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ABSTRACT 

Carbon monoxide (CO) methanation is one of the most viable and sustainable 

ways for methane (CH4) production to replace fossil fuels (coal, petroleum, and natural 

gas) and alleviate the adverse environmental impacts of carbon-intensive industries. 

Thermodynamically, CO methanation is a feasible reaction which can proceed at low 

temperatures. However, to meet the requirements of reaction kinetics of CO 

methanation, a suitable and highly active catalyst is mandatory for high CH4 yield. In 

this study, fibrous zeolites were successfully synthesized through the microemulsion 

method using commercial zeolites, namely mordenite (MOR), ZSM-5, and beta zeolite 

(BEA) as seed. All the zeolite samples were characterized by different techniques, 

including X-ray diffraction (XRD), nitrogen physisorption, field emission scanning 

electron microscopy (FESEM), transmission electron microscopy (TEM), fourier-

transform infrared spectroscopy (FTIR), pyrrole adsorbed FTIR, hydrogen 

temperature-programmed reduction (H2-TPR) and electron spin resonance (ESR) 

spectroscopy. The synthesized fibrous mordenite (FSMOR), fibrous ZSM-5 (FSZSM-

5) and fibrous beta zeolite (FSBEA) were compared with MOR, ZSM-5 and BEA 

zeolites to study their activity towards CO methanation. The CH4 yield was found in 

the order of FSMOR (50%) > FSZSM-5 (44%) > FSBEA (41%) > MOR (37%) > BEA 

(25%) > ZSM-5 (21%) at 450oC. The catalytic activity of the synthesized zeolites was 

strongly correlated to the existence of mesoporosity, inter- and intra-particle pores, 

intrinsic basic sites, and oxygen vacancies. The fibrous mordenite (FSMOR) displayed 

superior catalytic activity among all zeolites as a result of the high basicity and oxygen 

vacancies. To further enhance the catalytic activity, transition metals including Fe, Co, 

Ni, Ru, Pd, and Ag were loaded on FSMOR by the wet impregnation method. It was 

found that the transition metals loading significantly improved the catalytic activity 

towards CO methanation. The Ru-FSMOR unveiled a superior CH4 yield of 78% at 

400oC compared to the other catalysts, in the order of Ru-FSMOR > Ni-FSMOR > 

Co-FSMOR > Ag-FSMOR. The catalytic performance of the Ru-FSMOR was boosted 

because of the high reducibility of well-dispersed Ru nanoparticles (Ru-NPs) and the 

synergistic effect between the Ru-NPs and oxygen vacancies in the FSMOR support. 

The FSMOR and Ru-FSMOR revealed high stability and suppressed the coke 

formation caused by the undesired side reactions during CO methanation. Moreover, 

in the proposed reaction mechanism of CO methanation, it was discovered that the 

FSMOR and Ru-FSMOR followed an associative reaction pathway via linearly 

adsorbed CO* as an essential intermediate, dissociated into adsorbed C* to form 

methane by hydrogenation. For FSMOR, the oxygen vacancies conducted the 

activation of CO and H2 into C* and H* during methane formation. Whereas for Ru-

FSMOR, the active Ru phase conducted the activation of H2 and CO molecules 

followed by migration onto the FSMOR surface to form adsorbed CO* and adsorbed 

H*. The adsorbed CO* appeared in two forms, namely linear and bridged forms. Based 

on the above observations, this work provides fundamental insights into the robust 

catalytic system relating to CO methanation using zeolite-based catalysts with unique 

fibrous morphology, which can potentially be applied to produce substitute natural gas 

on a commercial scale.  
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ABSTRAK 

Metanasi karbon monoksida (CO) adalah salah satu cara yang paling sesuai 

dan mampan bagi pengeluaran metana (CH4) untuk menggantikan bahan bakar fosil 

(arang batu, petroleum, dan gas asli) dan mengurangkan kesan buruk industri yang 

intensif karbon terhadap alam sekitar. Secara termodinamik, metanasi CO adalah 

tindak balas yang boleh dilaksanakan pada suhu rendah. Walau bagaimanapun, untuk 

memenuhi keperluan kinetik tindak balas metanasi CO, mangkin yang sesuai dan 

sangat aktif adalah perlu untuk mendapatkan hasil CH4 yang tinggi. Dalam kajian ini, 

zeolit berserat berjaya disintesis melalui kaedah mikroemulsi menggunakan zeolit 

komersial, iaitu mordenite (MOR), ZSM-5, dan beta zeolite(BEA) sebagai benih. 

