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ABSTRACT 

The presence of heavy metal ions in aqueous environment even at low 
concentrations is a serious concern and the polluting industries must conform to strict 
environmental limits and regulations. Conventional techniques such as evaporation, 
nanofiltration, precipitation and electrocoagulation have been used to remove heavy 
metals from wastewaters. However, these techniques are tedious, expensive or 
ineffective.  Thus, adsorption is considered as a promising technique for heavy metals 
removal from wastewater and the search for cost effective, environmentally friendly and 
sustainable materials for this application has been intensified.  In this study two new 
magnetic sporopollenin-based materials and one new magnetic graphene oxide-based 
material were synthesized for the removal of three selected heavy metals namely Pb(II), 
Ni(II) and Cd(II) from industrial wastewater samples.  The first magnetic sporopollenin-
based materials were synthesised from magnetite (M), sporopollenin (Sp), and 3-
aminopropyltrimethoxysilane (APTMS) to give a ternary composite, MSp@SiO2-NH2, 
which was then modified with silica-coated graphene oxide (GO@SiO2) to finally form 
a quinary composite, GO@SiO2-MSp@SiO2-NH2. The other magnetic sporopollenin-
based material was synthesised from magnetite (M), Sp, 3-Chloropropyltrimethoxysilane 
(CPTMS), and tetrakis(4-hydroxyphenyl) porphyrin (THPP) to give a quaternary 
composite, MSp@SiO2-THPP. The magnetic graphene oxide-calix-4-arene based 
material was synthesized from magnetite (M), GO, silica, calix-4-arene (Calix) and 
APTMS to give a quinary composite, MGO@SiO2-Calix@SiO2-NH2. These newly 
synthesized materials were applied for the first time as adsorbents for removal of three 
heavy metals namely Pb(II), Ni(II) and Cd(II) from aqueous solution of industrial 
wastewater samples. The newly synthesized materials were characterized using Fourier 
transform infrared spectroscopy, thermogravimetric analysis, field emission-scanning 
electron microscopy, energy dispersive X-Ray analysis and vibrating sample 
magnetometry. The effect of important adsorption parameters such as solution pH, 
temperature, contact time, adsorbent dose, initial concentration and co-existing ions were 
studied and optimized. Evaluation of the adsorption performance of the materials at 
optimum conditions using batch adsorption technique reveals that the  heavy metal ions 
removal efficiencies of the adsorbents were in the order Pb2+> Ni2+> Cd2+ and maximum 
adsorption capacity (qmax) of GO@SiO2-MSp@SiO2-NH2 for Pb(II), Ni(II) and Cd(II) 
were 323, 278 and 256 mg/g, respectively.  The qmax values of MSp@SiO2 -THPP for 
Pb(II), Ni(II) and Cd(II) were 454, 435 and 416 mg/g, respectively and the qmax values of 
MGO@SiO-Calix@SiO2NH2 for Pb(II), Ni(II) and Cd(II) were 256, 243 and 222 mg/g, 
respectively. MSp@SiO2-THPP was found to offer the highest qmax values probably due 
to the strong affinity of porphyrins for the metal ions.  The initial and final 
concentrations of the metal ions in the wastewater samples were analyzed using flame 
atomic absorption spectroscopy.  The adsorption behaviors of the respective metal ions 
on the adsorbents were studied using Langmuir, Freundlich, Dubinin-Radushkevich 
(DRK) and Temkin isotherms models. The experimental data and values of coefficient 
of determination (R2) showed that the adsorption fitted the Langmuir and DRK models 
better for all the materials and the divalent cations, suggesting chemisorption through 
monolayer coverage. According to thermodynamic studies, the adsorption processes are 
endothermic and spontaneous. Furthermore, kinetics studies reveal that the adsorption 
processes followed a pseudo second order rate model. The findings show that the 
synthesized materials are excellent adsorbents for the removal of the heavy metals from 
wastewater samples and could be reused for up to 10 cycles without significant 
deterioration of the signal response. Analytical ecoscale analysis confirmed the 
greenness of these developed methods.   
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ABSTRAK 

