Universiti Teknologi Malaysia Institutional Repository

Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor

Ali, Arman Abdalla (2020) Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science.

[img] PDF
493kB

Official URL: http://dms.library.utm.my:8080/vital/access/manage...

Abstract

Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%).Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%).

Item Type:Thesis (Masters)
Uncontrolled Keywords:Alzheimer’s disease, AChE inhibition, acetylcholinesterase inhibitor
Subjects:Q Science > QD Chemistry
Divisions:Science
ID Code:102053
Deposited By: Yanti Mohd Shah
Deposited On:31 Jul 2023 07:30
Last Modified:31 Jul 2023 07:30

Repository Staff Only: item control page