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ABSTRACT

Carbon nitride (CN) has been regarded as a potential visible light photocatalyst due 
to its light absorption up to ca. 450 nm and possesses band gap energy (Eg) of ca. 2.7 eV. CN 
can be prepared by thermal polymerization method using carbon and nitrogen-rich 
compound as the precursor. However, most of the reported CNs were associated with a 
defect-rich and less-ordered structure as well as low surface area that could affect their 
performance. In this study, CNs of high surface area, improved structural order, low Eg and 
low electron charge transfer resistance (Rct) that are practicable for photocatalytic 
degradation of phenol under a wide range of sunlight irradiation have been successfully 
prepared. At the early stage, various salt melts of KCl-LiCl, KCl-NaCl, and KCl-ZnCh were 
used in order to induce the crystallinity of CN. Despite all the salt melts helped to improve 
the optical properties as revealed by diffuse reflectance ultraviolet-visible (DR UV-Vis) 
spectroscopy, only salt melts of KCl-LiCl could form crystalline CN as shown by X-ray 
diffraction (XRD) patterns with the formation of crystalline poly(triazine imide). The 
fluorescence and electrochemical impedance (EIS) spectroscopy confirmed that the higher 
crystallinity has suppressed the electron hole recombination and decreased the values of Rct. 
Improved photocatalytic degradation of phenol (24%), of ca. 2.5 times better than that of 
amorphous CN (10%), was achieved on crystalline sample of CN-KCl-LiCl. Besides, 
optimizations of synthesis parameters including amount of precursor, synthesis temperature, 
synthesis time and amount of salt melt were conducted. Current study revealed that 
increasing the amount of precursor from 1 g to 3 g led to the decrease in photocatalytic 
activity from 12% to 5% of phenol degradation. Increasing reaction temperature from 500°C 
to 550°C increased the photocatalytic activity from 7% to 24%. However, the photocatalytic 
activity decreased to 20% when the reaction temperature was increased to 600°C. In addition, 
short synthesis time (2 h) and long synthesis time (6 h) have led to the low photocatalytic 
activity with 17% and 20% of phenol degradation, respectively. Meanwhile, low (2.5 g) and 
high (7.5 g) amounts of salt melts showed low photocatalytic activities of 14% and 11%, 
respectively. The optimized conditions for the synthesis of CN with high crystalline phase 
were 2 g of precursor, reaction temperature of 550°C, reaction time of 4 h and 5 g of salt 
melts. By employing the optimized synthesis parameters, both amorphous and crystalline CN 
were prepared using melamine (Mel) as the precursor. The photocatalytic testing of the 
crystalline CN-Mel showed an improved activity of ca. 1.5 times higher (30%) compared to 
amorphous CN-Mel (19%). Further modification to increase the surface area was carried out 
by creating porous structure using Pluronic P123 (P123) surfactant. Increasing the mass ratio 
of P123 to precursor from 0.02 to 0.05 improved the photocatalytic activity from 20% to 
46%, but decreased to 37% at the high mass ratio (0.1). The high photocatalytic activity was 
due to its high surface area (160 m2 g-1) and low Rct values (11.49 kQ). In order to improve 
the light absorption, modification of porous crystalline CN with 2,4,6-triaminopyrimidine 
(TAP) was conducted. Low addition of TAP (0.02 mass ratio) has significantly improved the 
photocatalytic activity up to 60%. The high activity was mainly due to the combination of 
high surface area (137 m2 g-1), low Eg (2.62 eV) and low Rct (14.52 kQ) value. However, 
increasing the mass ratio of TAP from 0.03 to 0.1 decreased the photocataytic activity from 
53% to 19%. Overall, this study has demonstrated that CN with tunable properties improved 
photocatalytic degradation of phenol that was nearly three times higher than unmodified CN 
under visible light region.
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ABSTRAK

