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ABSTRACT 

 Dicalcium phosphate (DCP) cements such as dicalcium phosphate dihydrate 

(DCPD) also known as brushite and dicalcium phosphate anhydrous (DCPA) also 

known as monetite have received considerable attention of researchers due to their 

potential applications in dental, maxillofacial and orthopaedic surgery. Quick setting 

and poor injectability due to liquid–solid phase separation limit the clinical use of 

brushite and monetite cements. The presence of certain ions (Mg, Zn, Na, Sr, Co, Ag 

etc.) in the cement during the setting process can influence setting time and the 

properties of the cement. In this study we report preparation of injectable dicalcium 

phosphate (DCP) bone cement using biphasic calcium phosphate (BCP) extracted 

from lamb and bovine femur bones. BCP was extracted by calcinating the defatted 

lamb and bovine bones at 1450 °C. BCP was extracted from three batches each for 

lamb and bovine bones. EDX analysis showed the presence of Mg and Na ions as trace 

elements in extracted BCPs. X-ray diffraction pattern of the prepared cement showed 

the formation of brushite along with monetite as minor phase along with a small 

quantity of hydroxyapatite. Monetite phase diminished gradually with the decrease in 

powder to liquid ratio (PLR). The values of initial and final setting times were 

observed to be well within the preferable range 3-8 minutes, for initial and less than 

15 minutes for final setting time, as recommended for orthopedic applications. 

Exceptional injectability (>90 %) was achieved for almost all the PLR formulations 

used for preparation of DCP cement. A decrease in the compressive strength was 

observed with increasing liquid phase in the cement, which was attributed to the 

resulting higher degree of porosity in the set cement. Moreover, for the DCP cement 

prepared from three different batches of BCP extracted from bovine and lamb bones, 

there were no noticeable variations in the setting time, injectability or compressive 

strength. Apatite layer formation on the cement surface was studied by immersing 

cement samples in simulated body fluid (SBF) for up to 7 days. A formation of apatite 

layer and an increase in the compressive strength from 2.71 ± 0.22 to 9.68 ± 0.36 MPa 

were observed. These results indicate that bone cement prepared from BCP extracted 

from lamb and bovine femur bones can be considered for orthopaedic applications as 

a potential bone substitute for regeneration and repairing of bone defects.
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ABSTRAK 

 Simen dikalsium fosfat (DCP) seperti dikalsium fosfat dihidrat (DCPD) yang 

juga dikenali sebagai brusyit dan dikalsium fosfat anhidrat (DCPA) juga dikenali 

sebagai monetit telah mendapat perhatian para penyelidik kerana aplikasi potensinya 

dalam pembedahan pergigian, maksilofasial dan ortopedik. Penetapan pantas dan 

kebolehsuntikan lemah yang disebabkan oleh pemisahan fasa pepejal-cecair 

membataskan penggunaan klinikal untuk simen brusyit dan monetit. Kehadiran ion 

tertentu (Mg, Zn, Na, Sr, Co, Ag dll.) dalam simen semasa proses penyuntikan boleh 

mempengaruhi masa penetapan dan sifat simen tersebut. Dalam kajian ini, kami 

melaporkan penyediaan suntikan simen tulang dikalsium fosfat (DCP) menggunakan 

kalsium fosfat dwifasa (BCP) yang diekstrak daripada tulang femur kambing dan 

lembu. BCP telah diekstrak dengan mengkalsinkan tulang kambing dan lembu 

nyahlemak pada suhu 1450 °C. Analisis EDX menunjukkan kehadiran ion Mg dan Na 

sebagai unsur surih dalam BCP yang telah diestrak. Corak pembelauan sinar-X pada 

simen yang disediakan menunjukkan pembentukan brusyit dan monetit sebagai fasa 

minor bersama hidroksiapatit dalam kuantiti yang kecil. Fasa monetit berkurang secara 

beransur dengan pengurangan nisbah serbuk terhadap cecair (PLR). Nilai masa tetapan 

awal dan akhir didapati terletak dalam julat yang dikehendaki iaitu 3-8 minit, untuk 

masa tetapan awal dan kurang daripada 15 minit untuk masa tetapan akhir, seperti yang 

dicadangkan untuk aplikasi ortopedik. Kebolehsuntikan luar biasa (>90 %) dicapai 

untuk hampir kesemua formulasi PLR yang digunakan untuk penyediaan simen DCP. 