Kehadiran ion logam berat dalam persekitaran akueus walaupun pada 
kepekatan rendah adalah membimbangkan dan industri pencemaran harus mematuhi 
had persekitaran dan peraturan yang ketat. Teknik konvensional seperti penyejatan, 
penapisan nano, pemendakan dan elektro-penggumpalan telah digunakan untuk 
mengeluarkan logam berat dari air sisa. Walau bagaimanapun, teknik ini memakan 
masa, mahal atau tidak berkesan. Oleh itu, penjerapan dianggap sebagai teknik yang 
berpotensi untuk penyingkiran logam berat daripada air sisa dan pencarian untuk 
bahan kos efektif, mesra alam dan mampan bagi aplikasi ini telah dipergiatkan. 
Dalam kajian ini, dua bahan baharu berasaskan sporopollenin bermagnet dan satu 
bahan baharu berasaskan grafin oksida bermagnet telah disintesis untuk 
menyingkirkan tiga logam berat terpilih iaitu Pb(II), Ni(II) dan Cd(II) dari sampel air 
sisa industri. Bahan pertama berasaskan sporopollenin bermagnet telah disintesis 
daripada magnetit (M), sporopollenin (Sp), dan 3-aminopropiltrimetoksisilana 
(APTMS) untuk menghasikan komposit ternari, MSp@SiO2-NH2 yang kemudiannya 
disalut dengan silika terubah suai grafin oksida (GO@SiO2) untuk membentuk 
komposit kuiner, GO@SiO2-MSp@SiO2-NH2. Satu lagi bahan berasaskan 
sporopollenin bermagnet disintesis daripada magnetit (M), Sp, 3-kloropropiltri- 
metoksisilana (CPTMS), dan tetrakis(4-hidroksifenil)porfirin (THPP) untuk 
memberikan komposit kuaterner, MSp@SiO2-THPP. Bahan berasaskan grafin 
oksida-kaliks-4-arena bermagnet disintesis daripada magnetit (M), GO, silika, kaliks-
4-arena (kaliks) dan APTMS untuk menghasilkan komposit kuiner, MGO@SiO2-
kaliks@SiO2-NH2. Bahan baharu yang disintesis ini telah digunakan untuk kali 
pertama sebagai penjerap untuk penyingkiran tiga logam berat iaitu Pb(II), Ni(II) dan 
Cd(II) dari larutan akueus sampel air sisa industri Bahan baharu yang disintesis telah 
dicirikan menggunakan spektroskopi inframerah transformasi Fourier, analisis 
termogravimetri, mikroskopi imbasan elektron pancaran medan, analisis sinar-X 
tenaga terserak dan magnetometri sampel bergetar. Kesan parameter penjerapan 
penting seperti pH larutan, suhu, masa sentuhan, dos penjerap, kepekatan awal dan 
kewujudan ko-ion telah dikaji dan dioptimumkan. Penilaian terhadap prestasi 
penjerapan bahan pada keadaan optimum menggunakan teknik penjerapan 
berkelompok mendedahkan bahawa susunan kecekapan penyingkiran ion logam 
berat oleh penjerap adalah Pb2+ > Ni2+ > Cd2+ dan kapasiti penjerapan maksimum 
(qmax) bagi GO@SiO2-MSp@SiO2-NH2 untuk Pb(II), Ni(II) dan Cd(II) masing-
masing ialah 323, 278 dan 256 mg/g. Nilai qmax bagi MSp@SiO2-THPP untuk Pb(II), 
Ni(II) dan Cd(II) masing-masing ialah 454, 435 dan 416 mg/g dan nilai qmax bagi 
MGO@SiO2-kaliks@SiO2NH2 untuk Pb(II), Ni(II) dan Cd(II) masing-masing ialah 
256, 243 dan 222 mg/g. MSp@SiO2-THPP didapati menawarkan nilai qmax tertinggi 
mungkin disebabkan oleh daya tarik porfirin yang kuat terhadap ion logam. 
Kepekatan awal dan akhir ion logam dalam sampel air sisa telah dianalisis 
menggunakan spektroskopi serapan atom nyala. Kelakuan penjerapan setiap ion 
logam pada penjerap telah dikaji menggunakan model isoterma Langmuir, 
Freundlich, Dubinin-Radushkevich (DRK) dan Temkin. Data eksperimen dan nilai 
pekali penentuan (R2) menunjukkan bahawa penjerapan sesuai dengan model 
Langmuir dan DRK untuk semua bahan dan kation dwi-valens, mencadangkan 
bahawa penjerapan kimia adalah melalui liputan monolapisan. Menurut kajian 
termodinamik, proses penjerapan adalah endotermik dan spontan. Tambahan lagi, 
kajian kinetik mendedahkan bahawa proses penjerapan mengikuti model kadar 
pseudo tertib kedua. Kajian menunjukkan bahawa bahan yang disintesis adalah 
penjerap yang sangat baik untuk penyingkiran logam berat daripada sampel air sisa 
dan boleh diguna semula sehingga 10 kitaran tanpa perubahan ketara gerak balas 
isyarat. Analisis skalaeko mengesahkan kehijauan kaedah yang dikembangkan ini. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study  