Karbon nitrida (CN) telah dianggap sebagai fotomangkin cahaya nampak yang 
berpotensi kerana keupayaannya untuk menyerap sehingga ca. 450 nm dan mempunyai tenaga 
luang jalur (Eg) ca. 2.7 eV. CN boleh disediakan melalui kaedah pempolimeran terma 
menggunakan karbon dan sebatian yang kaya dengan nitrogen sebagai pelopor. Walau 
bagaimanapun, kebanyakan CN yang dilaporkan telah dikaitkan dengan kecacatan yang banyak 
dan struktur yang kurang tersusun serta luas permukaan yang rendah yang boleh menjejaskan 
prestasi CN. Dalam kajian ini, CN dengan luas permukaan yang tinggi, susunan struktur yang 
baik, Eg yang rendah dan rintangan pemindahan cas elektron (Rct) yang rendah yang berguna bagi 
degradasi fotopemangkinan fenol di bawah penyinaran cahaya matahari berjulat luas telah 
beijaya disediakan. Pada peringkat awal, pelbagai garam lebur KCl-LiCl, KCl-NaCl dan KCl- 
ZnCh telah digunakan untuk mengaruh kehabluran CN. Walaupun kesemua garam lebur 
membantu untuk memperbaiki sifat optik seperti yang didedahkan oleh spektroskopi pantulan 
serakan ultralembayung-cahaya nampak (DR UV-Vis), hanya garam lebur KCl-LiCl boleh 
membentuk CN berhablur seperti yang ditunjukkan oleh corak pembelauan sinar-X (XRD) 
dengan pembentukkan poli(triazina imida) berhablur. Spektroskopi pendarfluor dan impedans 
elektrokimia (EIS) mengesahkan bahawa kehabluran yang tinggi telah menindas penggabungan 
semula lubang elektron dan mengurangkan nilai Rct. Degradasi fotopemangkinan fenol yang baik 
(24%), iaitu ca. 2.5 kali ganda lebih baik daripada CN amorfos (10%), telah dicapai pada sampel 
CN-KCl-LiCl berhablur. Selain itu, pengoptimuman parameter sintesis termasuk jumlah pelopor, 
suhu sintesis, masa sintesis dan jumlah garam lebur telah dijalankan. Kajian semasa
mendedahkan bahawa meningkatkan jumlah pelopor daripada 1 g kepada 3 g membawa kepada 
penurunan aktiviti fotopemangkinan daripada 12% kepada 5% degradasi fenol. Meningkatkan 
suhu tindak balas daripada 500°C kepada 550°C telah meningkatkan aktiviti fotopemangkinan 
daripada 7% kepada 24%. Walau bagaimanapun, aktiviti fotopemangkinan menurun kepada 20% 
apabila suhu tindak balas ditingkatkan kepada 600°C. Tambahan lagi, masa sinstesis yang 
pendek (2 j) dan masa sintesis yang panjang (6 j) telah membawa kepada aktiviti
fotopemangkinan yang rendah, masing-masing dengan hanya 17% dan 20% degradasi fenol. 
Sementara itu, jumlah garam lebur yang rendah (2.5 g) dan tinggi (7.5 g) menunjukkan aktiviti 
fotopemangkinan yang rendah masing-masing dengan hanya 14% dan 11%. Keadaan optimum 
bagi sintesis CN dengan fasa berhablur yang tinggi ialah 2 g pelopor, suhu tindak balas 550°C, 
masa tindak balas 4 j dan 5 g garam lebur. Dengan menggunakan parameter sintesis optimum, 
kedua-dua CN amorfos dan berhablur telah disediakan dengan menggunakan melamina (Mel) 
sebagai pelopor. Pengujian fotopemangkinan CN-Mel berhablur menunjukkan aktiviti yang lebih 
baik iaitu ca. 1.5 kali ganda lebih tinggi (30%) berbanding amorfos CN-Mel (19%).
Pengubahsuaian selanjutnya untuk meningkatkan luas permukaan telah dijalankan dengan
membuat struktur liang menggunakan surfaktan Pluronic P123 (P123). Meningkatkan nisbah 
jisim P123 terhadap pelopor daripada 0.02 kepada 0.05 telah memperbaiki aktiviti 
fotopemangkinan daripada 20% kepada 46%, tetapi menurun kepada 37% pada nisbah jisim yang 
tinggi (0.1). Aktiviti fotopemangkinan yang tinggi adalah disebabkan luas permukaannya yang 
tinggi (160 m2 g-1) dan nilai Rct yang rendah (11.49 kQ). Untuk memperbaiki penyerapan cahaya, 
pengubahsuaian liang CN berhablur dengan 2,4,6-triaminopirimidina (TAP) telah dijalankan. 
Penambahan sedikit TAP (nisbah jisim 0.02) telah memperbaiki aktiviti fotopemangkinan 
sehingga 60%. Aktiviti fotopemangkinan yang tinggi adalah terutamanya disebabkan oleh 
kombinasi luas permukaan yang tinggi (137 m2 g-1), nilai Eg yang rendah (2.62 eV) dan nilai Rct 
yang rendah (14.52 kQ). Walau bagaimanapun, meningkatkan nisbah jisim TAP daripada 0.03 
kepada 0.1 telah menurunkan aktiviti fotopemangkinan daripada 53% kepada 19%. 
Keseluruhanya, kajian ini menunjukkan bahawa CN dengan sifat boleh tala telah memperbaiki 
degradasi fotopemangkinan fenol dengan hampir 3 kali ganda lebih tinggi berbanding CN tidak 
terubahsuai di bawah kawasan cahaya nampak.
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CHAPTER 1

INTRODUCTION

1.1. Research Background

Carbon-based materials with a variety of structures and properties have 

drawn significant attention as they play an important role in heterogeneous catalysis 

field (Serp and Figueiredo, 2009). Carbon-based material such as carbon nanotube 

(CNT) (Liu et al., 2013a, Liu et al., 2013b; Woan et al., 2009) and graphene (Chen 

et al., 2011; Compton and Nguyen, 2010; Li et al., 2011) have been found to be very 

attractive and competitive due to the combination of excellent chemical and physical 

properties such as their tuneable porosity and surface chemistry (Chen et al., 2011; 

Liu et al., 2013a; Liu et al., 2013b). The superior mechanical, electronic and the 

good dispersion properties possessed by these CNT and graphene have also gained a 

significant attention in both carbon materials for almost three decades (Compton and 

