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ABSTRACT

Zinc oxide nanostructures (ZONSs) doped with different noble metallic
nanoparticles (NPs) with customized structures, morphologies and optical
characteristics have immense fundamental and applied interests. The potential of the
gold nanoparticles (AuNPs)-doped with ZONSs for the photodetectors and solar cells
applications have rarely been explored. Based on these facts, in this study, a series of
AuNPs-doped ZONSs were prepared and characterized systematically via diverse
analytical techniques. The effects of the substrates type, thickness, and growth
parameters on the structural, morphological and optical properties of the proposed
AuNPs-doped ZONSs were determined. In addition, the optimum sample from each
series was selected to fabricate the metal-semiconductor-metal (MSM) ultraviolet
(UV) photodetector. First, the ZONSs were deposited (at a rate of 0.3 A°/sec) on the
borosilicate glass and three types of n-Si (100) (plain, polished and etched with surface
treatment) substrates using the versatile radio frequency (RF) sputtering method
operated at 300°C, RF power of 100 W, Argon flow of 10 sccm and pressure of (-5)
millibar. The layer of thickness of the deposited ZONSs on both substrates were varied
in the range of 100 to 400 nm. The optimum substrate was found to be the etched n-Si
(n-ESi) with the thickness of 300 nm. Next, the colloidal AuNPs were synthesized
inside deionized water (DW) using the laser ablation in liquid technique. In this
process, a gold target was ablated using the Nd-YAG laser (1064 nm) operated for 6
minutes at different energies (96.6, 226, 286 and 336 mJ) and fixed frequency of 6 Hz.
The formation of the AuNPs inside DW was verified using the high-resolution
transmission electron microscopy (HrTEM), field emission scanning electron
microscopy (FESEM) and UV absorption spectroscopy. The AuNPs colloidal
suspension prepared at laser energy of 286 mJ was the optimum one and selected for
doping into ZONSs. Later, the droplets of the optimum AuNPs colloidal suspension
were soaked (both at dark and room temperature for 48 hours) on the deposited optimal
ZONSs film to achieve the best AuNPs-doped ZONSs useful for the photodetector
fabrication, Finally, the silver (Ag) electrodes were deposited on the AuNPs-doped
ZONSs film using the RF sputtering to design the MSM (Ag/n-ESi/ZONSs-
AuNPs/Ag) UV photodetector. The current-voltage (I-V) characteristics of the
obtained photodetector were measured in the dark and under UV light (380 nm)
illumination. The photoluminescence spectra of the optimum AuNPs-doped ZONSs
showed an intense near band edge UV peak at 380 nm corresponding to the band gap
energy of 3.26 eV. The best MSM UV photodetector revealed a very high responsivity
(3.05 A/W), good photosensitivity (1044.5), fast response time (0.29 s) and very short
recovery time (0.26s). It was demonstrated that the UV photodetector performance of
the ZONSs can remarkably be improved via the AuNPs doping. Additionally, carefully
adjusting the nature of the substrates, growth parameters of the RF sputtering and laser
ablation technique the structures, morphologies, optical and electrical traits of AuNPs-
doped ZONSs can tailor the UV photoreactor productions for different applications.
The proposed MSM UV photodetectors may be advantageous for various
optoelectronic applications.



