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ABSTRACT

Magnesium (Mg) is becoming a potential material to replace conventional 
stainless-steel and titanium alloy medical implants. However, non-adequate 
mechanical stability of Mg could lead to premature failure and corrosion. Carbon nano 
fiber (CNF) has revolutionised the composite industries and continue to show a great 
promise in improving the mechanical properties and corrosion resistance of Mg. Thus, 
the primary purpose of this study is to develop Mg composites reinforced with CNF 
using a powder metallurgy method. The significant factors that influenced the process 
design were screened using two-level factorial design. Four factors; the percentage of 
CNF (0.1 - 2.0%), compaction pressure (100 -  400 MPa), sintering temperature (300 
-  500°C), and sintering time (1 - 4 hrs), were analysed for three responses, namely 
elastic modulus, hardness, and weight loss. The significant factors were further 
subjected to the Box-Behnken design (BBD) of response surface methodology to 
obtain the optimum parameters. Selected specimens were subjected to X-ray 
diffraction (XRD), attenuated total reflection-Fourier transform infrared (ATR-FTIR), 
scanning electron microscopy (SEM), atomic force microscopy (AFM), 
hydrophobicity, thermogravimetric (TGA), X-ray photoelectron spectroscopy (XPS) 
and biocompatibility analyses. The results show that the mechanical properties and 
corrosion resistance of the composites were optimum at 2% CNF, 400 MPa of 
compaction pressure, and 500°C of sintering temperature with a significant effect at P 
<0.05 for all variables except the sintering time (P >0.05). The elastic modulus and 
hardness of the composites peaked at 4685 MPa and 60 Hv, respectively. The 
nanomechanical analysis also revealed that the highest elastic modulus (766 MPa), 
hardness (539 MPa), and stiffness (575 N/m) were achieved at the same condition. 
After three days of immersion in phosphate buffered saline, the minimum and 
maximum weight loss were recorded at 54% and 100%, respectively. The CNF 
significantly improved the surface morphology of Mg-Zn/2.0%CNF with average 
roughness (Ra) of 19.16 ± 3.4 nm, high hydrophobicity (> 100°) and good oxidation 
behaviour. Moreover, the controlled releases of Mg2+ and Zn2+ ions were achieved too. 
The XRD analysis verified the presence of Mg (35 -  80 9), Mg-Zn alloy (35 -  40 9) 
and CNF (53 9) in the composite. The Raman spectroscopy analysis confirmed the 
presence of CNF in the Mg composites for all specimens. Besides, biocompatibility 
test confirmed the improvement of osteoblast cells viability and the composites were 
found non-toxic to the cells (> 70% viability). Further study on the optimisation using 
BBD showed that all factors significantly contributed towards high mechanical 
strength (5409.7 MPa of elastic modulus and 60.7 Hv of hardness) and corrosion 
resistance (up to 52%). The presence of Mg-Zn solid solution has improved the 
nanomechanical properties of the composites when 1.8% of CNF was compacted using 
425 MPa at 500°C sintering temperature that resulted in the records of 832 MPa elastic 
modulus, 549.7 MPa hardness and 605 N/m stiffness. Hydrophobicity and Ra were the 
major contributing factors that produced high corrosion resistance and controlled ions 
release. The Mg-Zn/1.8%CNF has also successfully stimulated cell growth with non­
toxic properties towards osteoblast cells. This work concludes that the optimum 
conditions and processing techniques for the fabrication Mg composite were found at 
1.8% of CNF, 425 MPa of compaction pressure, and 500°C of sintering temperature.
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ABSTRAK