Nguyen, 2010; Carabineiro et al., 2013; Serp and Figueiredo, 2009). These carbon- 

based materials have been widely used in the application of photocatalysis as they 

provide a large surface area and large electron-storage capacity (Carabineiro et al., 

2013; Chen et al., 2011; Liu et al., 2013a; Liu et al., 2013b; Woan et al., 2009; Yu et 

al., 2011). Owing to these properties, carbon-based materials have been practically 

and commercially used as supports for various semiconductor photocatalysts such as 

titanium dioxide (TiO2) (Woan et al., 2009; Yu et al., 2011), zinc oxide (ZnO) (Lv et 

al., 2012; Jiang and Gao, 2005), cadmium sulphide (CdS) (Li et al., 2015b; Weng et 

al., 2014) and zinc sulphide (ZnS) (Wu et al., 2008; Zhang et al., 2012c). In recent 

years, it was reported that the substitution of nitrogen with the carbon atom has 

effectively improved the mechanical, field emission, energy storage properties, 

conductivity and electrocatalytic performance (Gong et al., 2009; Zhao et al., 2014a, 

Zhao et al., 2014b). Therefore, development of such material is considered to be 

important especially in heterogeneous photocatalysis field in order to move towards 

sustainable chemistry (Wang et al., 2012a; Wang et al., 2012b; Woan et al., 2009).
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One of the most investigated materials consisting of carbon and nitrogen is 

carbon nitride (C3N4 or abbreviated as CN). To date, five different structures of CN 

materials have been proposed, specifically hexagonal 3-dimensional a-C3N4, J3- 

C3N4, cubic and pseudocubic phases CN and 2-dimensional graphitic C3N4/CN 

(Bousetta et al., 1994; Liu and Wentzcovitch, 1994; Teter and Hemley, 1996). 

Among CN allotropic, the graphitic CN or later simplified as CN throughout this 

study is among the stable CN and has gained much recognition recently due to its 

unique and excellent properties (Cao et al., 2015; Liang et al., 2008; Thomas et al., 

2007; Wang et al., 2012a; Wang et al., 2014b; Zhao et al., 2014a; Zhao et al., 2014a; 

Zheng et al., 2012; Zheng et al., 2015; Zhu et al., 2014). The CN has abundant 

surface properties such as basic surface functional, electron-rich properties, and H- 

bonding motif. Moreover, it also has high thermal and hydrothermal stabilities, 

which make CN a promising catalyst for wide applications in heterogeneous catalysis 

(Wang et al., 2012a; Wang et al., 2012b; Zhu et al., 2014). Therefore, the 

development of CN material has been extensively studied throughout the years 

(Fettkenhauer et al., 2014; Bhunia et al., 2014; Lee et al., 2012; Schwinghammer et 

al., 2013; Thomas et al., 2008; Wang et al., 2012a; Wang et al., 2012b; Wirnhier et 

al., 2011; Zhang et al., 2012a; Zhang et al., 2012b; Zhao et al., 2014a; Zhao et al., 

2014b; Zhu et a l, 2014).

CN possesses an average band gap energy (Eg) of 2.7 eV (Schwinghammer et 

al., 2013; Wang et al., 2012b; Zheng et al., 2012; Zhang et al., 2012a; Zhu et al., 

2014a), which gives typical absorption pattern at about 420 to 470 nm, depending on 

the packing between layer and the degree of condensation (Fettkenhauer et al., 2014; 

Wang et al., 2012b; Wirnhier et al., 2011; Zhang et al., 2012a; Zheng et al., 2012; 

Zhu et al., 2014). As the ability to utilize the larger fragment of the spectrum in 

natural sunlight is a significant feature in photocatalysis, this characteristic property 

enables CN to be used as a potential photocatalyst under sunlight irradiation 

(Fettkenhauer et al., 2014; Lee et al., 2012; Schwinghammer et al., 2013; Wang et 

al., 2012a; Wang et al., 2012b; Zhang et al., 2012a; Zhao et al., 2014a; Zhao et al., 

2014b). Several publised literatures have reported the successful removal of organic 

pollutant and light harvesting via photocatalytic process by using CN materials (Cui
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et al., 2012; Lee et al., 2012; Liu et al., 2011; Schwinghammer et al., 2013; Wang et 

al., 2012b; Xu et al., 2013; Zhang et al., 2012a; Zhang et al., 2012b).

Recently, CN materials have been a fascinating choice in the application of 

photocatalysis. However, many reported literature showed that the synthesized CN 

was in amorphous form (Cui et al., 2012; Kouvetakis et al., 1994; Lee et al., 2012; 

Liu et al., 2011; Khabashesku et al., 2000; Riedel et al., 1998; Xu et al., 2013; Zhang 

et al., 2012a; Zhang et al., 2012b; ; Zheng et al., 2012; Zhu et al., 2014; Wang et al., 

2012a; Wang et al., 2012b; Zhao et al., 2014a; Zhao et al., 2014b). CN with the 

amorphous phase has been reported to show low photocatalytic performance in the 

catalytic process (Bhunia et al., 2014). For instance, Bhunia et al., (2014) 

demonstrated that the photocatalytic performance of hydrogen evolution rate (HER) 

improved two times higher when using crystalline CN compared to amorphous CN. 