Clean and portable water is a basic human need that cannot be over- 

emphasized. However, population growth, modern industrialization, rapid 

industrialization, urbanization, domestic and industrial waste generation and other 

anthropogenic sources of toxic pollutants have made many water resources 

detrimental to man and the environment in many nations, due to the discharge of 

domestic waste and industrial effluents into the aquatic environment, posing a great 

threat to the ecosystem and public health.  Industries that produces large volumes of 

effluents include textile, breweries, mineral processing, poultry processors, paper and 

fibre plants, meat packers, fruit and vegetable packing operations, fertilizer plants, 

refining and petrochemical operations, and many more. 

These wastewaters generally contain different pollutants such as heavy 

metals, dyes and pesticides among other pollutants (Sayrabh et al., 2005). Heavy 

metals are metallic elements or metalloids that have a relatively high atomic density 

greater than 4~4.5 g/cm3 and are toxic and poisonous even at low concentration 

(Duffus, 2002; Hustton and Symon, 1986). Rapid increase in contamination of 

industrial and urban wastewaters by heavy metal ions are seriously worrying 

environmental problems (Ulmanu et al., 2003).  

Due to their relatively high solubility, mobility, non-biodegradable and 

persistence in the environment, heavy metals are adsorbed by organisms, then enter 

the food chain and subsequently ingested by human beings (biomagnefication). 

These heavy metal ions, such as Pb(II),  Cd(II), Cr(III), Cr(VI), Hg(II),  As(III), 

As(VI),  Ag(II),  Zn(II), Cu(II) and  Ni(II), tends to accumulate in the human body 

(bioaccumulation) if ingested above the permissible limit  is detrimental to human 
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wellbeing, causing severe health problems and diseases (Ayenimo et al., 2009; Babel 

and Kurniawan, 2004).  

Due to the toxicity of heavy metals, environmental regulatory authorities 

have set strict regulations to maintain the level of heavy metals in industrial waste 

discharge at permissible limits. These metals are allowed to be discharged only in 

very low concentrations levels in industrial effluents, inoder to protect public streams 

and water resources from being contaminated. Therefore, the polluting industries 

must use effective technology and materials to treat their respective effluents to 

conform to rigid environmental guidelines and standards prior to discharge. 