ABSTRAK

Struktur nano zink oksida (ZONS) yang didopkan dengan pelbagai zarah nano
logam asli (NP) dengan struktur, morfologi dan ciri optik yang disesuaikan
mempunyai kepentingan dan tarikan yang tinggi. Potensi zarah nano emas (AuNP)
yang didopkan ke dalam ZONS untuk aplikasi pengesan foto dan sel suria masih jarang
diterokai. Berdasarkan fakta-fakta ini, dalam kajian ini, satu siri ZONS yang didopkan
dengan AuNP disusun dan dicirikan secara sistematik melalui pelbagai teknik analisis.
Kesan jenis substrat, ketebalan, dan parameter pertumbuhan terhadap sifat struktur,
morfologi dan optik ZONS yang didopkan AuNPs seperti yang dicadangkan telah
ditentukan. Tambahan lagi, sampel optimum dari setiap siri telah dipilih untuk
membuat pengesan foto ultraungu (UV) logam-semikonduktor-logam (MSM).
Pertama sekali, ZONS didepositkan (pada kadar 0.3 A°/ saat) pada kaca borosilikat
dan tiga jenis substrat n-Si (100) (polos, digilap dan diukir dengan rawatan permukaan)
menggunakan kaedah sputtering frekuensi radio serbaguna (RF) yang dikendalikan
pada 300 °C, kekuatan RF 100 W, aliran Argon 10 sccm dan tekanan (-5) milibar.
Lapisan ketebalan ZONS yang didepositkan pada kedua-dua substrat divariasikan
dalam julat 100 hingga 400 nm. Ia didapati bahawa substrat terbaik adalah n-Si yang
diukir (n-ESi1) dengan ketebalan 300 nm. Seterusnya, koloid AuNP disintesis di dalam
air yang deionisasi (DW) menggunakan teknik ablasi laser dalam cecair. Dalam proses
ini, sasaran emas dikeringkan menggunakan laser Nd-YAG (1064 nm) yang
dikendalikan selama 6 minit pada tenaga yang berbeza (96.6, 226, 286 dan 336 mJ)
dan frekuensi tetap 6 Hz. Pembentukan AuNP di dalam DW disahkan menggunakan
mikroskop transmisi elektron resolusi tinggi (HrTEM), mikroskop pemindaian
pelepasan medan elektron (FESEM) dan spektra penyerapan UV. Koloid AuNP
terampai yang dihasilkan dengan tenaga laser 286 mJ adalah yang paling optimum dan
dipilih untuk didopkan ke ZONS. Seterusnya, titisan terampai koloid AuNP yang
optimum direndam (pada suhu gelap dan suhu bilik selama 48 jam) dan didepositkan
pada filem ZONS terbaik untuk mencapai ZONS yang didopkan dengan AuNP
optimum yang berguna untuk penghasilan pengesan foto. Akhir sekali, elektrod perak
(Ag) didepositkan pada filem ZONS yang didopkan dengan AuNP menggunakan RF
sputtering untuk mereka bentuk pengesan foto UV MSM (Ag / n-ESi/ ZONSs-AuNPs
/ Ag). Ciri arus voltan (I-V) yang diperoleh dari pengesan foto tersebut diukur dalam
pencahayaan gelap dan bawah sinar UV (380 nm). Spektrum foto luminesens ZONS
yang didopkan dengan AuNP optimum menunjukkan puncak UV tepi jalur yang kuat
pada 380 nm yang berpadanan dengan jurang tenaga 3.26 eV. Pengesan foto UV MSM
optimum menunjukkan daya tindak balas yang sangat tinggi (3.05 A / W), kepekaan
fotosensitiviti yang baik (1044.5), masa tindak balas yang cepat (0.29 s) dan masa
pemulihan yang sangat singkat (0.26s). Ini menunjukkan bahawa prestasi pengesan
foto UV ZONS dapat ditingkatkan dengan baik melalui pengedopan AuNP. Selain itu,
dengan menyesuaikan sifat substrat, parameter pertumbuhan RF sputtering dan teknik
ablasi laser dengan teliti, struktur, morfologi, sifat optik dan sifat elektrik ZONS yang
didopkan AuNP dapat disesuaikan untuk pengeluaran reaktor foto UV yang
bermanfaat untuk aplikasi yang berbeza. Pengesan foto UV MSM yang dicadangkan
mungkin bermanfaat untuk pelbagai aplikasi optoelektronik.

vi
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CHAPTER 1

INTRODUCTION

1.1  Background of the Study

In 1959, the American physical society at California institute of technology has
witnessed the presentation of the monumental talk about “things on an ultra-small” by
Professor Richard Feynman (Samavati and Ismail 2019) which opened up new
gateways of nanoscience and nanotechnology nowadays. The possibility of direct
utilization of individual atoms stronger than artificial chemistry, those used at that time
was considered. After that talk world observed the extraordinary developments in
nanotechnology (C. T. Chen, Chrzan, and Gu 2020). In 1974, the Late Norio who was
the researcher in the university of Tokyo used the term nanotechnology for the first

time to refer to materials at the scale of nanometer.