In photocatalysis, the directional flow of electrons depends on the organization of the 

molecules in the structure in relation to their crystallinity (Jun et al., 2013a; Jun et 

al., 2013b; Prins et al., 2001; Seto et al., 1993; Shalom et al., 2013). In addition, the 

fast rate of electron diffusion in crystalline structure would reduce the trapping and 

de-trapping effect, thus the rate of electron-hole recombination would be decreased 

(Celik and Mete, 2012; Gai et al., 2009; Long and English, 2009; Nah et al., 2010; 

Serpone, 2006). Since the photocatalytic properties are sensitively affected by the 

crystallinity of the photocatalyst; therefore, constructing a crystalline photocatalyst 

which is active under natural sunlight is a promising work and highly recommended, 

but can be a challenging task to be achieved.

Generally, CN with amorphous phase can be synthesized via much a simpler 

way compared to crystalline CN. For example, a typical amorphous CN with 

graphene-like structure and layer or widely known as graphitic CN can be prepared 

by simple pyrolysis of urea or any other reactive precursor which is rich in nitrogen 

and carbon consisting of pre-bonded C-N structures like dicyandiamide or 

cyanamide under ambient pressure and calcination temperature of 400-550 °C for 3

4 hours (Cui et al., 2012; Lee et al., 2012; Liu et al., 2011; Thomas et al., 2008; 

Wang et al., 2012a; Wang et al., 2012b; Xu et al., 2013; Zhang et al., 2010; Zhang et 

al., 2012a; Zhu et al., 2014). In contrast, several high-end instruments such as pulsed
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laser induced reactive quenching at liquid-solid interface, laser-electrical discharge 

method, chemical vapour deposition, and electrodeposition, are usually required in 

order to give a better arrangement of CN precursor for aligning the molecules in 

particular order, which is the important step in preparation of crystalline CN (Chen et 

al., 1997a; Hu and Huo, 2011; Kundoo et al., 2003; Kuo et al., 2001; Lv et al., 2003; 

Sharma et al., 1996; Teter and Hemley, 1996; Zhang et al., 1996).

To date, several successful preparations of crystalline CN by using the 

methods mentioned below have been reported. For example, Burdina et al. (2000) 

have successfully prepared the crystalline CN from an amorphous nitrogen-carbon- 

containing material by using a laser-electrical discharge method at ultrahigh pressure 

(77 kbar) and high temperature (1200 °C) in the presence of crystalline CN film 

seeds. On the other hand, Lv et al. (2003) have provided a simpler method without 

the need for high-cost instrument. The crystalline CN was prepared via a 

solvothermal method using liquid-solid reaction between anhydrous cyanuric 

chloride (C3N3O 3) and lithium nitride (Li3N) in benzene solution at 5-6 MPa and 355 

°C for 12 hours. In this process, the benzene acted as a solvent to activate the CN 

precursors, which favored the crystallization of CN. This method successfully 

produced the crystalline CN that also consists of pure crystalline a-C3N4 and /?-C3N4, 

which was very difficult to be synthesized (Kundoo et al., 2003). Although both 

mentioned methods successfully prepared the crystalline CN, the laser-electrical 

discharge method caused a high cost of production due to the requirements of 

vacuum condition and a high amount of energy. On the other hand, the use of 

benzene as the solvent required it to be in supercritical condition (4.86 MPa).

One of the major problems encountered during the preparation of crystalline 

CN is the kinetic problem such as fast condensation and incomplete condensation. 

The problem has inhibited a complete reaction and produced an amorphous product 

(Kroke and Schwarz, 2004; Wirnhier et al., 2011). Therefore, another technique was 

deployed in order to synthesize and increase the crystallinity of CN with such 

convenient, promising method and low production cost. The ionothermal method as 

studied by Antoniette et al. (2008) and Bojdys et al. (2008) could offer a more 

appropriate solvent by using salt melts of potassium chloride (KCl) and lithium
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chloride (LiCl). Dated back to 1960s, the salt melt of KCl and LiCl with ratio of 

45:55 (wt%) and melting point of 352 °C has been reported as a reaction media for 

electrochemical processes, especially in high-temperature galvanic cells (Laitinen et 

al., 1960) and more recently as a solvent for salts of lanthanides and actinides 

(Cassayre et al., 2007). The application of molten salts as a solvent in the organic 

reaction can be traced back in the 1965 when Sundemeyer et al. (1965) demonstrated 

that several organic chemical reaction could be accomplished in molten salts. They 

also remarked the good solvating properties of the salt melt of KCl and LiCl with 

respects to nitrides, carbides, cyanides, cyanates and thiocyanates (Sundermayer, 

1965 Sundermeyer, 1967; Sundermeyer and Anorg, 1961; Verbeek and 

Sundermeyer, 1967). As the salt melt of KCl-LiCl was recognized as a good solvent 

due to its stability in high-temperature reaction, non-corrosive properties and its 

significant melting point under the polycondensation point of s-heptazine, various 

research groups adopted this method in synthesis of crystalline CN (Antonietti et al., 