Penurunan kekuatan mampatan dengan peningkatan fasa cecair dalam simen, telah 

dicerap, dan ini disebabkan oleh darjah keliangan lebih tinggi dalam simen yang 

disediakan. Tambahan pula, bagi simen DCP yang disediakan daripada tiga kelompok 

berbeza yang diesktrak daripada tulang lembu dan kambing, tidak terdapat variasi 

ketara dalam masa penetapan, kebolehsuntikan atau kekuatan mampatan. 

Pembentukan lapisan apatit pada permukaan simen telah dikaji dengan merendamkan 

sampel simen ke dalam bendalir badan tersimulasi (SBF) sehingga 7 hari. 

Pembentukan lapisan apatit dan peningkatan kekuatan mampatan daripada 2.71 ± 0.22 

kepada 9.68 ± 0.36 MPa telah dicerap. Keputusan ini menunjukkan bahawa simen 

tulang yang disediakan daripada ekstrak BCP daripada tulang femur kambing dan 

lembu boleh dipertimbangkan untuk aplikasi ortopedik sebagai tulang gantian yang 

berupaya untuk pemulihan dan pembaikan kecacatan tulang.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1  Research Background 

Bone is an essential part of the human body as it provides strength and 

framework to the body and helps in carrying out metabolic, synthetic and mechanical 

functions. In recent past, for the damaged or deceased hard tissues, surgeries are 

performed to remove the damaged part to provide relief to the sufferer. But it is not a 

preferred strategy now-a-days, as the researchers are focusing on developing such 

techniques which involve least surgical procedures. In this regard, injectable 

biomaterials like calcium phosphate cements (CPCs) have become extremely 

important research field.  

Since the discovery of first calcium phosphate cements (CPCs) in 1980s, lot of 

efforts have been devoted to improve the performance of such orthopedic products. 

Generally these CPCs are based on a powder-liquid concept, which  are mixed prior 

to use [1]. Mixing of solid and liquid material results in a paste which subsequently 

sets to give a hard mass [2]. Usually, one or several calcium phosphate compounds 

serve as a solid phase for CPC, whereas, liquid phase comprises of water or a solution 

containing calcium or phosphate [3]. Despite the different forms and compositions of 

CPCs,  they are categorized into apatite and dicalcium phosphate (DCP) cements 

depending upon the final product formulation reactions [4]. Apatite cement can be 

hydroxyapatite (HA) or calcium-deficient hydroxyapatite (CDHA). While, the DCP 

cement family has two members; dicalcium phosphate dihydrate (DCPD) often termed 

as brushite and the dicalcium phosphate anhydrous (DCPA) also referred to as 

monetite [5]. 
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Dicalcium phosphate (DCP) (one of the members of calcium phosphate family) 

has become materials of great interest due to their orthopedic and dental surgery 

applications [6]. DCP cements are effectively prepared using reagents monocalcium 

phosphate monohydrate, phosphoric acid, sulfuric acid, citric acid, and 

pyrophosphoric acid. [7–12]. However, monocalcium phosphate monohydrate 

(MCPM) is the commonly used reagent for brushite formation [7,13–16]. The vicinity 

of a water particle in monocalcium phosphate monohydrate (MCPM) encourages the 

setting reaction of the cement by donating one of the two water molecules required by 

DCP precipitates to form dicalcium phosphate dihydrate (DCPD). Therefore, MCPM 

is preferred over monocalcium phosphate anhydrous (MCPA) in the preparation of 

brushite cement. The preparation of brushite involves dissolution-precipitation process 

[13]. Brushite is preferred over hydroxyapatite among calcium phosphate based 

cements due to its good biocompatibility and higher resorption under physiological 

conditions [17]. 