Magnesium (Mg) menjadi bahan berpotensi untuk menggantikan implan 
keluli-tahan karat dan aloi titanium. Walau bagaimanapun, kestabilan mekanikal Mg 
yang tidak mencukupi boleh menyebabkan kegagalan pramatang dan kakisan. Serat 
karbon nano (CNF) telah merevolusikan industri komposit dan menjanjikan 
penambahbaikkan dalam sifat mekanikal dan ketahanan kakisan. Oleh itu, tujuan 
utama kajian ini adalah untuk menghasilkan komposit Mg yang diteguhkan dengan 
CNF melalui kaedah metalurgi serbuk. Faktor penting yang mempengaruhi reka 
bentuk proses disaring dengan menggunakan reka bentuk pemfaktoran dua aras. 
Empat faktor; peratusan CNF (0.1 - 2.0%), tekanan pemadatan (100 - 400 MPa), suhu 
pembakaran (300 - 500°C), dan masa pembakaran (1 - 4 jam), dianalisis untuk tiga 
tindak balas, iaitu modulus elastik, kekerasan, dan penurunan berat. Faktor-faktor 
penting selanjutnya tertakluk pada reka bentuk Box-Behnken (BBD) bagi kaedah 
permukaan tindak balas untuk mendapatkan parameter optimum. Spesimen yang 
terpilih tertakluk pada analisis pembiasan sinar-X (XRD), pengurangan jumlah 
pantulan-Inframerah pengubah Fourier (ATR-FTIR), mikroskop pengimbasan 
elektron (SEM), mikroskopi daya atom (AFM), telap air, termogravimetrik (TGA), 
spektroskopi fotoelektron sinar-X (XPS) dan keserasian bio. Hasil kajian 
menunjukkan bahawa sifat mekanikal dan ketahanan kakisan komposit adalah 
optimum pada 2% CNF, 400 MPa tekanan pemadatan, dan suhu pembakaran 500°C 
dengan kesan yang ketara pada P <0.05 untuk semua pemboleh ubah kecuali masa 
pembakaran (P >0.05). Modulus elastik dan kekerasan komposit masing-masing 
mencapai nilai tertinggi pada 4685 MPa dan 60 Hv. Analisis nanomekanikal juga 
menunjukkan bahawa modulus elastik tertinggi (766 MPa), kekerasan (539 MPa), dan 
kekakuan (575 N/m) dicapai pada keadaan yang sama. Setelah tiga hari rendaman 
dalam larutan penimbal fosfat, penurunan berat yang minimum dan maksimum 
masing-masing dicatatkan pada 54% dan 100%. CNF telah menambahbaik morfologi 
permukaan Mg-Zn/2.0%CNF dengan purata kekasaran (Ra) 19.16 ± 3.4 nm, telap air 
tinggi (> 100°) dan sifat pengoksidaan yang baik. Lebih-lebih lagi, pelepasan ion Mg2+ 
dan Zn2+ yang terkawal juga diperhatikan. XRD mengesahkan adanya komposisi Mg 
(35 - 80 9), aloi Mg-Zn (35 - 40 9) dan CNF (53 9) dalam komposit. Analisis 
spektroskopi Raman mengesahkan adanya CNF dalam komposit Mg untuk semua 
spesimen. Selain itu, ujian keserasian bio mengesahkan peningkatan pertumbuhan sel 
osteoblas dan komposit didapati tidak toksik pada sel (pertumbuhan sel > 70%). Kajian 
lebih lanjut mengenai pengoptimuman menggunakan BBD menunjukkan bahawa 
semua faktor menyumbang secara ketara terhadap kekuatan mekanik yang tinggi 
(modulus elastik 5409.7 MPa dan kekerasan 60.7 Hv) dan ketahanan kakisan (hingga 
52%). Kehadiran larutan pepejal Mg-Zn telah meningkatkan sifat nanomekanik 
apabila 1.8% CNF dipadatkan menggunakan 425 MPa pada suhu pembakaran 500°C 
menghasilkan rekod modulus elastik 832 MPa, kekerasan 549.7 MPa dan kekakuan 
605 N/m. Ketidak telapan air dan Ra adalah faktor penyumbang utama yang 
menyebabkan ketahanan kakisan yang tinggi dan pembebasan ion terkawal. Mg- 
Zn/1.8%CNF juga berjaya merangsang pertumbuhan sel dengan sifat tidak toksik 
terhadap sel osteoblas. Kajian ini menyimpulkan bahawa keadaan dan teknik 
pemprosesan yang dioptimum untuk pembuatan Mg komposit adalah pada 1.8% CNF, 
425 MPa tekanan pemadatan, dan 500°C suhu pembakaran.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENTS viii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xx
LIST OF SYMBOLS xxi
LIST OF APPENDICES xxii

CHAPTER 1 INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Research Questions 6
1.4 Objective of Study 6
1.5 Scope of Study 7
1.6 Significance of Study 8

CHAPTER 2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Biomaterial and Complications of Implant Removal 9
2.3 Biodegradable Metal 12

2.3.1 Examples of Biodegradable Metals 13
2.3.2 Roles of Biodegradable Metals in Human Body

14
2.4 Biodegradable Polymer 16
2.5 Biodegradable Ceramic 18

viii



19

21

22
23

25

26
27
28

29

29
31

34
35

35
36
37

38
38
40
42

45
45
48
48

50

Magnesium Based Biodegradable Metal
2.6.1 Clinical Trials of Biodegradable Mg-Based 

Implant
2.6.2 Advantages of Magnesium Based 

Biodegradable Metal
2.6.3 Degradation of Magnesium-based Implant
2.6.4 Bio-Properties of Magnesium in Biomedical 

Application
2.6.5 Effect of Zinc on Mechanical Properties and 

Corrosion Behaviour of Magnesium Alloy
Metal Matrix Composite
2.7.1 Factor Governing Reinforcement Selection
2.7.2 Selection of Reinforcement Particle in Current 

Study
2.7.3 Fabrication Techniques of Metal Matrix 

Composite
2.7.3.1 Powder Metallurgy Method
2.7.3.2 Issue in Powder Metallurgy for 

Magnesium
2.7.4 Effect of Reinforcement Particle

2.7.4.1 Interaction between particles and 
dislocations

2.7.4.2 Precipitate Hardening
2.7.4.3 The Reduction of Grain Size.

Carbon Nano Fiber and Its Application in Biomedical 
Industries
2.8.1 Properties of Carbon Nano Fiber
2.8.2 Application in Biomedical Industries 
Summary

METHODOLOGY
Introduction
Design of Experiment (DOE)
3.2.1 Screening and Regression Analysis
3.2.2 Optimization and Response Surface Method 

(RSM)

ix



52
52
53
54
55

55
55

56
56
56

57
57
57
58

58

58
59
59
60
60
61
62
62
62
63
64

65
65

Fabrication Procedure
3.3.1 Pre-treatment Process
3.3.2 Powder Metallurgy Method 
Surface Preparation 
Physico-Chemical Characterizations
3.5.1 Surface Morphology using Atomic Force 

Microscopy (AFM)
3.5.2 Microstructural Analysis

3.5.2.1 Scanning Electron Microscopy and 
Energy Dispersive X-ray

3.5.2.2 Optical Microscopy
3.5.3 Raman Spectroscopy
3.5.4 Fourier-Transform Infrared Spectroscopy- 

Attenuated Total Reflection (FTIR-ATR)
3.5.5 X-ray Diffraction
3.5.6 Water Contact Angle
3.5.7 Thermogravimetric Analysis
3.5.8 Inductive Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) Analysis
3.5.9 X-ray Induced Photoelectron Spectroscopy 