Semua sampel zeolit dicirikan dengan teknik yang berlainan, termasuk pembelauan 

sinar-X (XRD), fizijerapan nitrogen, mikroskopi elektron pengimbas pemancaran 

medan (FESEM), mikroskopi elektron penghantaran (TEM), spektroskopi inframerah 

transformasi Fourier (FTIR), FTIR pirola terjerap, penurunan suhu teraturcara 

hidrogen (H2-TPR) dan spektroskopi resonans spin elektron (ESR). Mordenit berserat 

yang disintesis (FSMOR), ZSM-5 berserat (FSZSM-5) dan beta zeolit berserat 

(FSBEA) telah dibandingkan dengan zeolit MOR, ZSM-5 dan BEA untuk mengkaji 

aktiviti mereka terhadap metanasi CO. Hasil CH4 didapati mengikut urutan FSMOR 

(50%) > FSZSM-5 (44%) > FSBEA (41%) > MOR (37%) > BEA (25%) > ZSM-5 

(21%) pada 450oC. Aktiviti pemangkin zeolit yang disintesis sangat berkaitan dengan 

kewujudan mesoporositi, liang antara dan intra-partikel, tapak asas intrinsik, dan 

kekosongan oksigen. Antara semua zeolit yang disintesis, mordenite (FSMOR) 

menunjukkan aktiviti pemangkin yang unggul kerana kebesan dan kekosongan 

oksigen yang tinggi. Untuk meningkatkan lagi aktiviti pemangkin, logam peralihan 

termasuk Fe, Co, Ni, Ru, Pd, dan Ag telah dimuatkan di atas FSMOR dengan kaedah 

pengisitepuan basah. Didapati bahawa pemuatan logam peralihan telah meningkatkan 

aktiviti pemangkinan terhadap metanasi CO dengan ketara. Ru-FSMOR menunjukkan 

hasil CH4 yang unggul sebanyak 78% pada suhu 400οC berbanding mangkin lain, 

mengikut urutan Ru-FSMOR > Ni-FSMOR > Co-FSMOR > Ag-FSMOR. Prestasi Ru-

FSMOR meningkat kerana keterturunkan tinggi nanopartikel Ru yang tersebar dengan 

baik (Ru-NPs) dan kesan sinergi antara Ru-NP dan kekosongan oksigen dalam 

penyokong FSMOR. FSMOR dan Ru-FSMOR mendedahkan kestabilan yang tinggi 

dan menekan pembentukan kok yang disebabkan oleh reaksi sampingan yang tidak 

diingini semasa metanasi CO. Lebih-lebih lagi, dalam mekanisme tindak balas 

metanasi CO yang dicadangkan, didapati bahawa FSMOR dan Ru-FSMOR mengikut 

jalan tindak balas sekutuan melalui CO* yang diserap secara linear sebagai perantara 

penting, bercerai menjadi C* yang terjerap untuk membentuk metana dengan 

penghidrogenan. Bagi FSMOR, kekosongan oksigen melakukan pengaktifan CO dan 

H2 kepada C* dan H* semasa pembentukan metana. Manakala bagi Ru-FSMOR, fasa 

Ru aktif melakukan pengaktifan molekul H2 dan CO diikuti dengan penghijrahan ke 

permukaan FSMOR untuk membentuk CO* yang terjerap dan H* yang terjerap. CO 

yang terjerap muncul dalam dua bentuk iaitu bentuk linear dan bentuk bertitian. 