Recently design, characterization, production, and application of materials,
which involve the manipulation of matter at the smallest scale, have been widely used
as current meaning of nanotechnology rather than just materials. Three distinct aspects
can be considered for evolution of nanotechnology such as indirect, direct, and
conceptual. The advanced miniaturization of obtainable technologies, which opened
up new areas of application for those technologies, can be explained by indirect aspect.
Direct refers to the application of novel nanoscale artifacts to improve the performance
of presented process and materials or for completely novel purposes. Finally, there is
a conceptual aspect of nanotechnology, in which all materials and process considered
from molecular or even atomic viewpoint especially in living system and biology. Now
a few areas of technology are exempt from the advantages of nanotechnology (A.
Singh, Dubey, and Dubey 2019). The information and communication systems such
as novel semiconductor and optoelectronic device, environment (filtration), energy

(reduction of energy, consumption increasing, the efficiency of energy production



nuclear accident cleanup and waste storage), heavy industry (aerospace and catalysis),

and consumer goods are some applications of nanotechnology(Yetisen et al. 2016).

Amongst various thin films, ZnO thin films have been extensively studied as
the preferable semiconductor because of their potential applications, as piezoelectric
transducers, optical waveguides, acousto-optic media, surface acoustic wave devices,
conductive gas sensors(L. Zhu and Zeng 2017), transparent conductive electrodes,
solar cell windows, and varistors (Si et al. 2017), Thus numbers of oxide materials are
being explored to establish correlation among morphology and properties. One such
example is ZnO that has been reported to be the richest family in terms of different
morphologies and material structures. Depending upon morphology, ZnO has vast area

of application in electronics(Mora-Fonz et al. 2017).

It is proven that the properties materials at nanoscale are very different from
their bulk counterpart. The large surface area to volume ratio and the quantum
confinement or quantum size effects make low dimensional distinct compared to bulk
materials. For example, metals (e.g. Au and Ag) at nanoscale possess an enhanced
absorption and scattering properties for visible light due to the influence of surface
plasmon resonance (SPR) (Louis and Pluchery 2017). Whereas, semiconductors
materials (e.g. ZnO and TiO2) at lower dimensions (nanometer size) show emerging
optical and electronic structure properties due to quantum size effects. Several studies
revealed that the effect of quantum confinement in semiconductor nanostructures
appears more prominent at length scale comparable to exciton Bohr radius, where
energy levels become quantized (Filikhin, Matinyan, and Vlahovic 2014; Senger and

Bajaj 2003).

Certainly, nanotechnology offers diverse prospective applications in the field
of optics, energy system, electronics, biomedicine, biology, environment, security, gas
sensing etc. to cite a few(Karim et al. 2019). Depending on the dimension of
nanostructures, materials are categorized as zero dimensional (0D) called nanoparticle
(NP); one dimensional (1D) called nanowire (NW) and nanorod (NR); two

dimensional (2D) known as quantum well (QW) and three dimensional (3D) flower-



and multipod- like nanostructures as shown in Figure 1.1 (G. Cao 2004; Vanalakar et

al. 2015; N. Wang, Yang, and Yang 2011).

Solid Morphology Mesoporous/Hollow
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Figure 1.1 Overview of different structures and geometries at nanoscale (Wu,
Yang and Wu, 2016).