2008; Bhunia et al., 2014; Bojdys et al., 2008; Fettkenhauer et al., 2014; 

Schwinghammer et al., 2014; Shalom et al., 2013; Wirnhier et al., 2011). According 

to reported literature aforementioned above, the crystalline CN is composed of 

poly(triazine imide)-based CN, while amorphous CN is composed of heptazine- 

based CN or tri-s-triazine. In this study, various of salt melts which were the 

compositions of potassium chloride-lithium chloride (KCl-LiCl), potassium chloride- 

sodium chloride (KCl-NaCl) and sodium chloride-zinc chloride (KCl-ZnCh) as the 

ionic solvents were used to prepare the crystalline CN and the performances of the 

various salt melts were investigated and studied. The mixture of KCl-LiCl, KCl- 

NaCl and KCl-ZnCl2 have been used due to its high temperature stability, non- 

corosive properties, its melting point below the polycondensation of CN. In addition, 

NaCl has been used due to its non-toxic properties while ZnCl2 was deployed owing 

to its ability for tailoring a micro and mesoporosity for the enhanced surface area of 

the resulting products (Fechler et al., 2013).

In addition to crystallinity, another factor that gave rise to the high 

photocatalytic activity is the surface area of the photocatalyst. Recent studies showed 

that crystalline CN possess a specific surface area of ca. 90 m2 g-1 (Bhunia et al., 

2014) and 58 m2 g-1 (Fettkenhauer et al., 2014), depending on the type of precursor
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and synthesis conditions. Although crystalline CN has better surface area value 

compared to amorphous CN (10 m2 g-1) (Bhunia et al., 2014), the value was still 

considered low. In the perspective of practical applications in catalysis field, the 

presence of controlled porosity at the nanoscale in CN material is required in order to 

improve its surface area (Wang et al., 2012a; Wang et al., 2012b; Zhang et al., 

2012b; Zhao et al., 2014b. Lee et al., (2012) has successfully synthesized 

mesoporous CN with increased surface area up 224 m2 g-1 by using nano silica as a 

hard template. However, this synthesis procedure involved removing the hard 

template that required a hazardous reagent and multiple-step synthetic procedure. It 

was also not environmentally friendly and prohibited further functionalization 

(Antonietti, 2001; Chen et al., 2006; Liang et al., 2008; Yan, 2012). Therefore, 

preparing porous CN without hard templates would give a great benefit. On the other 

hand, in the view of physicochemical and thermodynamic basis, preparing materials 

with porous structure using soft templates approach can be a challenging work 

(Kosonen et al., 2006; Meng et al., 2006).

Wang et al. (2010) have successfully synthesized mesoporous CN using 

various surfactants, amphiphilic block polymers and ionic liquids as structure 

directing agents while employing dicyandiamide as an organic precursor. The 

resulted mesoporous CN material showed an improved surface area up to 90 m2g-1 

when Pluronic P123 was used as soft template compared to only 8 m2 g-1 when 

prepared without the use of the soft template. Zhao et al. (2014b), however, 

successfully synthesized mesoporous CN having surface area ranging from 505 to 

1116 m2g-1 with a highly ordered structure, depending on the type of template used. 

The photocatalytic activity of the prepared highly ordered mesoporous CN was 

reported to achieve high catalytic activity in the dehydrogenation of ethylbenzene to 

styrene with up to 93.6% selectivity. Even though having the increased ordered in the 

arrangement of CN, the phase of the prepared mesoporous CN was still an 

amorphous phase. Thus, in order to improve the surface area of crystalline CN, the 

introduction of porosity in the crystalline CN was carried out. In this study, Pluronic 

P123 surfactant as soft templates was used.
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For the main view of application of photocatalysis in water purification of 

self-sustaining environmental waste (Anku et al., 2017; Wang et al., 2012a; Wang et 

al., 2012b), the ability to ultilize a large part of the spectrum of natural sunlight is 

one the significant features for designing photocatalyst (Banerjee, 2011; Ou et al., 

2006; Wang et al., 2005; Woan et al., 2009). As CN potentially absorbs light only up 

to 470 nm (Fettkenhauer et al., 2014; Thomas et al., 2008; Wang et al., 2012b; 

Zhang et al., 2012a; Zhang et al., 2012b; Zheng et al., 2012; Zhu et al., 2014) and 

also suffers from fast charge recombination (Cao et al., 2015; Ho et al., 2015; Zheng 

et al., 2015), modification of highly crystalline CN in order to extend its absorption 

to longer wavelength and enhance its electrical conductivity as well as suppress 

charge recombination is required.