Berdasarkan pemerhatian di atas, kajian ini memberikan pandangan asas mengenai 

sistem pemangkinan yang teguh berkaitan dengan metanasi CO menggunakan 

mangkin berasaskan zeolit dengan morfologi berserat yang unik, yang berpotensi 

digunakan untuk menghasilkan gas asli pengganti pada skala komersial. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Socio-economic and scientific developments have increased the global energy 

demand due to the increasing human population, urbanization, and industrialization. 

The petroleum, coal, and natural gas, known as fossil fuels, serve as 

the largest sources of energy, currently provide more than 90% of our energy needs 

(Ozturk et al., 2019). Natural gas (with a significant share of methane) is recognized 

as an environment amity with high energy density (55.7 kJ g−1) than coal (39.3 kJ g−1) 

and petroleum (43.6 kJ g−1); it produces a lower amount of CO2 compared to coal and 

petroleum (Faria et al., 2018). Therefore, natural gas has received considerable 

attention, and its consumption has increased by 4.6% in 2018, its highest annual 

growth rate since 2010, resulting in a shortage of natural gas supply. According to 

recent reports, the gap between supply and demand will be 200 billion m3 by 2020 

(Tao et al., 2020; Italiano et al., 2020). Unfortunately, the reserves of crude oil and 

natural gas resources were limited to 40-60 years and the supply of coal in known 

deposits was projected to be 230 years (Bassano et al., 2020). 

The increasing demand and price volatility of natural gas have increased the 

interest in producing an artificial version of natural gas from syngas (CO + H2) derived 

from biomass, coal or organic solid wastes gasification via carbon monoxide (CO) 

methanation shown by chemical equation (1.1) as follows:  

CO + 3H2 ⇌ CH4  +  H2O;   ΔH298 = −206.28 kJmol−1                               (1.1) 
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The produced methane is also called synthetic or substitute natural gas (SNG) or liquid 

natural gas (LNG) (Italiano et al., 2020). In order to avoid the negative environmental 

impacts of coal use, Japan, China and most European Union countries have been 

working on SNG production. SNG has the same properties of natural gas, which can 

be stored and distributed without additional expenses compared to hydrogen due to the 

existing infrastructure, including storage facilities, filling stations, and pipeline 

networks. Hydrogen has many drawbacks, such as explosive, volatile properties, 

unfavourable compressibility and flammable properties, which render transport and 

supply to remote areas difficult.  

In addition, CO methanation has been widely used in many applications, 

including coke furnace gas (COG), blast furnace gas (BFG), to mitigate the adverse 

environmental impact of high-carbon industries. The CO methanation reaction is also 

used in Fischer-Tropsch synthesis (FTS) and in polymer electrolyte membrane fuel 

cells to remove trace amounts of CO from the feed gas (Chen et al., 2011; Fatah et al., 

2020). 

Numerous studies have discovered that CO methanation is thermodynamically 

a feasible reaction at low temperatures and highly associated with temperature, 

pressure, and composition of reactants. Simultaneous methanation of CO and CO2 is 

often encountered with numerous side reactions, including water gas shift reactions:   

CO (g) + 2H2O (g) ⇌ CO2 (g) + H2 (g), cracking of methane: CH4 (g) ⇌ C (s) + 2H2 

(g), and Boudouard reaction: 2CO (g) ⇌ C (s) + CO2 (g). These reactions affect the 

methanation process by producing unwanted side products such as coke, which results 

in the quick deactivation of catalysts during CO methanation (Gao et al., 2012). 

Therefore, the thermodynamic analysis of CO methanation via Gibbs free energy 

minimization is an excellent approach to optimize the reaction conditions with 

minimum impacts of multiple side reactions. Very few thermodynamic studies for CO 

methanation are available in the open literature (Anderson et al., 1976; Anderson et 

al., 1986; Gao et al., 2012). However, these studies are less comprehensive and do not 

cover the thermodynamic considerations of CO methanation in the light of complete 

thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and 

Gibbs energy change (ΔG). In the present study, it will be great to gain an in-depth 
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understanding of the on-going reactions based on the thermodynamic parameters (ΔH, 

ΔS, and ΔG). 