Wastewater can be treated using three methods, namely: the primary, 

secondary and tertiary/advanced processes. The primary method removes suspended 

materials from the wastewater; the secondary treatment removes biodegrabable 

materials through biodegradation, whilst tertiary/advanced treatment methods mainly 

remove non-biodegradable wastes. Removal of non-biodegradable wastes is not 

possible using secondary methods. Therefore, advanced wastewater treatment 

methods such as ion exchange (Hamoda and Fawzi, 2004), precipitation (Espinoza et 

al., 2012), membrane separation (Caetano et al., 1995), ultra-filtration (Trivunac and 

Stevanovic, 2006) and electrolysis (Rajkumar and Palanivelu, 2004) may be used to 

remove the persistent wastes. Most of these methods are either costly, tedious and 

require high level of expertise; hence, not applicable to many end-users.  

Conventional tertiary wastewater treatment methods such as ion exchange, 

membrane separation and electrolysis are costly and may not effectively treat heavy 

metals contaminated waters (Barakat, 2011; Liu et al., 2013). Other advanced 

techniques such as chemical precipitation, coagulation and flocculation are 

associated with slow metal precipitation and settling (Huang et al., 2016), these 

techniques also involves the production of toxic sludge. Disposal of the sludge 

produced from these techniques is detrimental to the environment due to its 

hazardous nature. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Fawzi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=15027828
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Thus, adsorption technology has gained a wider application. It is simple, cost 

effective, versatile and robust (Yang et al., 2009; Imamoglu and Tekir, 2008). 

Adsorption can be described as a mass transfer process through which metal ions are 

transferred from a solution onto the surface of a solid material (adsorbent) and 

becomes attached by either chemical or physical interactions.  

The success of an adsorption process starts with the choice of the adsorbent 

material. Thus, the search for effective sustainable materials as adsorbents which are 

cost effective and with good adsorption capacities for metal ions have been 

intensified. Materials such as zeolites (Yazan et al., 2017), activated alumina 

(Rajurkar et al., 2011), carbon nanomaterials (CNM) (Ruparelia et al., 2008), 

multiwall carbon nanotubes (MWCNTs) (Tawabini et al., 2010) and activated carbon 

(AC) (Pyrzynska and Bystrzejewski, 2010) were used as adsorbents to remove heavy 

metal ions from water. Unfortunately, most of these materials are either costly or 

inefficient in treating effluents containing high concentration of metal ions due to 

low adsorption capacities and efficiencies. Thus, to address these drawbacks of 

conventional adsorbents, the use of easily modifiable low cost adsorbents such as 

sporopollenin (Sp) (Sener, et al., 2016) and graphene oxide (GO) (Tan et al., 2015a) 

for wastewater treatment has attracted attention in recent years.  

Sp is a natural macromolecule of plant origin from Lycopodium clavatum, 

which has a molecular structure resistant to acids and alkalis. The nature of Sp has 

not been fully understood, it consist of an aliphatic chain with aromatic groups and 

sufficient hydroxyl groups attached to its network (Gezici, et al., 2006; Kamboh and 

Yilmaz, 2013). The prospect of Sp-based materials as adsorbent in water treatment is 

promising because of its inherent natural properties. Sp is chemically and physically 

very stable.  It was found intact in 500 million years old sedimentary rocks (Grahame 

et al., 2015), suggesting that Sp and Sp-modified materials can withstand rough 

conditions, thus making Sp a good solid support for grafting materials with surface 

functionalities that have excellent adsorption affinity for target pollutants. It forms  

composites with other material by physically incorporating materials into the Sp’s 

micro structure (Amro et al., 2016) and chemical grafting through the functional 

groups (OH, COOH, CO) on the Sp (Ahmad et al., 2017). Additionally, Sp is 
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environmental friendly and biocompatible (Grahame et al., 2015). Therefore, Sp-

based materials can serve as sustainable adsorbents in wastewater treatment when 

modified with other suitable functional materials such as GO and porphyrins, which 

have excellent affinity for heavy metal ions.  