The perfect graphitic CN has a layered structure similar to graphite. However, 

the electrical conductivity of CN was reportedly lower than that of graphene (Zheng 

et al., 2012). This is due to the symmetrical substitution of high-electronegativity 

nitrogen atoms for carbon atoms in the carbon ring that leads to an increase in the n- 

deficiency of the conjugated systems, and thus, decreasing the electron availability of 

CN compared to graphene and subsequently suppress the charge recombination for 

CN. Therefore, a practical approach is to reversely and partially replace the nitrogen 

with carbon atom due to its low electronegativity properties. Substitution of nitrogen 

with carbon atom is expected to decrease the n-deficiency and increase the n-electron 

conjugated system and subsequently decrease the band gap energy of CN in order to 

harvest more visible light in the visible region. Bhunia et al. (2014) reported the 

modification of crystalline CN with 2,4,6-triaminopyrimidine (TAP) and 

demonstrated that the crystalline CN-TAP improved the photocatalytic hydrogen 

evolution reaction ten times compared to crystalline CN. However, the surface area 

and photocatalytic activity decreased with increasing of the amount of TAP. The 

increasing amount of TAP resulted in extending the absorption of CN up to 700 nm. 

In addition, the high carbon content of TAP and its structure that parallel with 

melamine has been a particular interest in this research.
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In this study, the synthesized crystalline CN, porous crystalline CN (porous 

CCN) and modified porous CCN-TAP have been applied in photocatalytic 

degradation of phenol under solar light irradiation. Phenol is a derivative of benzene 

and has been regarded as an important raw material that has many applications in 

industry such as petrochemicals, plastic, oil refineries, paint and pharmaceutical 

(Dekant et al., 2008; Li et al., 2004; Thomas et al., 2005). It is highly soluble in 

water and is highly toxic as classified by the Environmental Protection Agency 

(EPA) (Faweli and Hunt, 1988). The toxic effects due to phenol and its difficulties to 

be removed from wastewater have increased the concern for public health and 

environmental quality (Lin and Juang, 2009). Therefore, the total removal of phenol 

from wastewater is highly required. Among potential solutions, semiconductor-based 

photocatalysis has been a fascinating choice owing to its economical, renewable, 

clean and safe technology (Bard, 1980; Hoffmann et al., 1995). Research study on 

semiconductor photocatalysis was pioneered by Fujishima and Honda in 1972 that 

focused on TiO2 water splitting (Fujishima and Honda. 1972). Since then, TiO2 has 

always been one of the best materials owing to its excellent photocatalytic properties, 

non-toxicity and high thermal stability. To date, many kinds of literature have 

reported the successful enhancement of the photocatalytic properties and 

optimization of TiO2 in degradation of various organic pollutants (Cao et al., 2015; 

Woan et al., 2009). However, as TiO2 has band gap energy ranging of 3.0-3.2 eV, it 

needs ultraviolet (UV) light for an electron to be excited with sufficient energy in 

order to overcome the large band gap. Considering the fact that UV spectrum covers 

only ca. 3-4% (Savoye et al., 2017) of the total solar spectrum, applications of TiO2 

as photocatalyst are restricted since it can only work under UV light that comprises a 

limited fragment of sunlight. Therefore, in order to fully ultilize the sunlight as the 

largest cost-free energy source in the world, research on the development of visible 

light-driven photocatalysts such as CN materials has been widely conducted.

1.2 Statements of Problem

Various photocatalysts such as TiO2, and Zinc Oxide (ZnO) have been 

reported to give high photocatalytic activity in removal and degradation of organic
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pollutant. However, its wide band gap has limited the application of both 

photocatalysts in visible light region. Therefore, many works have been focusing to 

visible light-driven photocatalyst such as CN. Nowadays, CN has become an 

important material due to its good performance, especially as a photocatalyst. In 

addition, its good photocatalytic activity obtained under visible light irradiation has 

attracted significant attention as our solar spectrum consists of almost 40% of the 

visible spectrum compared to UV light (ca. 5%). However, various CN 

photocatalysts that have been reported widely showed the characteristic of the 

amorphous phase that might limit its activity. In fact, the catalytic activity of 

amorphous CN was usually low and modification was needed to improve its 

performance. Since the crystallinity of the photocatalysts influenced the 

photocatalytic properties, production of a photocatalyst with high crystalline phase is 

highly recommended, but can be a challenging task. Therefore, in this study, a 

crystalline CN was synthesized using an ionothermal method in order to improve the 

photocatalytic performance in the degradation of phenol. A variety of salt melts as 

the ionic solvent was studied and the properties affected during constructing the 

crystalline phase were discussed. Although various reports have been made in 

addressing this method for synthesis of crystalline CN, there is no study on the 

optimization of the synthesis parameters to obtain a highly crystalline CN 

photocatalyst. Therefore, in this study, synthesis parameters including the amount of 

precursor, synthesis temperature, synthesis time and amount of salt melts were 

performed.

Besides high crystallinity, the large specific surface area also plays a 

significant role in increasing the performance of the photocatalyst. The high surface 

density of active sites that exposed on the surface of photocatalyst and the facile 

accessibility by simple diffusion resulted from the high surface area and large pore 

volume have effectively enhanced the photocatalytic performance. While some 

studies showed that the photocatalytic activity was improved on the crystalline CN or 

highly ordered amorphous mesoporous CN, there is still no report at this point on the 

successful synthesis of highly crystalline porous CN. Therefore, there is no clear 

understanding about the effect of both crystallinity and mesoporous structures in the 

photocatalytic activity. The highly crystalline phase and improved surface area might
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help to provide better efficiency of charge transfer process that could improve the 

performance of CN. In addition, large surface area could harvest more light in the 

visible region. Therefore, in this study, highly crystalline porous CN was synthesized 

by the ionothermal method using salt melts of KCl-LiCl as the solvent and Pluronic 

P123 surfactant as a soft template. The effect of the soft template in constructing the 

porosity of the crystalline CN was studied and investigated.