Since the clinical needs for synthetic bone graft materials are growing so, it has 

encouraged the researchers to develop injectable self-setting calcium phosphates. 

Injectability and optimal in situ setting time of DCP cement makes it possible to avoid 

painful surgeries by decreasing the invasiveness during surgeries. These DCP cement 

formulations can also be advantageous for patients and the medical system as it aids 

in reducing the recovery time.  

Major issue with the injectability of DCPD (brushite) bone cement is solid-

liquid phase separation during injection process. One of the solution to address this 

issue is to incorporate ions in the cement matrix [13,14]. The incorporation of ions 

improve the setting time, and paste homogeneity, which reduces the phase separation 

thereby, improving the injectability [13,18].  The pure brushite has poor mechanical 

strength (≈ 1MPa) and requires improvement in the injectability. The compressive 

strength of the cement is directly related to porosity of the specimen [19]. While 

mechanical properties of the injectable bone cement can be enhanced by adding 

substances like pyrophosphates, carboxylic acids, sulfates and ions (Mg2+, Sr2+, Zn2+ 

and Si2+)  [20]. However, incorporation of ions in the brushite cement formulation 

require extra effort during material preparation.  
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Beta tricalcium phosphate (β-TCP) is one of the reagents commonly, used in 

the brushite cement preparation. In common practice, the β-TCP is prepared 

synthetically but it can also be extracted from biological resources such as mammalian 

bones. Mostly calcination of mammalian bone at 1200 °C or more results in a biphasic 

calcium phosphate (BCP) which contains both β-TCP and HA [21,22]. BCP derived 

from mammalian bone also naturally contain ions like Na, Mg, Zn, Sr, K [22–24] 

which might be helpful in enhancing the injectability and mechanical properties of the 

cement without using extra additives during cement preparation.  

1.2  Problem Statement 

The most desirable way to repair damaged bone is to regrow natural, 

undamaged bone in its place. Unfortunately, if large volume of tissue is removed, the 

body cannot regrow an entire new piece of bone. In these cases, the need for an 

artificial substitute is unavoidable [25]. The ideal bone substitute would be a material 

that forms a secure bond with the tissues by allowing and encouraging new cells to 

invade. One way to achieve this is to use injectable bone cement. Injectable bone 

cements involves minimum invasive surgery procedures which is a highly preferred 

treatment technique of bone defects [26,27]. Injectable calcium phosphate cements are 

very effective bone replacement materials. 

Available bone cements prepared from synthetic routes with no additives, are 

difficult to inject due to very short setting time (the time in which cement gains enough 

strength so that it can maintain its shape) and solid-liquid separation during injection. 

The desirable range of setting time for surgeons is 3 to 8 minutes in order to perform 

injection of cement comfortably. But the setting time of pure DCP cement is 

approximately 30 seconds which makes it impossible to be used as an injectable 

cement to practice minimal invasive surgical procedures. So, the setting time of 

synthetically prepared bone cement need to be improved by manually addition of ions 

and polymers during its synthesis making the process more laborious. In addition, their 

preparation involves the use of toxic chemical like ammonium hydroxide that can 

never be preferable if a chemical free alternative is available. 
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Therefore, the present work focuses on the preparation of injectable bone 

cement using BCP extracted from mammalian (lamb and bovine) bones with 

potentially adequate setting time and mechanical properties along with good 

injectability. Bone cements prepared from β-TCP are already being used for bone 

healing. Since, BCP extracted from natural biological resources also contains β-TCP 

which helps cement formation and naturally existence of ions in BCP can be helpful 

in improving the setting time and injectability of the bone cement. Thus, bone cement 

with potentially better injectability can be prepared using BCP extracted from natural 

bones. Moreover, the use of toxic chemical like NH4OH can also be avoided as its 

higher dose can cause bronchitis, severe lung irritation, pulmonary edema etc. 