Porphyrins are large ring biomolecules consisting of four pyrroles to which a 

variety of side chains are attached (Biesaga et al., 2000). The nitrogen atoms in the 

tetrapyrrole ring of porphyrins act as ligational sites that attract metal ions due to 

their strong electron-donor properties, thus providing high affinity for metal ions via 

the formation of metal–nitrogen coordination bonds (Biesaga et al., 2000; Lee et al., 

2004; Kumar and Shim, 2011). 

On the other hand, GO is water-soluble material derived from the oxidation 

of graphite (Park et al., 2009) and has high specific surface areas (theoretical value of 

2620 m2/g) (Zhao et al., 2011). The oxidation of graphite to GO provides sufficient 

oxygenated functional groups on GO, such as OH, COOH, and CO, which can be 

used as anchoring sites for metal ion complexation and grafting of desired surface 

functionality with high affinity for metal ions (Seenivasan et al., 2015; Zhang et al., 

2011). Furthermore, GO could serve as a support for macrocyclic molecules such as 

calixarenes, offering promising improvements to the sorption technology of 

calixarenes based materials (Zhang et al., 2016).  Calixarenes are macrocyclic 

compounds that are composed of phenolic units connected by methylene bridges. 

They are capable of recognizing and selectively binding anions and cations (Perin et 

al., 1993; Mcmoham et al., 2003) and can be modified by introducing functional 

groups such as ester, ketone, amide, amine, azo, tioether, and cyanide onto its 

phenolic units,  thus improving its affinity for target pollutant (Ludwig and Dzung, 

2000; Ungaro 2000).  One of the intresting features of calixarenes is their abiity to 

form cavity and clusters around target pollutants (Steed and Atwood 2000).  

However, magnetic nanoparticles (Fe3O4) incorporated with GO based 

materials have been reported as adsorbents for magnetic solid phase removal of 

heavy metals from aqueous solution. Such as Fe3O4 modified-GO (Fe3O4/GO) 

(Nodeh et al., 2016), magnetic GO grafted polymaleicamide dendrimer (GO/Fe3O4-

https://pubs.rsc.org/-/results?searchtext=Author%3APeng%20Zhang
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g-PMAAM) (Ma et al., 2017) and carbon gel-supported Fe(III)-graphene disks (Fe-

G/RF-C) (Mishra et al., 2017). Magnetic separation provides a promising technique 

for the separation of adsorbent materials from sample solution using an external 

magnetic field, it is less tedious, highly efficient and required less time compared to 

filtration and centrifugation (Huang and Yuan, 2016). 

In this work, the quest to  harness the full potentials of sporopollenin, 

porphyrin, calixarene and graphene oxide based materials as adsorbents for 

environmental applications, specifically the removal of toxic heavy metal ions from 

aqueous environment, led us to the synthesis for the first time of three new materials; 

two new magnetic sporopollenin-based and one new magnetic graphene oxide-calix-

4-arene based. These materials were used as robust hybrid adsorbents to remove 

heavy metal ions from industrial wastewater samples using batch adsorption 

technique.  

1.2 Problem Statement 

Heavy metals contamination of rivers, lakes and other water resources due to 

the discharge of domestic wastes and industrial effluents into the aquatic 

environment has become a global environmental problem nowadays, due to their 

toxicity and persistence in the environment (Volesky, 1999). These heavy metals are 

discharged in quantities that are hazardous to the environment and living organisms. 

In human being, heavy metals are potent carcinogens and can cause other adverse 

health effects such as irritation of respiratory system and lung damage, 

cardiovascular diseases, liver and kidney damage, loss of appetite, nausea etc (Jeon 

and Cha, 2015). Thus, regulating authorities have become increasingly concerned 

with the problems associated with the discharge of untreated effluents.  