Regardless of thermodynamically favored CO methanation at low 

temperatures, a catalyst is mandatory to lower the kinetic energy barrier in chemical 

conversion of CO and H2 to methane with an appropriate rate (Gao et al., 2012; Fatah 

et al., 2020). Therefore,  several efforts have been made to develop appropriate 

catalytic systems for CO methanation using different transition metals (Molybdenum, 

iron, nickel, cobalt, platinum, rhodium and ruthenium) and supporting materials 

(Al2O3, SiO2, TiO2, ZrO2, MCM-41, SBA-15, and mixed oxides) (Wang et al., 2017). 

It was found that the molybdenum-based catalysts have the lowest activity for CO 

methanation. While the iron-based catalysts exhibited a high activity and low methane 

selectivity towards CO methanation. Nickel and cobalt-based catalysts demonstrated 

almost similar activity, higher than iron and molybdenum-based catalysts. However, 

the nickel-based catalysts were easily deactivated at higher temperatures due to metal 

sintering and carbon deposition during CO methanation. In addition, the platinum, 

rhodium, and ruthenium-based catalysts illustrated superior catalytic performance 

towards CO methanation and proved to be more effective than other catalysts due to 

high stability, anti-sintering, and anti-coking abilities (Ali et al., 2015). Regardless of 

extensive CO methanation research, synthesizing efficient material and choosing the 

right metal for a solid catalytic system is one of the major challenges of the CO 

methanation reaction (Wang et al., 2017). 

Supported materials play a substantial role in heterogeneous catalysis by 

providing high surface area and pore volume for reactant’s accessibility to the active 

sites during the chemical reactions. The purpose of supporting material is not only 

restricted to adsorption centers for reactants, but they also play a crucial role in 

modifying of catalyst properties. Previous studies reported that the unsupported 

catalysts had shown a lower CO methanation activity than the supported catalysts 

(Aziz et al., 2014; Lakshmanan et al., 2016). In addition, the catalytic performance for 

CO methanation may be affected by the morphology of the supporting materials. 

Previously, several studies had been performed for CO methanation using a variety of 

supporting materials. However, zeolites have not been applied extensively in the CO 
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methanation reactions as supporting materials. In the present study, CO methanation 

was performed using zeolites, and their physicochemical properties were examined 

towards CO methanation.  

Zeolites are crystalline, hydrated aluminosilicates consisting of frameworks 

based on an infinitely extending three-dimensional network of SiO4 and AlO4 

tetrahedral linking to each other by sharing oxygen atoms. The channels or 

interconnected voids in the micropore range serve the zeolites with special pore 

structure, high shape selectivity, activity, and ion exchange characteristics. Therefore, 

zeolites have attracted considerable attention for a variety of applications such as 

petrochemicals, pollution control, aromatization of hydrocarbons, alkylation, 

cracking, and isomerization (Perez-Ramirez et al., 2008; Rahimi et al., 2011).  But 

zeolites have some limitations, affecting their catalytic performance during chemical 

reactions (Figueiredo et al., 2014). The major drawbacks of zeolites are the relatively 

small size of channels, cavities, and the lack of interconnection. For example, 

mordenite, beta zeolite, ZSM-5, and Y zeolite have a problem of diffusion limitation 

and pore blockage during catalytic reactions (Gackowski et al. 2018). Developing new 

mesopores is an excellent solution to overcome these limitations in conventional 

zeolites (Firmansyah et al., 2016). Thus, extensive efforts have been made to develop 

new supporting materials with high mesoporosity to overcome the limitations 

mentioned earlier. 

More recently, KAUST catalysis center-1 (KCC-1), a new fibrous 

mesostructured silica catalyst, has emerged with a unique fibrous morphology, 

attributed high mesoporosity and surface area (Polshettiwar et al., 2010). Following 

this great initiative, a variety of fibrous materials have been synthesized and used 

efficiently in various chemical reactions, including in CO2 methanation (Hamid et al., 

2017), cumene hydrocracking (Firmansyah et al., 2016), alkane hydrogenolysis (Fihri 

et al., 2012), phenol hydrogenation (Karakhanov et al., 2017), isomerization (Fatah et 

al., 2017; Izan et al., 2019), and photocatalysis (Seo et al., 2017). The synthesized 

fibrous materials exhibited fibrous morphology, resulting in high surface area, large 

pore volume, and maximum access of reactants to active sites, which could improve 

catalytic activity. Herein, like the structure of KCC-1, the fibrous silica zeolite-based 
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supports were synthesized to cover the limitations of commercial based zeolites 

(MOR, ZSM-5, and BEA) through silica fibrous morphology towards enhanced CO 

methanation. 