(XPS)
Mechanical characterizations
3.6.1 Compression Test
3.6.2 Hardness Tests
3.6.3 Nanomechanical Properties 
Static Immersion Degradation Test 
Biocompatibility Test
3.8.1 Preparation of Extract Media
3.8.2 Cell Lines and Maintenance
3.8.3 Cell Viability Test 
Summary

RESULTS AND DISCUSSION
Introduction

x



4.2 Full Factorial Design for Screening of the Factors 65
4.2.1 Response and Residual Analysis 67
4.2.2 Structure and Chemical Compositions 72

4.2.2.1 Particle Surface Area Distribution
Analysis 73

4.2.2.2 Microstructural Analysis 74
4.2.2.3 Analysis of Surface Morphology

using AFM 76
4.2.2.4 X-Ray Diffraction Analysis 79
4.2.2.5 Contact Angle Measurement

Analysis 80
4.2.2.6 Raman Spectroscopy Analysis 83
4.2.2.7 Thermal Gravimetric Analysis

(TGA) 85
4.2.2.8 Inductive Couple Plasma-Optical

Emission Spectrometry Analysis 87
4.2.3 Mechanical Characterisation 89

4.2.3.1 Analysis of Compression and
Hardness Tests 89

4.2.3.2 Analysis of Nanomechanical
Properties 90

4.2.4 Corrosion Behaviour 95
4.2.4.1 Static Immersion Test Analysis 95
4.2.4.2 ATR-FTIR Analysis 99
4.2.4.3 Morphological Characterisation 100

4.2.5 Analysis of Cell Viability 104
4.3 Response Surface Methodology Analysis 106

4.3.1 Structure and Chemical Compositions 117
4.3.1.1 Particle Surface Area Distribution

Analysis 117
4.3.1.2 Microstructural Analysis 118
4.3.1.3 Analysis of Surface Morphology

using AFM 120
4.3.1.4 X-Ray Diffraction Analysis 121

xi



4.3.1.5 Contact Angle Measurement
Analysis 123

4.3.1.6 Raman Spectroscopy Analysis 125
4.3.1.7 Thermal Gravimetric Analysis

(TGA) 126
4.3.1.8 Inductive Couple Plasma-Optical

Emission Spectrometry Analysis 128
4.3.2 Mechanical Characterisation 129

4.3.2.1 Analysis of Compression and
Hardness Tests 129

4.3.2.2 Analysis of Nanomechanical
Properties 131

4.3.3 Corrosion Behaviour 134
4.3.3.1 Static Immersion Test Analysis 134
4.3.3.2 ATR-FTIR Analysis 136
4.3.3.3 Morphological Characterisation 137
4.3.3.4 X-Ray Photoelectron Spectroscopy

Composition Analysis 140
4.3.4 Analysis of Cell Viability 142

4.4 Summary 145

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
FOR FUTURE WORK 149

5.1 Conclusion 149
5.2 Limitations and Recommendations for Future Work 150

REFERENCES 151
LIST OF PUBLICATIONS 199

xii



10

11
15

17
19

22

31

33

35
40

46
49

49
51
51

66

69

71

LIST OF TABLES

TITLE
Comparison of biodegradable materials in biomedical 
applications [51].
Summary of the complications of removal implant devices.

The roles of metals in human body.
The applications of biodegradable polymers in biomedical 
field.
Biomedical applications of bioceramic.
Comparison of mechanical properties of Mg alloy with 
natural bone [Adapted from [101]].
Summary of fabrication methods of metal matrix 
composite.
The example of sintering atmospheres for sintering process.

Summary of scientific literature on the PM method for 
fabricating Mg-based alloys [Adapted from [150]].
Application of CNF in biomedical industries.
Investigated specimens’ conditions and corresponding 
denotations.
The level of factors for two-level factorial design.
The details of experimental design for two-level factorial 
design.
The level of factors for Box-Behnken design.
The summary of variables for Box-Behnken design.
Full factorial design matrix and the average screening factor 
output values.
Analysis of variance for elastic modulus, hardness and the 
percentage of weight loss in 3 days static immersion test.
Regression relation for elastic modulus, hardness, and 
percentage of weight loss.

xiii



Table 4.4

Table 4.5 
Table 4.6

Table 4.7

Table 4.8

Table 4.9 
Table 4.10

Table 4.11 
Table 4.12

Table 4.13

Particle surface area measurement for Mg-Zn/2.0%CNF, 
Mg-Zn/1.05%CNF, Mg-Zn/0.1%CNF, Mg-Zn alloy and 
pure Mg (unit: mm2). 73
Identification of multiple phases after sintering process. 79
Comparison of the static immersion test of biodegradable
metals published in literatures. 95
Summary of corrosion test of biodegradable metal 
fabricated with different compaction pressure published in 
literatures. 96
Summary of ATR-FTIR peaks and corresponding 
functional groups. 100
Applications of CNF in biomedical studies. 106
Box-Behnken design matrix together with the average 
responses output values. 107
ANOVA for elastic modulus, hardness, and weight loss. 108
Regression relation for elastic modulus, hardness, and
weight loss. 110
Particle surface area measurement for Mg-Zn/1.8%CNF, 
Mg-Zn/2.0%CNF and Mg-Zn/2.2%CNF (unit: mm2). 117

xiv



LIST OF FIGURES

FIGURE NO. TITLE
Figure 2.1 Main elements of biomaterials.
Figure 2.2 Biodegradable metallic stents are commonly used to

promote revascularization and maintain patency of plaque 
or damaged arteries [56].