Recently, research efforts and works have been intensified with the aim of 

finding effective alternatives and environmental friendly adsorbents for water 

treatment, particularly for the removal of heavy metal ions from aqueous 

environment. Natural biopolymer such as sporopollenin (Sp), has remarkable 



 

6 

potentials as adsorbent for this purpose. Nevertheless, its potentails are yet to be fully 

harnessed. Thus, the material requires proper and effective modification to fully 

harness its heavy metals adsorption potentials and other environmental applications. 

Most of the Sp-based materials reported in literature have low adsorption 

capacities for heavy metal ions and overall weak performance in treating effluents 

with high concentrations of these toxic metals. Therefore, modification of Sp with 

functional materials that have high affinity for heavy metal ions is paramount for this 

application. Functional materials used to modify Sp in this work, such as 3-

aminopropyltrimethoxysilane, graphene oxide and porphyrin, significantly improved 

the heavy metals adsorption performance of Sp, compared to the available Sp-based 

materials in literatures.  

However, the utilization of porphyrins in different chemical processes has 

several setbacks such as decomposition during reaction, oxidative self-destruction in 

oxidizing media and recovery problems at the end of reaction for re-usage (Jeong et 

al., 2011). To address these problems, it is important to enhance the stability of 

porphyrin and utilize its remarkable properties by supporting the desired derivative 

of porphyrin onto a polymeric backbone or a solid support. For this reason, porphyrin 

(THPP) supported on silica coated MSp reported in this work for the first time 

recorded significant stability, as well as improvements in heavy metal adsorption 

performance of porphyrin based materials. 

Similary, a macrocyclic compound like calixarene, will require appropriate    

solid support for effective performance in environmental applications. Ion extraction 

studies using calixarenes usually involve liquid –liquid extraction (LLE). However, 

LLE using macrocyclic compounds such as calixarenes is time consuming, labor 

intensive and difficulty in separating phases caused by the formation of emulsions 

(Camel, 2003).  Thus, the reason for using magnetic solid phase extraction (MSPE) 

in this work is to overcome the limitation posed by LLE. 

Calixarenes can recognize and selectively bind heavy metal ions (Perin et al., 

1993). This property opens up numerous potential applications of calixarenes in 
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heavy metals recovery and removal from aqeous environment (Perin et al., 1993; 

Mcmoham et al., 2003), but the full potentials of these materials for this application 

has not been fully realize. Overall, most of the reported calixarene based materials in 

literature have low adsorption capacities, stability and recovery problems at the end 

of a reaction for re-usage. Thus, could not effectively treat effluents and wastewaters 

containing high concentrations of heavy metal ions. 

To address these drawbacks and utilize the properties of calixarenes in 

harnessing its full potentials in removing heavy metals from aqeous environment, for 

the first time, 3-aminopropyltrimethoxysilane functionalized calix-4-arene grafted 

onto silica coated magnetic graphene oxide is reported in this work. This material 

recorded significant improvements in the sorption technology of calixarene-based 

materials, with improved heavy metals adsorption performance.  

1.3 Aim and Objectives of the Work  

The overall aim of this research is to remove hazardous heavy metals ions 

from industrial effluents using three new materials, i.e. two new sporopollenin-based 

and one new magnetic graphene oxide-calix-4-arene based as potential adsorbents. 

The specific objectives of this study are to: 

1. Synthesize two new magnetic sporopollenin-based materials and one new 

magnetic graphene oxide-calix-4-arene based material as hybrid 

adsorbents for the removal of selected heavy metals namely Pb(II), Ni(II) 

and Cd(II) from industrial wastewater samples and characterize the 

synthesized adsorbents using Fourier transform infrared spectroscopy 

(FTIR), Field-emission scanning electron microscopy (FESEM), energy 

dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) 

and vibrating sample magnetometer (VSM). 

2. Optimize the effective parameters for the adsorbents performance, which 

includes the pH, temperature, contact time, adsorbent dosage, and initial 

concentration and to evaluate each of the adsorbents adsorption 
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capacities, perform kinetics, thermodynamics and equilibrium sorption 

studies of the processes and perform regeneration studies of the spent 

adsorbents. 