In the present study, the thermodynamic analysis was carried out using the 

Gibbs free energy minimization method to explain the role of various side reactions 

during CO methanation. The influence of different temperature, pressure, and H2: CO 

ratio was investigated towards CO methanation. To conduct CO methanation, different 

fibrous zeolites, including fibrous mordenite (FSMOR), fibrous ZSM-5 (FSZSM-5), 

and fibrous beta zeolite (FSBEA) have been prepared through the microemulsion 

method from commercial mordenite (MOR), ZSM-5 and beta zeolite (BEA), 

respectively. All the zeolite samples were examined and compared towards CO 

methanation based on their physicochemical properties. Also, the transition metals 

such as iron, cobalt, nickel, ruthenium, palladium, and silver were loaded on FSMOR 

for enhanced CO methanation. Moreover, the possible reaction mechanism was 

investigated over the metal-free (MOR and FSMOR) and metal-loaded FSMOR (Ru-

FSMOR) catalysts using in situ electron spin resonance (ESR) spectroscopy, and in 

situ Fourier-transform infrared spectroscopy (FTIR) techniques via surface 

intermediate species formed during the CO methanation reaction.  

1.2 Problem Statement 

As the quantitative and qualitative growths of industries and technologies are 

rapidly advancing, more energy will be required globally near future. Developing 

clean and sustainable energy sources has been strongly emphasized to substitute 

environment-unfriendly fossil fuels. In this respect, substitute natural gas (SNG) 

production is one of the most viable approaches using catalytic CO methanation. SNG 

has attracted much attention in the last decades due to highly efficient eco-friendly 

energy sources, low price, high H/C ratio, and high calorific value compare to diesel 

fuels, gasoline, and coal. SNG can be incorporated into existing pipelines, and storage 

tanks for supply to remote areas (Inga et al., 2017; Zhao et al., 2020).  
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Despite the economic and environmental potential, the CO methanation 

reaction faces serious problems associated with the development of highly efficient 

and stable catalysts. CO methanation is a highly exothermic reaction (∆H = -206 

kJ/mol) and emits a large amount of heat, creating hotspots in the reactors, resulting in 

deactivating the catalysts. In addition, during CO methanation, coke is produced and 

deposited on the surface of the catalysts, causing blockages in the pores, and covering 

the active sites of the catalysts, which causes a decline in catalytic activity (Italiano et 

al., 2020; Gao et al., 2012; Fatah et al., 2020). To solve these problems, there is an 

urgent need to design a suitable catalyst with high activity and thermal stability, which 

can be maintained at high temperatures without deactivation. To design an efficient 

and active catalyst, supporting material is an essential parameter for CO methanation. 

Previously, different supporting materials, including SiO2, Al2O3, TiO2, CeO2, and 

ZrO2 have been effectively used in CO methanation due to their high ability to adsorb 

CO and high dispersion of metal particles. However, their thermal stability and coke 

formation are still major challenges towards CO methanation (Wang et al., 2017). 

 Zeolites have a great potential for use  in CO methanation due to microporous-

mesoporous structure, high surface area, high thermal stability, and resistance to coke 

formation. Despite these unique properties, there has been little study of zeolites in CO 

methanation.  This may be due to some of their serious drawbacks, such as regular 

microporous channels, which cause the reactants to have limited access to the active 

sites inside the pores. The coke formation easily blocks the micropores and covers the 

active sites, limiting their application to CO methanation and many other reactions. 

The preparation of mesoporous zeolites is an intellectual solution to overcome these 

critical issues by improving the surface area and porosity of the commercial zeolites 

(Firmansyah et al., 2016; Teh et al., 2016). 