Figure 2.3 Consideration of element selection for developing
biodegradable implant.

Figure 2.4 A biodegradable magnesium alloy screw in a person’s wrist
[94].

Figure 2.5 Timeline of representative clinical trials of biodegradable
Mg-based implant in orthopaedics [Adapted from [97]].

Figure 2.6 a) External galvanic corrosion and b) internal galvanic
corrosion [Adapted from [110]].

Figure 2.7 Illustration PM process.
Figure 2.8 The model for the dislocation-solute interaction with an

average displacement [161].
Figure 2.9 Solution heat treatment Solution heat treatment is the first

step in the age-hardening process, where the alloy is heated 
to a temperature within single phase region and held a 
sufficient time until a homogeneous solid solution is 
produced.

Figure 2.10 Grain boundaries in 2 dimensional lattice.
Figure 3.1 Research flow chart.
Figure 3.2 Summary of experimental study design for the optimisation

of Mg-Zn reinforced with CNF (Mg-Zn/CNF) composite 
using the statistical approach.

Figure 3.3 Illustration of pre-treatment powder metallurgy method.
The method starts from (a) mixture of Mg and Zn (Mg 
matrix), (b) sonication of CNF with ethanol, (c) mix CNF 
into Mg matrix and mix for one hour, and (d) filtration 
process.

Figure 3.4 Illustration of powder metallurgical method, involve (a)
ball milling process, (b) rigid die compaction and (c) 
sintering process. (d) The diameter of final product after 
powder metallurgy process. (e) The dimension of mould.

PAGE
10

12

13

20

21

24
32

36

37
38
47

48

53

54

xv



61

62
63

64

68

72

75

77

77

78

79
81

84

86

88

Illustration of static immersion test in PBS solution for 
three days.
Illustration for preparation of extract media which includes 
(a) sterilisation of specimens, (b) immersion of specimens 
inside medium, (c) incubation period of specimens for 3 
days, (d-e) using filter syringe to separate extracted media 
with specimens.
Illustration of cell culture process.
(a) Typical image of the confluency of osteoblast cell under 
optical microscope and (b) the mixture of formazan crystal 
with DMSO.
Half-normal plot graph for (a) elastic modulus, (b) 
hardness, and (c) the percentage of weight loss for 3 days.
Perturbation plot for (a) elastic modulus, (b) hardness, and 
percentage of weight loss.
SEM micrographs showing areas of EDX line scan analysis 
and atomic percentage of each element: (a) Mg-Zn/0.1% 
CNF, (b) Mg-Zn/1.05% CNF and (c) Mg-Zn/2.0% CNF.
Typical “Height” images for (a) Mg-Zn/2.0%CNF, (b) Mg- 
Zn/1.05%CNF, (c) Mg-Zn/0.1%CNF, and (d) Mg-Zn alloy 
with dimension of (10 x 10) pm.
Comparative display of AFM line profiles of surface 
morphology of Mg-Zn/2.0%CNF, Mg-Zn/1.05%CNF, Mg- 
Zn/0.1%CNF, and Mg-Zn alloy.
The illustration of effect of reinforcement particle towards 
surface roughness.
XRD pattern of three main compositions (a) Mg- 
Zn/0.1%CNF, (b) Mg-Zn/1.05%CNF and (c) Mg- 
Zn/2.0%CNF.
Average of water contact angle for all specimens.
Raman spectra for Mg-Zn/0.1%CNF, Mg-Zn/1.05%CNF 
and Mg-Zn/2.0%CNF and pure CNF.
Results of thermography measurement for (a) Mg-Zn alloy,
(b) Mg-Zn/0.1%CNF, (c) Mg-Zn/1.05%CNF and (d) Mg- 
Zn/2.0%CNF.
Release of (a) Mg2+ and (b) Zn2+ for seven days incubation 
period.

xvi



91

92

94
98

99

102

103

104

111

113

114

Typical image for a deflection-displacement curve which 
consist of approach (black line) and retraction (blue line) 
curves.
(i) The average values of elasticity for Mg-Zn alloy, Mg- 
Zn/0.1%CNF, Mg-Zn/1.05%CNF, and Mg-Zn/2.0%CNF.
(ii) Adhesion force images for (a) Mg-Zn/2.0%CNF, (b) 
Mg-Zn/1.05%CNF, (c) Mg-Zn/0.1%CNF and (d) Mg-Zn 
alloy.
Analysis of hardness (line graph) and stiffness (bar chart) 
for Mg-Zn alloy, Mg-Zn/0.1%CNF, Mg-Zn/1.05%CNF, 
and Mg-Zn/2.0%CNF.
Illustration of bilayer structure of hydrophobic surface.
ATR spectra for Mg composites after 3 days immersion test 
with different content of CNF.
SEM images of corrosion product found on the surface of
(a) Mg-Zn/0.1%CNF, (b) Mg-Zn/1.05%CNF and (c) Mg- 
Zn/2.0%CNF after 3 days of immersion test in PBS 
solution.
SEM images of corrosion product found on Mg- 
Zn/2.0%CNF after 5 days of immersion in PBS solution at 
different magnification; (a) 250X and (b) 500X.
Cell viability expressed as a percentage of the viability of 
cells in extracted medium.
Normal probability plot for (a) elastic modulus, (b) 
hardness and (c) weight loss.
The 3D response surface and 2D contour plots showing the 
effects of percentage of CNF (%) and compaction pressure 
(MPa) on elastic modulus, hardness, and weight loss. (i) and 
(ii) showing the effect of percentage of CNF and 
compaction pressure on elastic modulus (a), hardness (b) 
and weight loss (c). The levels of factors (A and B) utilized 
in the current study are shown by red dots on the axis.
The 3D response surface and 2D contour plots showing the 
effects compaction pressure (MPa) and sintering 
temperature (oC) on elastic modulus, hardness, and weight 
loss. (i) and (ii) showing the effect of compaction pressure 
and sintering temperature on elastic modulus (a), hardness
(b) and weight loss (c). The levels of factors (B and C) 
utilized in the current study are shown by red dots on the 
axis.
The 3D response surface and 2D contour plots showing the 
effects of percentage of CNF (%) and sintering temperature