3. Assess the greenness of developed methods based on the use of these 

three new sorbents for selected metal ions. 

1.4 Significance of Study 

It is forecasted that by the year 2030, there would be a global 40% shortfall of 

water demand and available supply (World Bank, 2017). As the global population 

increases, the demand for portable water also increases. Water resource is scarce 

globally and the scarcity is perceived as one of the major threats to global prosperity 

and stability. According to World Bank, 40% of the global population live in water 

scarce areas and about ¼ of world’s gross domestic product (GDP) is vulnerable to 

this adversity.  By the year 2025, about 1.8 billion people will be living in regions or 

countries with total water scarcity (World Bank, 2017) and more than half of the 

world population will be faced with water-based vulnerability due to pollution 

(Rijsberman, 2006). 

To strengthen our water resources against this backdrop of increasing 

demand, scarcity and pollution, we must protect our water resources and invest 

significantly in innovative technologies and materials for water treatment and 

management. Contaminated water resources negatively affect the wellbeing of 

human, aquatic life and biodiversity. Contaminated water resources have been 

identified as a leading cause of diseases and deaths, globally (WWDR4, 2012). In 

many developing countries, poorly treated effluents and domestic wastes are often 

discharged into water streams (Gupta, 2008), which is probably due to economic 

problems, lack of awareness and access to adequate technology and materials for 

water treatment. Thus, common people in most of the developing nations go through 

the health and toxicological effects of drinking heavy metals contaminated water.  
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Findings from this research work will present new hybrid, effective materials 

as absorbents for the removal of hazardous heavy metal ions from water, particularly 

industrial wastewater prior to discharge into the environment.  Furthermore, the 

synthesized adsorbents have improved performance and adsorption capacity for this 

purpose. In addition, this study involves the use of sporopollenin, which is a 

sustainable biomaterial as the main component in two of the synthesized sorbents 

(GO@SiO2-MSp@SiO2-NH2 and MSp@SiO2-THPP). Sporopollenin is an abundant 

natural material, biodegradable and non toxic. Thus, it is environmental friendy. 

Nevertheless, the removal method using the synthesized adsorbents in this study is 

green and eco-friendy.   

1.5 Scope of Work  

This study is divided into three major parts; synthesis of materials, 

characterization of materials and the application of the synthesized materials for 

heavy metals removal from industrial wastewater. In the first part, magnetic 

sporopollenin (MSp) and magnetic graphene oxide (MGO) were each synthesized 

through co-precipitation of magnetite (Fe3O4) with Sp and GO, respectively. 

Thereafter, MSp was coated and functionalized with 3-aminopropyltrimethoxysilane 

(APTMS), then grafted onto GO-coated silica (GO@SiO2) to produce the first 

material (GO@SiO2-MSp@SiO2NH2). The second material was synthesized via 

coating of MSp with 3-chloropropyltrimethoxysilane and then grafted onto 4-

hydroxylphenylporphyrin (THPP) to produce MSp@SiO2-THPP. The third material 

was synthesized through grafting of APTMS functionalized calix-4-arene onto silica 

coated MGO to produce MGO-Calix@SiO2NH2.   

The second part of this study involves the characterization of the synthesized 

materials using FTIR, FESEM, EDX, TGA and VSM. The third part of this study 

involves the optimization of adsorption parameters and application of the synthesized 

materials as adsorbents to remove heavy metals from real samples, i.e. industrial 

effluents. The parameters optimized are pH, temperature, adsorbent dosage, contact 

time and concentration. Adsorption equilibrium, kinetics and thermodynamics of the 
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removal processes are studied in this section, in addition to regeneration studies of 

the spent adsorbents and finally, the greenness of these methods was evaluated using 

analytical ecoscale analysis (AES).  
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