Amongst various wide band-gap semiconductor nanomaterials, zinc oxide
(ZnO) nanostructures (ZNSs) are very prospective in broad array of technological
applications owing to their excellent electronic structure properties together with
biocompatibility. Diverse nanostructures of ZnO with unique features can easily be
achieved using different synthesis methods (Djurii¢, Ng, and Chen 2010). These
nanostructures possess outstanding optical properties which are advantageous for the
advancement of photovoltaic and optoelectronic nanodevices. Furthermore, control of
ZnO epitaxial layer quality together with native and dopant point defects remains a

vital issue for direct nanodevice production (UTLU 2019).

In the past, numerous techniques are developed and utilized for the production
of diverse ZNSs under specific controlled growth conditions (Van Khai et al. 2018).
These methods include pulsed laser deposition (PLD), sol-gel processing, spray
pyrolysis, electrochemical deposition, pulse laser ablation in liquid (PLAL), metal
organic chemical vapour deposition (MOCVD), molecular beam epitaxy (MBE),
radio-frequency (RF) sputtering, hydrothermal etc (UTLU 2019). Different techniques
produce different kinds of ZNSs morphology such as ZNPs, ZNWs, ZNRs, ZnO
nanoleafs (ZNLs), ZnO nanobelts (ZNBs), ZnO nanocages (ZNCs), ZnO nanoflowers



(ZNFs) etc. Figure 1.2 shows the scanning electron microscope (SEM) images of
different types of ZNSs.

100 nm

Figure 1.2 SEM images of some examples of various morphologies of ZnO
nanostructures: (a), (b) tetrapod structures; (c) variable diameter structures; (d)
nanosheets; () nanoshells; (f) multipods; (g), (h), and (i) nanorods.

Despite much progress in the preparation methods, controllable growth of
ZNSs with desired properties are still demanding for several applications including
electronics, optoelectronics, gas sensing, energy conversion/storage devices and
photocatalysis (Ansari et al. 2018). Research revealed that the characteristics of
produced ZNSs and their subsequent applications are critically decided by the nature
of growth technique and the inter-play of different growth parameters (temperature,
time, precursor type and concentration, seed layer, nutrient pH value etc.) (Kasim et
al. 2018). All these parameters associated with the conventional growth techniques
revealed their strong influence on the quality of ZNSs such as morphology, structure
quality, size, density, alignment, electrical and optical properties and so on (Hynek et
al. 2014). Earlier, many attempts are made to control the physical, structural, electrical

and optical properties of ZNSs under different growth conditions. The main aim was



to determine the significant behaviors of ZNSs towards the advancement of novel and
efficient nanodevices (Kuriakose, Satpati, and Mohapatra 2020; Oztiirk et al. 2019; Yi
Zhou et al. 2019).

In addition, metal doping such as Au, Pt or Pd, etc. in oxide semiconductors
is a typical method used to enhance ZnO nanostructures properties. The metal dopant
acts as a catalyst to modify surface reactions of metal oxide semiconductors. Several
studies have been reported on the enhancement of sensitivity and stability of
nanostructures using doping with metal catalysts for example, Pd-doped ZnO
nanotetrapods as an ammonia sensor showed that the sensitivity, response time and
stability of Pd-doped ZnO sensor have been enhanced. Also, Pt-coated ZnO nanorods
and thin films for hydrogen sensing at room temperature. It was found that the
nanorods showed higher responses to hydrogen than these of thin films (N. Hongsith,
C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong 2018). ZnO is an n-type
semiconductor, which is widely used in various practical applications such as sensors,
biodegradable and biocompatible electronics, photo catalysis, solar cells, transparent
electrodes and photodetectors (Bandi et al. 2019; Deka Boruah 2019; Shetti et al.
2019).