xvii



115

116

119

121

122

124

125

127

128

132

133

134

136

139

(oC) on elastic modulus, hardness, and weight loss. (i) and
(ii) showing the effect of percentage of CNF and sintering 
temperature on elastic modulus (a), hardness (b) and weight 
loss (c). The levels of factors (A and C) utilized in the 
current study are shown by red dots on the axis.
Perturbation plot for (a) elastic modulus, (b) hardness and
(c) weight loss.
SEM images of (a) Mg-Zn/1.8%CNF, (b) Mg-
Zn/2.0%CNF and (c) Mg-Zn/2.2.%CNF with 
corresponding EDX line profiles.
AFM topography images of (a) Mg-Zn/1.8%CNF, (b) Mg- 
Zn/2.0%CNF and (c) Mg-Zn/2.2.%CNF with the
corresponding line profiles.
X-ray diffraction patterns Mg-Zn/1.8%CNF, Mg-
Zn/2.0%CNF and Mg-Zn/2.2.%CNF.
Average water contact angle for Mg, Mg-Zn, Mg- 
Zn/1.8%CNF, Mg-Zn/2.0%CNF and Mg-Zn/2.2%CNF.
Raman spectra of pure CNF, Mg-Zn/1.8%CNF, Mg- 
Zn/2.0%CNF, and Mg-Zn/2.2%CNF.
Results of thermography measurement for (a) Mg- 
Zn/1.8%CNF, (b) Mg-Zn/2.0%CNF and (c) Mg-
Zn/2.2%CNF.
Average concentration of (a) Mg2+ and (b) Zn2+ for Mg, 
Mg-Zn, Mg-Zn/1.8%CNF, Mg-Zn/2.0%CNF and Mg- 
Zn/2.2.%CNF.
The average values of elasticity for Mg-Zn alloy, Mg- 
Zn/1.8%CNF, Mg-Zn/2.0%CNF and Mg-Zn/2.2%CNF.
3-dimensional images for Mg-Zn/1.8%CNF, Mg- 
Zn/2.0%CNF and Mg-Zn/2.2%CNF.
Analysis of hardness (line graph) and stiffness (bar chart) 
for Mg-Zn alloy, Mg-Zn/ 1.8%CNF, Mg-Zn/2.0%CNF and 
Mg-Zn/2.2%CNF.
ATR-FTIR spectra for Mg-Zn/ 1.8%CNF, Mg- 
Zn/2.0%CNF and Mg-Zn/2.2%CNF after 3 days immersion 
test.
SEM images of corrosion product found on the surface of
(a) Mg-Zn/ 1.8%CNF, (b) Mg-Zn/2.0%CNF and (c) Mg- 
Zn/2.2%CNF after 1, 3, 5 and 7 days of immersion test in 
PBS solution. High magnification images (500x) were 
displayed at the top-left on each image.

xviii



Figure 4.37 

Figure 4.38

Figure 4.39 

Figure 4.40

XPS analysis of Mg-Zn/1.8%CNF (a) before corrosion and
(b) after corrosion. 141
Cell viability expressed as a percentage of the viability of 
cells in extracted medium for Mg, Mg-Zn, Mg- 
Zn/1.8%CNF, Mg-Zn/2.0%CNF and Mg-Zn/2.2.%CNF. 143
Schematic illustration of possible mechanism during 
mechanical testing; (a) initial composite material, (b) load 
applied, (c) the matrix deforms and CNF rotates after being 
stress and (d) CNF is deformed and elongated. 146
Schematic illustration of possible of corrosion for Mg- 
Zn/CNF. 147

xix



LIST OF ABBREVIATIONS

3D - 3 dimensions
AFM - Atomic force microscopy
ANOVA - Analysis of variance
BBD - Box-Behnken design
BMI - Biodegradable metal implant
Ca - Calcium
Cd - Cadmium
CNF - Carbon nano fiber
CNT - Carbon nanotube
CO2 - Carbon dioxide
Cu - Copper
DMEM - Dulbecco's Modified Eagle Medium
DMSO - Dimethyl sulfoxide
DOE - Design of experiment
EDX - Energy dispersive X-ray
FBS - Fetal bovine serum
FTIR- - Fourier transform infrared spectroscopy -  attenuated total
ATR reflectance
hFOB - Human foetal osteoblast cell
ICP-OES - Inductively coupled plasma - optical emission spectrometry
ICP-OES - Inductively coupled plasma-optical emission spectroscopy
LOF - Lack of fit
Mg Magnesium
MTT - 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide
MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