It has been reported that photocatalysts having ability to absorb light in 

longer wavelength resulted in higher photocatalytic activity when utilizing visible 

light as the light source. As CN material was only able to absorb up to ca. 470 nm, 

modification of CN to enable its light absorption at a wider range of the visible 

spectrum is highly suggested. In this study, the modification of crystalline porous CN 

with TAP was investigated in order to improve the light absorption to the longer 

wavelength in visible region. TAP was chosen as it has high carbon content and its 

structural features parallel to those of melamine, which was the intermediate to 

produce the CN. Although it was reported that modification of crystalline CN with 

TAP resulted in high hydrogen production rate, there is still no report whether the 

same enhancement can be observed in the photocatalytic oxidation of phenol.

Phenolic compounds can be easily found in our environments due to their 

high usage in research and industrial purpose. As phenol has been categorized as a 

hazardous compound, the method to degrade phenol that would give high percentage 

degradation is required. Although degradation of phenol using TiO2 photocatalyst 

has been widely used, it can only work excellently under UV irradiation. Since the 

solar spectrum consists of about 40% of solar light compared to 5% of UV light, the 

application of photocatalyst that can work in visible light is highly required 

nowadays. Therefore, in this study, all the CN series comprised of amorphous CN 

and crystalline CN, porous CCN and porous CCN-TAP series were employed as 

active visible light-driven photocatalysts. The effect of crystallinity, porosity and 

dopant in photocatalytic degradation of phenol by CN were studied and investigated.
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1.3 Objectives of Studies

In order to obtain photocatalysts that are highly active in longer visible 

wavelength for removal of phenol, several objectives need to be accomplished as 

shown below:

1. To synthesize crystalline CN and porous crystalline CN by an 

ionothermal method and soft template technique.

2. To modify porous crystalline CN with TAP in order to extend the 

absorption to a longer wavelength.

3. To study and investigate the structural, optical, textural, morphological 

and electrochemical properties of prepared CN photocatalysts.

4. To investigate the photocatalytic performance of the synthesized 

photocatalysts in photocatalytic degradation of phenol.

1.4 Scope of Studies

The scope of this research can be divided into five parts which were 

development of crystalline CN, optimization on the synthesis parameters, preparation 

of crystalline CN from melamine precursor and preparation of porous CCN as well 

as porous CCN-TAP materials. The photocatalytic performance of synthesized CN 

materials were evaluated for the degradation of phenol under solar light simulator 

irradiation.

In the first part of works, the effectiveness of salt melts in inducing the 

formation of crystalline CN was investigated using KCl-LiCl, KCl-NaCl and KCl- 

ZnCl2 . Urea, an abundant, easily accessible, inexpensive and less toxic was deployed 

as the precursor for the synthesis of crystalline CN in this part. Varios spectroscopy 

instrumentations and analytical methods such as X-ray diffraction (XRD) 

spectroscopy, diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, 

Fourier transform infrared (FTIR) spectroscopy and nitrogen (N2) adsorption-
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desorption analysis for Brunauer-Emmett-Teller (BET) specific surface area and 

Barret-Joyner-Halenda (BJH) pore size distribution were deployed to study and 

investigate the properties of the prepared samples. The photocatalytic performances 

of prepared photocatalysts were evaluated for photocatalytic degradation of phenol. 

The remaining concentration of phenol at the end of the reaction was analysed using 

high performance liquid chromatography (HPLC) with a ultraviolet (UV) detector at 

a wavelength of 283 nm. As KCl-LiCl gave better crystallinity and photocatalytic 

activity than other salt melts, the KCl-LiCl was chosen for optimization of synthesis 

condition. Prior to the optimization studies, the physical and chemical properties of 

crystalline CN were also compared with amorphous CN. Transmission electron 

microscopy (TEM) was deployed to investigate the morphological of amorphous and 

crystalline CN while fluoroscene spectroscopy (PL) was employed to study the 

recombination of electron-holes. In addition, the charge transfer resistance (Rct) and 

heterogeneous electron-transfer rate constant (k) were studied by electrochemical 

impedence (EIS) spectroscopy.

The second part covered the studies on the optimization of synthesis 

conditions including amount of precursor (2 g, 3 g and 4 g), synthesis temperature 

(500 °C, 550 °C and 600 °C), synthesis time (2, 4 and 6 hours) and amount of salt 

melts (2.5 g, 5 g, 7.5 g). The physical and chemical properties were also studied and 

investigated by XRD, DR UV-vis, FTIR, and N2 adsorption-desorption analyses. The 

photocatalytic performances of prepared photocatalysts were evaluated in the 

photocatalytic degradation of phenol under solar light irradiation for 6 hours. The 

final concentration of phenol at the end of the reaction was determined using HPLC 

with the UV detector at the wavelength of 283 nm.