1.3 Objectives 

The main objective is to synthesize and characterize injectable dicalcium 

phosphate bone cement using BCP extracted from lamb and bovine bones. 

i. To extract biphasic calcium phosphate (BCP) from lamb and bovine bones and 

characterize for chemical properties. 

ii. To synthesize dicalcium phosphate (DCP) bone cement using BCP extracted 

from lamb and bovine bones and characterize for chemical properties. 

iii. To determine setting time, injectability and mechanical properties of the 

synthesized dicalcium phosphate bone cement. 

iv. To study the in vitro resorption of selected dicalcium phosphate bone cement 

samples in Simulated Body Fluid (SBF). 

 

1.4  Scope of Research 

This study involves the extraction and physiochemical characterization of BCP 

derived from two types of bones (bovine and lamb bone) and dicalcium phosphate 

cement preparation for potential orthopedic application.  



 

5 

 The biphasic calcium phosphate (BCP) is extracted from the lamb and bovine 

bones by calcination process. The injectable dicalcium phosphate bone cement is 

prepared by mixing together BCP (extracted from bovine and lamb bone) with MCPM 

in optimized ratio 1:0.8 and then mixing with liquid phase in various powder to liquid 

ratios (PLR) such as 2.6, 2.8, 3.0, 3.2 and 3.4 g mL-1. The repeatability of the procedure 

is determined by synthesizing the dicalcium phosphate cement using BCP extracted 

from 3 batches each of bovine and lamb bones acquired from random animals.  

BCP extracted from all batches of bovine and lamb bones and corresponding 

bone cement specimens are characterized using XRD and FTIR for phase analysis and 

functional groups identification. While only extracted BCP samples are subjected to 

EDX for elemental identification. 

The setting time, injectability, porosity and compressive strength of the 

prepared bone cement samples all different batches are determined. In vitro ion release 

of the specific bone cement samples (selected based upon experimental results) is 

measured after immersion in SBF solution for 1, 3, and 7 days. In addition to ion 

release, the porosity and compressive strength of the samples is also determined after 

immersion in SBF over the course of 7 days. Changes in morphology of the specific 

bone cement samples are also studied using FESEM after 1, 3 and 7 days of immersion 

in SBF to observe the bone-like apatite formation on the surface of cement samples to 

confirm the bioactivity of the bone cement. 

1.5  Significance of the Study 

The proposed method for cement preparation opens new doors in the field of 

injectable bone cement preparation. This research contributes to explore new 

combinations for producing injectable bone cements with good injectability. This 

method of bone cement preparation allows the utilization of bone waste. Extraction 

procedure of BCP from bones is fairly simple as compared to synthetic preparation 

procedure of β-TCP.  The proposed method allows to avoid the use of toxic chemical 

like ammonium hydroxide and reduces the cost for surgical procedure. 
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1.6  Thesis Outline 

A novel way of bone cement preparation has been reported in this thesis. This 

document describes the synthesis and characterization of injectable bone cement 

prepared from β-TCP derived from bovine and lamb bones.  

Chapter 1 briefly discusses the background of the research theme, problem 

statement of the research and objectives of this project. An overview of the structure 

of bone, bone healing process, various biomaterials, bone cements and factors 

affecting their properties are elaborated in chapter 2. Extraction methodology of βTCP 

from lamb and bovine bones as well as characterizations techniques are described in 

chapter 3. Chapter 4 consists of six sections related to extraction of BCP and 

preparation of cement. Section 4.1 deals with the general overview of the chapter while 

extraction and characterization of BCP from bovine and lamb bone are illustrated in 

sections 4.2 and 4.3 respectively followed by characterization of prepared cement 

presented in sections 4.4 and 4.5 respectively. Whereas, in vitro biocompatibility 

studies of prepared bone cement specimens are presented in section 4.6 and summary 

of results and discussion chapter is presented in section 4.7. At the end, Chapter 5 

includes the conclusion and recommendations for the future work.
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