ZnO is a nontoxic inorganic semiconductor which could provide several
potentially useful features as high mobility, excellent thermal and chemical stability,
biocompatibility and high transparency, therefore has been extensively studied for
various applications (Shetti et al. 2019). As the UV light only takes up 5% of sunlight
reaching on earth’s surface, the practical application of ZnO photocatalysts is largely
restricted due to its large energy gap (Eg = 3.37 eV). In recent years, many practical
procedures have been applied to inforporate noble metals Au (P. K. Chen et al. 2018),
Ag (Ansari et al. 2014) and Pt (J. Yuan et al. 2019)) onto ZnO such as sputtering
methods, thermal strategies, chemical approach and photodeposition routes
(Kochuveedu, Jang, and Kim 2013). These efforts have been dedicated in order to
inhibit charge recombination and make it possible for ZnO to be applied in visible-
light photocatalytic process. Noble metal nanoparticles have been confirmed to
increase the photoenergy conversion efficiency of semiconductors by contributing the

separation of charge carrier and extending the light absorption by surface plasmon



resonance (SPR) effect. In fact, this is a collective oscillation of the free conduction-
band electrons at the interface between noble metal nanoparticles and dielectrics
driven by the electromagnetic field of incident light in visible regions(John Peter et al.
2017). Among them, Au was proved to be a useful material for the range of
applications leading to improvement in catalytic properties due to the versatile
properties such as the capacity to alter the physicochemical properties, surface
plasmon resonance (SPR) phenomenon, conductivity and chemically stable(Zainab N.
Jameel* 2017). And Au/ZnO nanocomposites have been found in numerous
applications such as dye-sensitized solar cells, photocatalysis, gas sensing,
antibacterial and biological detection due to their distinctive physical and chemical
properties such as nonlinear optical property and efficient fluorescence resonance
energy transfer property (Manish Deshwal 2018). Although considerable efforts have
been made on the synthesis of a serious Au/ZnO hybrid, most of the reported
nanostructures were formed by ZnO supporter with Au nanoparticles deposited

(Ghaemi-moghadam, Hasanzadeh, and Rahmati 2021).

1.2 Problem Statement

Some reports have already been demonstrated the potential of gold
nanoparticles (AuNPs)-doped zinc oxide nanostructures (ZONSs) for the ultraviolet
(UV) metal-semiconductor-metal (MSM) photodetectors (PDs) and solar cells
applications (GuruSampath Kumar , Xuejin Li, YuDu, Youfu Geng 2019). Only few
studies have been on the fabrication of ZONSs with different thickness of layers via
radio frequency (RF) sputtering and the effects of various processing parameters on
the structures (Chianese et al. 2019), morphologies and optical traits of ZONSs. In
addition, the mechanism of the growth evolution and the prodetector performance of
the AuNPs-doped ZONSs have not clearly been understood. Thus, it is important to
synthesize good quality ZONSs doped with different noble metallic nanoparticles with
customized structures, morphologies, electrical and optical characteristics for
functional devices applications which are still lacking (Hossein-Babaei and Akbari-
Saatlu 2020). The RF sputtering method being versatile can be used to tailor various

properties of the grown ZONSs (Ekem et al. 2009), where different system parameters



(RF power, gas flow rate, nature of gases, types of substrates, growth temperature and
time) can be controlled. Meanwhile, pulse laser ablation in liquid (PLAL) technique
has shown great promise to produce high quality and accurate colloidal nanoparticles
of various organic and inorganic materials with narrow size distribution. A
combination of these two growth methods for the production of metals NPs-doped
ZONSs has seldom been implemented (Dwivedi, Srivastava, and Kumar 2020). In
this view, the present study intends to combine these two methods to produce a series

of AuNPs-doped ZONSs.