The metal components of the catalysts played a decisive role in the catalytic 

CO methanation by acting as an active phase for hydrogen and CO dissociation. 

Transition metals have been used as an active phase for CO methanation catalysts, 

especially nickel, which is the most widely used metal in CO methanation due to its 

high activity. However, nickel-based catalysts are easily deactivated due to the intense 

coke deposition and metal sintering (Gao et al., 2015), the major challenges of large-
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scale commercial CO methanation. Therefore, the prevention of catalysts deactivation 

is one of the foremost challenges in CO methanation. It is necessary to choose a 

suitable transition metal to improve the catalytic activity and high thermal stability for 

CO methanation at low temperatures. 

Despite the simplicity of the CO methanation reaction, the reaction mechanism 

seems difficult to establish because of the many opinions expressed on the intermediate 

species during CO methanation (Miao et al., 2016). Despite extensive mechanistic 

studies, there is no consensus on the mechanism of CO methanation; therefore, the 

mechanistic understandings of CO methanation reaction is still ongoing. Therefore, it 

is crucial to elucidate the mechanistic aspects of CO methanation through intermediate 

surface species formed during CO methanation.    

1.3 Hypothesis 

 

To solve the problems described above, the thermodynamic study will be an 

effective approach to optimize the reaction conditions with minimum impacts of side 

reactions on CO methanation activity.  Fibrous zeolites, including fibrous mordenite 

(FSMOR), fibrous ZSM-5 (FSZSM-5), and fibrous beta (FSBEA) zeolites of unique 

fibrous morphology as metal-free catalysts were synthesized using commercial 

mordenite, ZSM-5, and beta zeolites as seed, respectively. The fibrous zeolites could 

promote high accessibility of CO and H2 molecules to the active sites, by providing 

high surface area, micro-mesoporosity, inter- and intra-particle pores. In addition, the 

morphology of fibrous zeolites will also promote the intrinsic basicity and oxygen 

vacancies to enhance CO and H2 adsorption for CO methanation with less carbon 

deposition. It is expected that the fibrous morphology will also increase the metal 

dispersion on fibrous zeolites to improve the catalytic activity and thermal stability 

towards CO methanation due to the synergistic effect between metal particles and 

support. It is also anticipated that in situ ESR and in situ FTIR spectroscopic 

observations will offer a baseline to propose a reaction mechanism via intermediate 

surface species formed during the CO methanation reaction.  
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1.4 Objectives of the Study 

The purpose of this study is to synthesize metal loaded fibrous zeolite catalysts 

of high activity and stability for optimal application in CO methanation to produce 

methane. The set of goals of this study is described as follows: 

1 To establish the thermodynamics of CO methanation along other 

competing side reactions using HSC Chemistry 6.0 software.  

 

2 To synthesize and characterize the physicochemical properties of 

fibrous zeolites (FSMOR, FSZSM-5, and FSBEA) and compare them 

with commercial zeolites (MOR, ZSM-5, and BEA). 

 

3 To examine the catalytic activity of the synthesized catalysts as metal-

free catalysts towards CO methanation.  

 

4 To evaluate the effect of different transition metals over the best 

performing catalytic support towards CO methanation activity. 

 

5 To elucidate reaction mechanism of the CO methanation reaction over 

metal-free and metal-loaded catalysts. 

1.5 Scope of the Study 

The scope of this study includes the thermodynamic insights of CO 

methanation, synthesis and characterizations of fibrous zeolites, their catalytic 

performance towards CO methanation, and the effect of metals loading on the 

synthesized catalysts to further enhance CO methanation. Lastly, the mechanistic 

studies of CO methanation. The details are described as follows: 

1. The CO methanation reaction's optimum reaction conditions were investigated 

by the Gibbs free energy minimization method using HSC Chemistry software 

6.0. Different side reactions were investigated based on thermodynamic 

parameters, including Gibbs free energy (ΔG), enthalpy change (ΔH), and 

entropy change (ΔS). The effects of temperature (25-1000οC), H2: CO ratio 
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(0.5: 1- 5: 1), and pressure (0.1- 3 MPa) were studied towards enhanced CO 

methanation. 

