., 

2018). Tamizhdurai et al. reported that SO4-ZrO2 as solid-super acid created strong 

Brønsted acidity by attachment of SO4 groups to ZrO2-surface (Tamizhdurai et al., 

2018) . In addition, the conversion of n-butane hydroisomerization on SO4
2-/ZrO2 

increased with increasing the sulfate ion loading due to existence of bidentate sulfate 

and/or polymeric sulfate species, which act as active sites for the hydroisomerization 

as revealed by Triwahyono et al. (2006). However, the use of sulfated-catalyst has 

some drawbacks such as higher cracking products due to high acidity and requires 

higher hydrogen to carbon ratio (Triwahyono et al., 2003c; Valavarasu and Sairam, 

2016).  
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Meanwhile, many works have been devoted related to phosphate group loaded 

catalysts (Yori et al., 2000; Bij et al., 2014; Van Der Bij and Weckhuysen, 2014; Lyu 

et al., 2017). Literature reported that the strong Brønsted acid sites of ZSM-5 zeolite 

could be converted into weaker Brønsted acid sites when ZSM-5 zeolite was treated 

with phosphoric acid (Ghiaci et al., 2007; Lyu et al., 2017). Besides, the introduction 

of phosphorus passivated the external surface acid sites and narrowed the pore size, 

which in turn inhibited the hydroisomerization of xylene (Janardhan et al., 2014). 

Fatah and co-workers reported the catalytic activity of n-heptane was enhanced due to 

the formation of (MoOx)
-(Hy)

+ and the participation of acidic centers from the presence 

of phosphorus. This was also due to the creation of new Lewis and Brønsted acidic 

centers (Fatah et al., 2017). Nevertheless, to date, there is no report available regarding 

the modification of bicontinuous concentric lamellar silica BEA type material using 

phosphate and nitrate group. 

Previously, Ignesia et al. reported that the hydroisomerization of n-alkane to 

produce iso-alkene occurs in the absence of hydrogen on Fe/HZSM-5. They proposed 

that reaction via dehydrogenation of n-alkane to form hydrogen molecule and n-alkene 

and then molecular hydrogen reacts with n-alkene to produce iso-alkene (Li and 

Iglesia, 2008). Besides, Triwahyono et al. (2010) revealed that the generation of 

protonic acid sites from pentane molecules was observed by the adsorption of pyridine 

over the surfaces of Pt/SO4
2--ZrO2 and Zn/H-ZSM5. Based on those reports, then we 

postulated that the active sites for hydroisomerization can be formed from the reactant 

with metal-free bicontinuous silica lamellar support. It is expected that the presence of 

additional Lewis acid sites on the HSi@BEA catalyst facilitates the formation of 

protonic acid sites by playing a role in trapping electrons. In addition, the unique 

morphology is expected to provide high surface area and better accessibility of active 

sites which leads to enhanced isomers products selectivity. Further modification on 

HSi@BEA catalyst with PO4
3- and NO3

- to form P/HSi@BEA and N/HSi@BEA 

catalyst, respectively, is expected to improve catalytic activity of hydroisomerization 

of n-hexane and cyclohexane.  



 

5 

1.2 Problem Statement  

 Current specifications for the production of cleaner fuels impose strong 

restrictions on the content of sulfur, aromatic compounds and olefins as well total 

interdiction of lead in the gasoline pool (Primo and Garcia, 2014). These restricted 

conditions led to the loss of the performance of internal combustion engine as these 

additives served as octane number enhancers (Primo and Garcia, 2014)(Singh et al., 

2017). In this regard, the skeletal hydroisomerization of linear alkanes represents a 

promising alternative since, with this process, low-octane straight chain paraffins are 

directly converted into high-octane branched molecules. Hydroisomerization of linear 

alkanes can, thus, be considered as an efficient and economically acceptable way of 

increasing the octane number of motor gasoline and, unlikely aromatics and/or other 

toxic additives, the isomers in gasoline is an ideal product that can satisfy the most 

stringent environmental legislation requirements. However, the production of 

branched alkanes is affected by the fierce competition between hydroisomerization 

and cracking reaction, including other problems such as fast deactivation of the 

catalyst due to coke deposition. In order to overcome these problems, the need to 

design new modified catalyst with better properties which could possibly give a higher 

yield of branched alkanes is an imperative task. Previously, platinum-supported on 

chlorinated alumina as bifunctional catalyst has been widely applied for alkane 

hydroisomerization but has several limitations due to its corrosion problems on the 

reactor (Jiménez et al., 2003).  