So far, no studies have been conducted to optimize the growth parameters of
the AuNPs-doped ZONSs for outperforming UV photodetectors fabrication. Before
designing the photodetectors and evaluating their performance (K. Omri, A. Alyamani
2019), it is essential to characterize the synthesized these NSs thoroughly. It is believed
that in addition to the processing conditions the nature of substrates play a significant
role on the overall properties of the synthesized ZONSs (Soni, Mulchandani, and
Mavani 2020). Therefore, to get the best ZONSs and AuNPs-doped ZONSs UV
photodetectors it is vital to optimize substrate and other growth conditions. Previous
studies showed that by doping ZONSs with metallic element such as Ag or Pt it is
possible improve the sensitivity of the gas censor and photodetectors performance
(Ansari et al. 2014; Y. Liu et al. 2021). Yet, the effects of AuNPs doping in ZONSs
and obtained MSM UV photodetector performance have not been evaluated
systematically. In this thesis, an attempt has been made to combine two growth
methods (under optimum growth condition) for improving the structural, optical,
electrical and morphological properties of the as-prepared ZONSs and AuNPs-doped
ZONSs samples.

Systematic analyses and measurement of various properties of the samples and
performance evaluation are prerequisite for the optimization and photodetectors device
fabrication (Sohrabnezhad and Seifi 2016). Despite many research efforts, so far, only
few studies have been performed to get AuNPs-doped ZONSs-based MSM UV
photodetectors with high efficiency (Patricia Pereira-Silva 2020). Based on these
factors, efficient AuNPs-doped ZONSs-based MSM UV photodetectors have been

fabricated to evaluate their overall performance. Properties of the AuNPs-doped



ZONSs PDs were shown to be improved and the modifications in the overall behavior
of the ZONSs samples could achieve optimized MSM UVPD characterized by large
surfaces and high-quality structures that required for diverse functional
applications(GuruSampath Kumar , Xuejin Li, YuDu , Youfu Geng 2019; B. Yao et
al. 2019). The optimally synthesized ZONSs and AuNPs- doped ZONSs-based MSM
PDs revealed high efficiency and fast response. It was shown that by choosing the
appropriate synthesis method and growth parameters the structure, morphology,
optical and electrical properties (I-V curves, rise time, recovery time, sensitivity and

responsivity) of the AuNPs-doped ZONSs-based MSM PDs can be tuned.

1.3 Objectives of the Study

(1) To synthesize high quality AuNPs in liquid, ZONSs and AuNPs-doped
ZONSs on various types of substrates at constant temperature using

different techniques for getting optimum sample.

(i1) To determine the structure, morphology and optical properties of the
prepared AuNPs, ZONSs and AuNPs-doped ZONSs needed for

photodetectors fabrication.

(111) To evaluate the current voltage characteristics of the photodetectors

designed using the optimum undoped ZONSs and AuNPs-doped ZONSs.

(iv)  To determine the performance of the designed MSM photodetectors in

terms of I-V curves, rise time, recovery time, sensitivity and responsivity.



1.4

(@)

(i)

(iii)

(iv)

(vi)

(vii)

(viii)

(ix)

(x)

Scope of the Study

The research scope of this thesis includes:

Deposition of ZONSs (at a rate of 0.3 A°sec) on the borosilicate glass and
three types of n-Si (100) (plain, polished and etched with surface treatment)
substrates using the versatile radio frequency (RF) sputtering method at

optimum operation condition.

Control of the layer thicknesses of the deposited ZONSs on both substrates

were varied in the range of 100 to 400 nm.
Determination of the optimum substrate and thickness.

Preparation of the colloidal AuNPs inside deionised water (DW) using the
pulse laser ablation in liquid (PLAL) technique from gold target ablation via
the Nd-YAG laser (1064 nm)

Characterization of the AuNPs inside DW wusing the high-resolution
transmission electron microscopy (HRTEM), field emission scanning electron

microscopy (FESEM) and UV absorption spectroscopy.
Selection of the optimum AuNPs colloidal suspension for doping into ZONSs.

Soaking of the optimum AuNPs colloidal suspension under both at dark and
room temperature for 48 hours on the deposited optimal ZONSs film to achieve

the best AuNPs-doped ZONSs useful for the photodetector fabrication.

Deposition of the silver (Ag) electrodes on the AuNPs-doped ZONSs film
using the RF sputtering to design the MSM (Ag/n-ES1/ZONSs-AuNPs/Ag) UV
photodetector.