bromide
MWCNT - Multi-walled carbon nanotube
PBS - Phosphate-buffered saline
PM - Powder metallurgy
RSM - Response surface methodology
SEM - Scanning electron microscopy
SS - Stainless steel
TGA - Thermogravimetric analysis
Ti - Titanium
UV - Ultra-violet
XPS - X-ray photoelectron spectroscopy
XRD - X-ray diffraction
Zn - Zinc

xx



LIST OF SYMBOLS

# - Number
% - Percent
c - Degree Celsius
°C/min - Degree Celsius per minutes
± - Plus-minus
< - Less than
> - More than
a.u - Astronomical unit
Cell/mL - Cell/millilitre
cm-1 - 1 per centimetre
cm2/mL - Centimetre square per millilitre
eV - Electron volt
g - Gram
g - gas
GPa - Giga Pascal
hr - Hour
Hv - Vickers Pyramid Number
k - Number of independent factors
kg - Kilogram
kHz - Kilo Hertz
kV - Kilo volt
l - liquid
mg Milligram
min - Minutes
mL - Millilitre
mL/min - Millilitre per minute
mm - Millimetremm2 - Millimetre square
MPa - Mega Pascal
N/m - Newton per meter
nm - Nanometre
RPM - Revolution per minute
s - solid
sec - Seconds
w/w - Weight/weight
a - Alpha
|iL - Microlitre
^m - Micrometre

xxi



LIST OF APPENDICES

APPENDIX TITLE PAGE
Appendix A ATR-FTIR Analysis (Before Corrosion) 171
Appendix B 2-Level Factorial Design Analysis 172
Appendix C Biocompatibility Test (Screening) 175
Appendix D Box-Behnken Design Analysis 181
Appendix E Optimisation (BBD) 189
Appendix F Biocompatibility Analysis for Optimum Specimens 193

xxii



CHAPTER 1

INTRODUCTION

1.1 Background of Study

Innovations in health sciences and biomaterial engineering are needed to 
discover effective methods. This includes design of new implants to address increase 
in orthopaedic fracture cases [1]. Much attention and research effort has been accorded 
to new technologies in biomedical implants such as knee, hip, retina and dental 
implants, degradable screws and plates, scaffolds and drug delivery devices. The 
biomedical implants need sufficient and speedy care for patients with bone fractured. 
The performance of the current titanium (Ti) and stainless steel (SS) that are used for 
external fixator screw has been thoroughly investigated and reported in many scientific 
fields for their biocompatibility. However, several problems raised as a result of using 
these materials [2, 3]. For instance, they interfere with imaging techniques such as 
computed tomography and magnetic resonance imaging, and the screw can block the 
radio-therapeutic beam and result in inadequate treatment. Another significant 
challenge is the extraction of the implant (implant screws) from human body after the 
material has fulfilled its function. The extraction of the screws needs additional 
surgical procedure. This takes time, cause discomfort, has cost implication and 
infection risk [4]. To overcome these, innovations in implant designs in biomedical 
engineering is still immensely needed as bone fracture is a part of human life.

Biodegradable metal implant (BMI) can be defined as the metal implant that 
decompose gradually in vivo, with an appropriate host response elicited by the released 
decomposition products. They dissolve completely upon fulfilling their function of 
assisting the tissue healing with no implant residues [5]. BMI is expected to replace 
non-degradable implants in the next era of biomedical engineering as they have no 
multiple cost, time and risk disadvantages associated with non-degradable implants 
and do not need secondary surgery as they degrade in human body with minimum side
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effect. Thus, biodegradable implants offer a considerable chance to cut cost, time and 
patient suffering, yet the most important benefit is by preventing second surgery.

Magnesium (Mg) alloys are the most studied biodegradable metals due to its 
usage as materials in temporary medical implants like coronary stents and bone 
fracture fixation screws [6]. When a Mg alloy is immersed in a physiological medium, 
the contact between the fresh surface and an electrolyte-containing aqueous medium 
lead to higher initial corrosion rates. This process involves the release of hydrogen and 
the alkalinization of the environment [7]. Moreover, it is an essential element needed 
for bone function, and the alloys are characterised by its low elastic modulus (40-45 
GPa), which is the closest to that of human bone compared to other metallic 
biomaterials. Recently, bone screws and pins made of Mg-Zn-Ca-Zn and Mg-RE 
alloys have been approved for clinical use in Korea and Germany [8, 9]. However, 
many found that the mechanical properties and degradation resistance of Mg alloys 
are yet to be ideal and needs further improvement. The combination of limited strength 
and rapid degradation rate may lead to a premature loss of mechanical integrity of an 
implant before a fractured bone is entirely healed [10]. The characteristics of strength 
and degradation should be balanced to make sure the bone segments could receive 
adequate stabilisation during healing [11]. One of the promising methods to improve 
both strength and degradation resistance of Mg alloys is composite reinforcement by 
carbonaceous particles [12].