Following the succesfull preparation of crystalline CN using urea as organic 

nitrogen-rich precursor, in the third parts of the works, the crystalline CN was also 

prepared by using melamine as the precursor. The properties of the prepared 

crystalline CN was also compared with amorphous CN and both CN photocatalysts 

were denoted as amorphous CN-Mel and crystalline CN-Mel. The properties of 

prepared photocatalysts were characterized by XRD, DR UV-Vis, FTIR, TEM, N2 

adsorption-desorption analyses, TEM, PL spectroscopy and EIS. The prepared

12



amorphous CN-Mel and crystalline CN-Mel were subjected to photocatalytic 

degradation of phenol under solar light irradiation for 6 hours in order to evaluate 

their photocatalytic performance. The concentration of phenol after the reaction was 

determined using HPLC with the UV detector at the wavelength of 283 nm.

Fourth parts of the works included the introduction of porosity in the 

crystalline CN. Throughout this study, a Pluronic P123 surfactant was used as soft 

template for the preparation of porous CCN series. In this part, urea was first used as 

precursor but since urea was unable to provide a high surface area, melamine was 

chosen for the replacement of urea. Parameter like mass ratio of Pluronic P123 to 

precursor (0.02, 0.03, 0.04 0.05 and 0.1) was studied. The prepared photocatalysts 

were characterized by XRD, DR UV-vis, FTIR, EIS spectroscopy, N2 adsorption- 

desorption analyses, elemental analysis and TEM for selected samples (CCN- 

0.02P123) The photocatalytic performances of porous CCN-xP123 (x = 0.02, 0.03, 

0.04, 0.05 and 0.1) series were assessed in the photocatalytic degradation of phenol 

under solar light irradiation for 6 hours. The final concentration of phenol at the end 

of the reaction was determined using HPLC with the UV detector at the wavelength 

of 283 nm. The radical scavengers studies were carried out to propose the 

mechanism on sample porous CCN-0.05P123. The tert-butyl alcohol (TBA), 1,4- 

benzoquinone (BQ), silver nitrate (AgNO3) and ammonium oxalate (AO) were used 

as radical scavengers for hydroxyl radical (*OH), superoxide (O2*-), photogenerated 

electrons (e-), and photogenerated holes (h+), respectively.

In the final part, the porous CCN-0.05P123 which possesses high surface area 

with best photocatalytic activity was modified with TAP in order to increase its 

absorption to a longer wavelength. Different mass ratio of TAP into melamine (0.02, 

0.03, 0.04, 0.05 and 0.1) was carried out and prepared samples were denoted as 

porous CCN-xTAP which x refer to 0.02, 0.03, 0.04, 0.05 and 0.1. The properties of 

prepared modified porous CCN-xTAP photocatalysts were characterized using XRD, 

DR UV-vis, FTIR, EIS spectroscopy, N2 adsorption-desorption analyses for BET 

surface area and BJH pore size distribution as well as pore volume, TEM and 

elemental analysis. The photocatalytic performance of prepared porous CCN-xTAP 

series were evaluated in the degradation of phenol under solar light irradiation for 6
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hours. The remaining concentration of phenol at end of the photocatalytic reaction 

was determined using HPLC with the UV detector at the wavelength of 283 nm. 

Radical scavengers studies were performed on porous CCN-0.02TAP in order to 

propose its reaction mechanism. Radical scavengers used in these studies for 

scavenging *OH, O2*-, e-, and h+ were TBA, BQ, AgNO3 and AO, respectively.

1.5 Significance of Studies

The primary focus of this study is to increase the productivity of CN by 

constructing a crystalline CN having a porous structure. To the best of our 

knowledge, although several successful research works have demonstrated the 

successful preparation of crystalline CN and highly ordered mesoporous amorphous 

CN, there is still no report on the successful synthesis of crystalline CN with the 

presence of the porous structure. Therefore, this study is very important for 

advancement in material science, since this study could provide good knowledge and 

understanding of how to prepare the materials. Furthermore, the use of salt melts as 

an ionic solvent in the reaction is the key factor in the crystallization process, thus, 

this study also highlighted the effect of different concentrations and types of salt 

melts in the crystallization process and the photocatalytic properties as well. On the 

other hand, the use of TAP as a modifier to improve the visible light absorption of 

prepared materials to extended wavelength in visible region was able to fully 

optimize the ultilization of the solar energy that is the largest free and renewable 

energy source. The combination of high surface area and wide absorption in the 

visible light region gave high photocatalytic activity in photocatalytic degradation of 

phenol. Hence, this study also gives a great contribution to the knowledge of 

photocatalysis science.

As the phenol compound is very hazardous and toxic to human and 

environment, the study on the degradation of phenol would give a positive 

contribution to reduce the environmental problem. At the end of this study, a reaction 

mechanism on the modified porous CCN-TAP was also proposed. Therefore, this
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study provided us the important knowledge, especially in the mechanism of 

photocatalytic phenol degradation. Moreover, the use of photocatalytic reaction for 

the conversion of hazardous organic compounds to harmless compounds such as 

carbon dioxide and water should be among the best approaches to deliver an 

environmentally friendly process to progress the green technology. This work would 

also provide an important contribution to the sustainability of our nature.
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