Measurement of the current-voltage (I-V) characteristics of the obtained

photodetector in the dark and under UV light (380 nm) illumination.

Optimization of substrates and the growth parameters of radio frequency (RF)

sputtering methods for the synthesis of ZONSs on for type of substrates.



(xi)  Characterizations of the structural, morphological and optical properties of the
ZONSs and AuNPs-doped ZONSs samples at room temperature using X-ray
diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, Raman
spectroscopy, atomic force microscopy (AFM), field emission scanning
electron microscopy (FESEM), UV-Vis absorption spectroscopy, and

photoluminescence (PL) spectroscopy.

(xii)  Fabrication of MSM UV PDs using the optimally synthesized ZONSs and
AuNPs doped ZONSs.

(xiii) Performance evaluation of the proposed photodetectors (MSM UV PDs) in the
dark and under UV light illumination.

(xiv) Measurements of the [-V characteristics of the designed MSM UV PDs.

(xv)  Comparison of the detection performances of the PDs fabricated from ZONSs

and AuNPs doped ZONSs samples.

1.5 Significance of the Study

The results of this study are expected to contribute to the benefit in science and
technologies those semiconductor (ZnO) nanostructures, AuNPs and AuNPs-doped
ZONSs-based UV photodectors. The ever-growing demands for the high performance
applications indeed justify the requirement of effective and enhanced ZONSs with
optimum and customized properties that are advantageous for diverse application. The
RF sputtering method for the production of high quality ZONSs and the preparation of
AuNPs of narrow size distribution is vital for various applications. This study can
improve the performance of the NSs and NPs with optimized growth parameters. In
addition, the basic mechanism behind the growth evolution of the produced NSs and
the function of the photodectors will be understood. For the first time, the synergy
between RF sputtering and PLAL method producing the optimum doped samples will
be elucidated. The generated knowledge will be helpful for the future development of
AuNPs-doped ZONSs-based UV photodectors and other optoelectronic devices.
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1.6  Thesis Organization

Chapter 1 presents a brief background on the subject matter and an overview
of the syntheses of ZnO films as well as the significance of photodetectors. Chapter 2
provides a comprehensive literature review and theoretical background of the
formation and deposition of n- ZONSs layers and AuNPs doped ZONSs in addition to
their photodetector applications. The basic principle and mechanism of photodetector

operation is also presented in this chapter.

Chapter 3 presents in detail the research methodology, which comprises
experimental set up of the various synthesis methods of AuNPs and AuNPs doped
ZONSs, description of the characterization tools, fabrication of the MSM UV
photodetector and the process of doping. The preparation of the Si samples used to
synthesize layers was also described in this chapter. Furthermore, this chapter explains
the process of fabricating the undoped Pt/ZONSs/AuNPs/Pt UV photodetector. The
performance of the undoped and doped Pt/ZONSs/AuNPs/Pt UV photodetectors is

compared.

Chapter 4 presents the results on the effect of varying the current density of RF
Sputtering method on the structural and optical properties of ZONSs layers deposited
on three type of Si wafer of (100) (normal, polished, etching and Glass). Afterwards,
the ZONSs layer with optimal current density (from each orientation) was selected as
the best substrate to grow AuNPs using the RF sputtering technique. The properties of
the samples required for the fabrication of the photodetector device and the effects of
doping AuNPs on the morphology, structural, and optical characteristics AuNPs doped
ZONSs arrays synthesized on Si and glass substrate are discussed. The ZONSs layer
with optimal thickness (from each orientation) was selected as the most suitable
substrate for fabrication of the photodetector device. In addition, the results on the
doping of AuNPs on the structural and optical properties of undoped ZONSs and
ZONSs-doped AuNPs s are presented in this chapter. The results are comparatively
analysed in this chapter. Chapter 5 concludes the thesis with deductions inferred from

the results..
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