Different forms of carbonaceous particles had successfully been used to 
reinforce different types of metal alloys, including carbon nanofiber (CNF) [13], 
graphene nanoplate [14], carbon nanotube (CNT) [15], and carbon fiber [16]. CNF 
reinforcement enhance the mechanical strength of CNF-A7XXX composites as high 
as 89.83 GPa while being chemically stable [17, 18]. The limited strength and rapid 
degradation of Mg alloys used in bone implants can be increased and improved 
through the addition of CNF. The dispersion of CNF and the high interface of CNF 
guarantee the strengthening effect and increases the degradation resistance of the 
composite. However, the use of CNF particles for reinforcing biodegradable Mg alloys 
is still limited. Literature search showed that the highest average yield strength of 74 
MPa can be recorded for 1.5% wt CNF in porous Mg, which was enhanced by 54%
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compared to porous Mg alone. Fibers are regarded as a potent reinforcing category 
that influences directional strength and stability of the composites [19]. They add 
strength to the matrix, which influenced and enhanced its desired property [20-22]. A 
CNF-Mg alloy composite can be fabricated through powder metallurgy (PM) process 
however attention must be paid to at least four parameters; percentage of 
reinforcement particles, compaction pressure, sintering temperature, and sintering 
time [23]. According to Orowan strengthening effect, increasing the CNF percentage 
up to 2% in a metal matrix could increase the mechanical aspect of a composite [20]. 
The usage of less than 1% of CNF as reinforcement improved the ultimate compressive 
force to 114 MPa, which represents about 14% increase to that of pure Mg, as well as 
hardness improvement of 37% [22]. An increment in compaction pressure will lead to 
increased contact area between powder particles and further decreases porosity thereby 
improving the strength and stiffness of the composite [24, 25]. Similarly, increasing 
the compaction pressure will decreases the composite pore size form a more compact 
or dense material [26]. Finally, both sintering temperature and time will transform the 
compacted powders into sintered metals and determines the composite final structure 
and property of the composite [27].

The combination of the above listed parameters can be determined effectively 
through the use of design of experiment (DOE); a method that is suitable for 
characterisation, optimisation, and modelling process involving materials and 
composition preparation [28]. The process involves planning and designing of 
experiments base on specific parameters such as temperature, composition, and time, 
which should be predetermined before conducting the DOE. Fitting data from previous 
studies should be captured and analysed for the right interpretation of post- 
experimental works in order to validate the results, objectives, and conclusion [29]. 
There are many designs in the DOE, including two-level factorial, Plackett Burman, 
Taguchi methods and Box-Behnken but the factorial design which studies the effect 
of two or more factors are commonly used to design experiments for developing new 
materials, processes and screening factors [30]. It helps to determine the most 
influential variables in the process of responses in material properties by identifying 
the vital factors affects both process and material properties. This in turn reduces the 
number of experiments to save time and cost [30]. A two-level factorial DOE allows 
an analysis of multiple factors simultaneously while maintaining data collection
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quality, as shown in the work of Gou etal. [31]. These authors analysed the substantial 
effect of suspension concentration, sonication time, and vacuum pressure on the pore 
size of single-walled nanotube using a half-normal plot and regression model without 
the second-order effect. The most popular designs for fitting a second-order 
polynomial are the central composite designs [32] and the designs of Box and Behnken 
design (BBD) [33]. In most cases, for three factors, BBD gives some benefit in having 
fewer runs. BBD an independent quadratic design with no embedded factorial or 
fractional factorial design. In BBD, the treatment combinations are at the midpoints of 
process space edges and centre [33]. The BBD, that is a part of the Response Surface 
Methodology (RSM), can be used to identify the optimum manufacturing parameter 
of composites by evaluating the effect and interactions of factors found on the two- 
level factorial design [34].

In the present study, we investigate an optimised material design and process 
of biodegradable CNF-reinforced Mg-Zn alloy composites fabricated through the 
powder metallurgy (PM) process using the two-level factorial and BBD methods. 
Moreover, it is aimed to improve mechanical properties, corrosion resistance and 
biological activity of the composites for targeted orthopaedic implants.

1.2 Problem Statement

After bone fracture healing has taken place, external fixator screws (Ti and SS) 
no longer have any function and implant extraction procedure become an obligation. 
However, 48% of medical doctors believed it is more risky to extract the non- 
biodegradable implant out than leaving it inside human body [35]. This was supported 
by Kovar et al. [36] where post-extraction of non-biodegradable implant increased the 
rate of complications to 28%. A statistical analysis made by University of Mississippi 
Medical Center and University of Alabama at Birmingham showed that 17% of 
patients are faced with acute bacterial infections after extraction of implant [37]. From 
the same research [37], 7 out of 17 patients faced bone re-fracture and wound drainage. 
These postoperative complications are very serious as it affects not only health 
condition, but also the social and economic status of the patient(s) [35]. Even though
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almost 52% medical doctor believed the implant should not be removed after bone 
heal due to risks and complications associated with the removal procedures [35], a 
clinical analysis conducted by Niznick [38] found that 400 out of 4235 patients faced 
implant fracture in bone after a few years of healing period. Indirectly, it urged doctors 
to extract it and that implies secondary surgery. Besides, the implant will also interfere 
with the image interpretation and interference of the radio-therapeutic treatment which 
results to an inadequate treatment [39].

Biodegradable metal such as Mg-Zn alloy is a promising implant that can 
replace the conventional screw in external fixator because both elements are essential 
trace elements in human body [40, 41]. This includes bone screws and pins made of 
Mg-Zn-Ca-Zn and Mg-RE alloys that clinical use in Korea and Germany [8, 9]. 
However, research findings that Mg and its alloy degrade rapidly and easily lost its 
mechanical integrity over the corrosion period [42]. Moreover, the degradation of Mg 
can release hydrogen gas which affects the cell growth. The tolerable rate of hydrogen 
release was reported to be only 0.01 ml/cm2 per day in the human body [41, 42]. Thus, 
controlling of the hydrogen release rate from the biodegradation of Mg is imperative. 
In addition, a low mechanical stability of Mg-Zn alloy (60.62 MPa) is seen as serious 
challenge to their biodegradability advantage especially when used in load bearing 
areas of the body such as mandible [43]. Due to the low mechanical stability, most of 
the manufacturer of biodegradable implants have increased the dimension of these 
fixative devices but the enlarged dimension may cause difficulties in wound closure.