 

 

Zeolites such as ZSM-5, Y, and β have been utilized as catalysts in the 

hydroisomerization due to their tunable intrinsic acidity, surface area, and uniform 

pores. Zeolite consists of silica-alumina framework with a wide varieties of Si/Al ratio 

which results in good tunable acidity. Zeolite is a suitable material for facilitating acid-

catalyzed reactions. Interestingly, ease of modification properties of zeolite-based 

catalyst would allow tuned surface area, acidity and porosity, rendering zeolite an 

attractive choice for catalyst support. Modhera et al., (2011) studied n-hexane 

hydroisomerization over different support such as ZSM-5 and beta zeolite. Desilicated 

beta zeolite was found to be perform best due to high surface area, large pore diameter, 

moderate acidity and reduced coke formation.  
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Three-dimensional 12-membered-ring zeolite beta is usually chosen as a 

catalyst support in hydroisomerization of n-alkanes due to its high surface area, large 

pore diameter, moderate acidity and also ease to modify. However, the selectivity 

towards iso-alkanes over microporous zeolite beta is low cause of diffusion constraints 

of n-alkanes with six or more carbon atoms. This also will lead to poor accessibility of 

bulk reactant to the active sites located inside the pores, thus limits their applications.   

Development of hierarchically porous zeolite is one of the ways to overcome the 

diffusion limitation. Mesoporous material possesses highly ordered mesoporous 

structures which enabled the size-selectivity and extremely high surface area with 

large pore volume (Firmansyah et al., 2016; Teh et al., 2016). 

 

 

Silica-based fibrous material provides high surface area due to the presence of 

the dendrimeric fiber. Furthermore, due to the high dispersion of active sites which are 

probably located in their dendrimeric fiber rather than inside the catalyst pore, it 

provides high accessibility of active sites (Firmansyah et al., 2016). However, it does 

not have adequate acid sites to promote acid-catalyzed reaction such as 

hydroisomerization because the fibrous material is fully composed of silica. 

 

 

 

 

1.3 Hypothesis 

To overcome the above-mentioned problems, zeolite with dendrimeric silica 

fibrous was developed which is expected to give better accessibility to the active sites, 

thus reduced the diffusion limitation of the reactants and/or products to pass through 

the catalyst pores. In addition, these new developed catalysts will provide higher Lewis 

acid sites in order to facilitate the generation of protonic acid sites. 

 

 

 Although several studies have reported the generation of protonic acid sites 

from reactants over solid acid catalyst, no detail study on the mechanism of generation 

of protonic acid sites over metal-free protonated fibrous silica BEA catalyst 

(HSi@BEA) have been discussed. Therefore, it is desirable to study the generation of 

protonic acid sites from hydrogen molecules and reactants in the absence of metal sites 



 

7 

for the hydroisomerization of n-hexane and cyclohexane. The oxoanions, phosphate 

and nitrate groups are loaded to enhance the production of isomers for n-hexane and 

cyclohexane. It is hypothesized that the loading of phosphate and nitrate group on the 

HSi@BEA catalyst, which possess high surface area and large pore diameter, will 

result in different catalytic activity towards n-hexane and cyclohexane isomers. The 

different interaction of phosphate and nitrate group towards HSi@BEA support is 

expected to alter the catalyst acidic property and catalytic performance. 

 

 

 

 

1.4 Objectives of Study 

The objective of this study is to synthesize phosphate and nitrate groups 

supported on fibrous silica beta zeolite for enhanced hydroisomerization of 

cyclohexane and n-hexane. The objective of this study could be specified as follows: 

 

 

1. To synthesize and characterize the physicochemical properties of the 

protonated fibrous silica BEA (HSi@BEA) and protonated commercial 

BEA (HBEA). 

 

2. To modify and characterize the physicochemical properties of the 

phosphate loaded HSi@BEA (P/HSi@BEA) and nitrate loaded 

HSi@BEA (N/HSi@BEA) catalysts. 

 

3. To investigate the catalytic activity of HBEA, HSi@BEA, 

P/HSi@BEA and N/HSi@BEA catalysts towards n-hexane and 

cyclohexane hydroisomerization. 

 

4. To elucidate the mechanism of hydroisomerization of n-hexane and 

cyclohexane using the synthesized catalysts (HBEA, HSi@BEA, 

P/HSi@BEA and N/HSi@BEA). 
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1.5 Scope of Study 

To complete the objectives of this study, the four main scopes considered are 

listed below; 

 

1. To synthesize and characterize the physicochemical properties of the 

protonated fibrous silica BEA (HSi@BEA) (Si/Al=38) and protonated 

commercial BEA (HBEA) (Si/Al=25); 

The fibrous silica BEA (Si@BEA) was synthesized using microwave 

assisted hydrothermal method. Commercial BEA was used for 

comparison purposes. Both of the catalysts were converted into 

ammonium form by ion-exchange and followed by calcination to 

convert the NH4
+ species into H+. The prepared catalysts were 

characterized using X-ray Diffraction (XRD), N2 physisorption, Fourier 

Transform Infrared spectroscopy (FTIR), Field Emission Scanning 

Electron Microscopy (FESEM), Transmission Emission Microscopy 

(TEM) and 27Al and 29Si MAS Nuclear Magnetic Resonance (NMR). 