 

2. The fibrous zeolites (FSMOR, FSZSM-5, and FSBEA) were synthesized by 

the microemulsion method using the seed of commercial zeolites (MOR, ZSM-

5, and BEA). The synthesized FSMOR, FSZSM-5, and FSBEA and the 

commercial MOR, ZSM-5 and BEA were examined and compared by different 

types of characterization techniques such as X-ray Diffraction (XRD), N2 

Adsorption-Desorption, Field Emission Scanning Electron Microscopy 

(FESEM), Transmission Emission Microscopy (TEM), Fourier Transform 

Infrared Spectroscopy (FTIR), Pyrrole-FTIR, and Electron Spin Resonance 

(ESR) Spectroscopy. 

 

3. The catalytic CO methanation was performed over FSMOR, FSZSM-5, 

FSBEA, MOR, ZSM-5, and BEA as metal-free catalysts  using hydrogen and 

carbon monoxide streams with H2: CO = 5:1 in a micro catalytic fixed-bed 

reactor in the temperature range of 150-500οC at atmospheric pressure 

(0.1MPa). 

 

4. The effect of transition metals on CO methanation activity was studied by 

preparing metal loaded FSMOR catalysts with different transition metals (iron, 

cobalt, nickel, ruthenium, palladium, and silver). Metal loaded FSMOR 

catalysts were prepared by the impregnation method using 0.5 wt. % of metal. 

From the screening result, four metals (cobalt, nickel, ruthenium, and silver) 

were selected to further investigate the influence of metals loading on the 

catalytic performance towards enhanced CO methanation. The prepared metal 

loaded catalysts were characterized by XRD, N2 Adsorption-Desorption, TEM, 

Pyrrole-FTIR, and H2-TPR. The catalytic CO methanation was performed 

using a micro-catalytic fixed-bed reactor with H2: CO = 5:1 in the temperature 

range of 150-500οC at atmospheric pressure (0.1MPa). 

 

5. The possible mechanism of the CO methanation reaction over the MOR and 

the FSMOR were investigated using in situ (H2 + CO) electron spin resonance 
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(ESR) and in situ (H2 + CO) FTIR spectroscopy observations. While the 

reaction mechanism of CO methanation over Ru-FSMOR was studied using in 

situ (H2 + CO) Fourier Transform Infrared (FTIR) spectroscopy. 

  

1.6 Significance of the Study 

 In this study, a thermodynamic study using Gibbs free energy minimization 

approach sheds light on the optimal reaction conditions for increasing CO methanation 

by adjusting the temperature, feed ratio and pressure. The fibrous zeolites (FSMOR, 

FSZSM-5, and FSBEA) were synthesized for CO methanation using the 

microemulsion method. Compared to other commercial zeolites such as MOR, ZSM-

5, and BEA, the synthesized FSMOR, FSZSM-5, and FSBEA have a unique fibrous 

morphology. This unique fibrous morphology is useful due to a variety of features, 

including the accessibility of gas reactants to active sites, high thermal stability and 

oxygen vacancies and high basicity. The fibrous morphology enhances the catalysis 

process by the adsorption and the activation of CO and H2 on the active sites during 

CO methanation. Adding transition metals on FSMOR has further increased CO 

methanation's catalytic activity due to the synergistic effect between the metal phase 

and support. In addition, the proposed reaction mechanism over metal-free and metal-

based FAMOR offers a better understanding of the catalytic CO methanation. This 

study will contribute to scientific research and development, particularly in the 

synthesis of a new robust catalyst for CO methanation to produce substitute natural 

gas. 

1.7 Thesis Outline  

This thesis begins with chapter one detailing the research background, problem 

statement and hypothesis, objectives, scope, and significance of the study. Chapter two 

reviews the latest developments in catalysis literature related to the CO methanation 

reaction. Chapter three describes step by step the experimental procedures and 

characterization techniques for synthesized catalysts for the CO methanation reaction. 
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While chapter four presents data processing and discussion on physicochemical 

properties and catalytic performance of the catalysts. Finally, chapter five highlights 

the conclusions and recommendations for future research. 
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