In addition to enhanced mechanical properties of biodegradable material, CNF 
demonstrates a great potential for promoting bone regeneration [39]. Many 
biomedical studies to date, have demonstrated wide and successful incorporation of 
CNF in tissue engineering polymers including poly(lactic-co-glycolic acid) [44], 
poly(L-lactide) [45] and metal matrix composite such as CNF-Mg [46]. However, the 
incorporation of CNF with Mg up to 10% could be interpreted as a failure as it reduces 
the mechanical and degradation properties of the composite [22]. Such scenario can 
be linked to the poor interfacial bonding between the CNFs clusters and Mg matrix, 
which can weakens the crack bridging effect of the CNF [22]. According to other 
studies, there are several factors that affect the performance of the composite such as

5



the ratio of reinforcement element to the Mg, production method, hydrophobicity of 
the reinforcement and porosity content [47-49].

To date, there is no previous biomedical study that focuses on the optimum 
factors for incorporation of CNF with Mg-Zn alloy. This composite will be able to 
possess excellent mechanical properties and corrosion resistance when the factors that 
affect the performance of the composite is optimized. Thus, this study was conducted 
to formulate the optimum biodegradable Mg-Zn alloy reinforced CNF through PM 
process using design of experiment.

1.3 Research Questions

Based on the above elaboration in section 1.2, the research questions of this 
study can be summarised as follows:

1. How can Mg-Zn alloy be reinforced with CNF to be fabricated?
2. What is the effect of the optimized Mg-Zn alloy reinforced CNF on physico­

chemical and mechanical properties?
3. How does the characteristics of the optimized Mg-Zn alloy reinforced CNF 

affect the mechanical and corrosion properties?
4. How does the optimized Mg-Zn reinforced with CNF affect the cell viability?

1.4 Objective of Study

The major aim of this study is optimisation of Mg-Zn alloy reinforced with 
CNF considering important parameters such as composition of CNF, sintering time, 
sintering temperature and compaction pressure. Through this study, the desire 
biomaterial properties were fabricated to achieve the following objectives:
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5. To optimize the synthesis condition of Mg-Zn alloy reinforced with CNF using 
powder metallurgy method.

6. To investigate the effect of the optimized Mg-Zn alloy reinforced with CNF by 
characterizing its effect on physico-chemical, mechanical and corrosion 
properties.

7. To determine cell compatibility of the optimized specimens with osteoblast cell 
through cell viability test.

1.5 Scope of Study

The main scope of this study covers fabrication and optimization of 
biodegradable Mg-Zn alloy reinforced CNF through PM process. Two-level factorial 
design was adopted to screen the most influential factors for 36 specimens such as 
composition of CNF (0.1 -  2.0%), compaction pressure (100 -  400 MPa), sintering 
time (1 -  3 hrs) and sintering temperature (300 -  500°C) that affect mechanical and 
corrosion behaviour of Mg composites. The BBD model, which constitutes a subset of 
the classic RSM was applied to efficiently investigate the screened factors. There were 
three significant factors for 17 specimens such as percentage of CNF (1.8 -  2.2%), 
compaction pressure (375 -  425 MPa) and sintering temperature (475 -  525C).

Using Design Expert Version 12, regression statistics, graphical structure and 
statistical analysis were determined, and the optimum parameters of material were 
investigated based on elastic modulus, hardness, and percentage of weight loss for 
three days. The characterisation of the optimized material was conducted using atomic 
force microscopy (AFM), scanning electron microscopy (SEM) attached with energy 
dispersive X-ray analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron 
spectroscopy (XPS) and atomic force microscopy (AFM). The physico-chemical 
properties of the material were further characterized using contact angle measurement, 
thermogravimetric analysis (TGA), Fourier transform infrared-attenuated total 
reflectance (FTIR-ATR) spectroscopy, and Raman spectroscopy. The mechanical
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properties of the optimized material were also determined using Instron (compression 
test) and Vicker hardness machine (hardness test). The study further investigated 
nanomechanical properties (elasticity, stiffness, and hardness) of the material using 
AFM. The corrosion behaviour of the material was characterized using static 
immersion test for three days. The percentage of cell viability of osteoblast cell was 
measured using indirect MTT assay.

1.6 Significance of Study

This study was strategically planned to develop a new metal composite for 
biomedical implant application. This will be beneficial to the biomaterial research as 
well the biomedical manufacturing industry, specifically the orthopaedic field. The 
incorporation of CNF in Mg-Zn alloy is crucial to providing a new characteristic of 
Mg based composite with a high mechanical property and optimum corrosion 
resistance. The ability of Mg-Zn-CNF to degrade in human body with no side effect 
can overcome the problem of implant removal that normally bring about the secondary 
surgery. As well, it will help to avoid the risk and complications of surgical procedure 
after the fracture bone heal. This research is a pre-liminary result for the development 
of a prototype of external fixator screw.

Design of experiment (DOE) was used as a tool to meet a specific aim. In this 
study, two-level factorial design was used to identify the most significant factors that 
contribute to the enhancement of elastic modulus, hardness and corrosion. This step 
reduced the number of experiments before optimization process was done. BBD was 
used to optimize the significant factors that give the maximum elastic modulus, 
hardness and corrosion resistance.
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