 

2. To synthesize and characterize the physicochemical properties of the 

phosphate loaded HSi@BEA (P/HSi@BEA) and nitrate loaded 

HSi@BEA (N/HSi@BEA) catalysts; 

In order to study the effect of phosphate and nitrate loading, the 

catalysts were prepared by impregnating HSi@BEA with H3PO4 and 

HNO3, respectively. The amount of H3PO4 and HNO3 concentration 

were adjusted to 0.5 N obtained from literature (Triwahyono et al., 

2006) and preliminary catalytic activity evaluation using different 

H3PO4 and HNO3 concentrations. The prepared catalysts were 

characterized using X-ray Diffraction (XRD), N2 physisorption, Fourier 

Transform Infrared spectroscopy (FTIR), Field Emission Scanning 

Electron Microscopy (FESEM), Ultraviolet-Diffuse Reflectance 

Spectroscopy (UV-DRS), and 27Al MAS Nuclear Magnetic Resonance 

(NMR)  
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3. To investigate the catalytic activity of HBEA, HSi@BEA, 

P/HSi@BEA and N/HSi@BEA catalysts towards n-hexane, 

cyclohexane and methylcyclopentane (MCP) hydroisomerization; 

Hydroisomerization of n-hexane was performed under hydrogen and 

nitrogen stream in micro-catalytic pulse reactor with a reaction 

temperature range of 423-623 K at atmospheric pressure. The reaction 

was repeated using difference reactants which are cyclohexane and 

MCP while maintaining the other conditions. MCP was used as a 

bulkier reactant to investigate the diffusion limitation the catalysts. 

 

4. To elucidate the mechanisms of hydroisomerization of n-hexane and 

cyclohexane using four synthesized catalysts (HBEA, HSi@BEA, 

P/HSi@BEA and N/HSi@BEA). 

2,6-lutidine adsorbed FTIR was used to determine the acid strength and 

structure of the catalyst. Adsorption of 2,6-lutidine coupled with FTIR 

has been accepted as a general practice to qualify the types of acids 

either a Lewis or Brønsted acid sites on the surface of the catalyst. 

Generation of protonic acid sites was elucidated using hydrogen or 

reactants adsorption Fourier Transform Infrared spectroscopy (FTIR) 

and ESR. The hydrogen adsorption on 2,6-lutidine pre-adsorbed FTIR 

and reactants adsorption on 2,6-lutidine pre-adsorbed FTIR were used 

to determine the active sites that participate in the formation of active 

protonic acid sites from hydrogen and reactants molecules, 

respectively. The ESR was used to investigate the correlation with the 

phase formation as well as the magnetic properties of the catalyst where 

it involves the treatment of hydrogen or reactants.  

 

 

 

 

1.6 Significance of Study 

The original contribution of this study is the utilization of new catalyst with 

unique morphology HSi@BEA in n-hexane and cyclohexane hydroisomerization. In 

this respect, the significance of the study includes explaining the behavior of 
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HSi@BEA catalyst especially on n-hexane and cyclohexane hydroisomerization. This 

study highlighted the potential of high surface area and higher accessibility HSi@BEA 

as a new support for n-hexane and cyclohexane hydroisomerization. Besides, a detail 

investigation on the effect of non-metal loadings involving phosphate and nitrate group 

on HSi@BEA catalyst toward the physicochemical properties and catalytic activity of 

the catalysts revealed the advantages of phosphate and nitrate group in improving the 

catalytic activity. This significantly to further elucidate the mechanism of n-hexane 

and cyclohexane hydroisomerization using loaded and non-loaded catalysts. Based on 

the present study, it could deliver the potential of utilizing non-metal like phosphate 

and nitrate group as promoters, which provide different catalytic activities towards n-

hexane and cyclohexane isomers. In this respect, they contribute in hydroisomerization 

for gaining significant attention in the petroleum refineries to increase the fuel octane 

number.  

 

 

 

 

1.7 Thesis Outline 

This thesis begins with Chapter 1 describing the research background, problem 

statement and hypothesis, objectives, scopes and significance of this study. Chapter 2 

reviewed the literatures related to the catalysts and current works about the 

hydroisomerization. Chapter 3 described the experimental and characterization of 

synthesized catalysts and Chapter 4 and Chapter 5 concerned with data processing and 

discussing of physicochemical properties and performance of the catalysts. The 

conclusions and recommendations for future studies were stated in Chapter 6. 
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