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ABSTRACT 

The purpose of this study is to investigate the application of genetic algorithm 

(GA) in modelling linear and non-linear dynamic systems and develop an alternative 

model structure selection algorithm based on GA. Orthogonal least square (OLS), a 

gradient descent method was used as the benchmark for the proposed algorithm. A 

model structure selection based on modified genetic algorithm (MGA) has been 

proposed in this study to reduce problems of premature convergence in simple GA 

(SGA). The effect of different combinations of MGA operators on the performance 

of the developed model was studied and the effectiveness and shortcomings of MGA 

were highlighted. Results were compared between SGA, MGA and benchmark OLS 

method. It was discovered that with similar number of dynamic terms, in most cases, 

MGA performs better than SGA in terms of exploring potential solution and 

outperformed the OLS algorithm in terms of selected number of terms and predictive 

accuracy. In addition, the use of local search with MGA for fine-tuning the algorithm 

was also proposed and investigated, named as memetic algorithm (MA). Simulation 

results demonstrated that in most cases, MA is able to produce an adequate and 

parsimonious model that can satisfy the model validation tests with significant 

advantages over OLS, SGA and MGA methods. Furthermore, the case studies on 

identification of multivariable systems based on real experiment t al data from two 

systems namely a turbo alternator and a continuous stirred tank reactor showed that 

the proposed algorithm could be used as an alternative to adequately identify 

adequate and parsimonious models for those systems. Abstract must be bilingual. For 

a thesis written in Bahasa Melayu, the abstract must first be written in Bahasa 

Melayu and followed by the English translation. If the thesis is written in English, 

the abstract must be written in English and followed by the translation in Bahasa 

Melayu. The abstract should be brief, written in one paragraph and not exceed one 

(1) page. An abstract is different from synopsis or summary of a thesis. It should 

states the field of study, problem definition, methodology adopted, research process, 

results obtained and conclusion of the research. The abstract can be written using 

single or one and a half spacing. Example can be seen in Appendix 1 (Bahasa 

Melayu) and Appendix J (English). 
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ABSTRAK 

Kajian ini dilakukan bertujuan mengkaji penggunaan algoritma genetik (GA) 

dalam pemodelan sistem dinamik linear dan tak linear dan membangunkan kaedah 

alternatif bagi pcmilihan struktur model menggunakan GA. Algorithma kuasa dua 

terkecil ortogon (OLS), satu kaedah penurunan kecerunan digunakan sebagai 

bandingan bagi kaedah yang dicadangkan. Pcmilihan struktur model mengunakan 

kaedah algoritma genetik yang diubahsuai (MGA) dicadangkan dalam kajian ini bagi 

mengurangkan masalah konvergens pramatang dalam algoritma genetik mudah 

(SGA). Kesan penggunaan gabungan operator MGA yang berbeza ke atas prestasi 

model yang terbentuk dikaji dan keberkesanan serta kekurangan MGA diu t arakan. 

Kajian simulasi dilakukan untuk membanding SGA, MGA dan OLS. Dengan 

meggunakan bilangan parametcr dinamik yang setara kajian ini mendapati, dalam 

kebanyakan kes, prestasi MGA adalah lebih baik daripada SGA dalam mencari 

penyelesaian yang berpotensi dan lebih berkebolehan daripada OLS dalam 

menentukan bilangan sebutan yang dipilih dan ketcpatan ramalan. Di samping itu, 

penggunaan carian tcmpatan dalam MGA untuk menambah baik algorithma tersebut 

dicadang dan dikaji, dinamai sebagai algoritma mcmetic (MA). Hasil simulasi 

menunjukkan, dalam kebanyakan kes, MA berkeupayaan menghasilkan model yang 

bersesuaian dan parsimoni dan mcmenuhi ujian pengsahihan model di samping 

mcmperolehi beberapa kelebihan dibandingkan dengan kaedah OLS, SGA dan 

MGA. Tambahan pula, kajian kes untuk sistcm berbilang pcmbolehubah 

menggunakan data eksperimental sebenar daripada dua sistem iaitu sistem 

pengulang-alik turbo dan reaktor teraduk berterusan menunjukkan algoritma ini 

boleh digunakan sebagai alternatif untuk mcmperolehi model termudah yang 

memadai bagi sistem tersebut. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research background 

Breast cancer is the most common cancer and the first cause of death in 

women worldwide.  It was estimated that 2.1 million new cases and 627 thousand of 

breast cancer related deaths occurred in 2018 (Bray et al., 2018).  In Malaysia, breast 

cancer incidence is on the increase and at present has become the first leading cause 

of cancer deaths among women in all ethnics.  According to the Malaysia Cancer 

Registry, there were 17009 new cases and 7372 deaths due to breast cancer reported 

from 2007 to 2011, followed up to 2016.  By ethnicity, Malays (57.9%) recorded the 

lowest 5-year survival rate, followed by Indians (70.5%), and Chinese (76.5%) 

(National Cancer Registry et al., 2018).  One of the common risk factor associated 

with the differences in survival rate between ethnics in Malaysia was the 

identification of distinct subtypes of breast cancer (Devi et al., 2012). Approximately 

15-20% of breast cancer cases accounts for triple negative breast cancer (Frank et al., 

2013).   

Triple negative breast cancer (TNBC) is characterized by the absence of 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2) (Anders et al., 2013).  Due to the absence of these three 

biomarkers, the established treatments for breast cancer including endocrine and 

HER2-targeted therapy are unfortunately not effective for TNBC treatment (Isakoff, 

2010). Besides, TNBC appears to be more aggressive, invasive, higher in grade, and 

highly metastatic as compared to other subtypes (Carey et al., 2010).  Given the lack 

of therapeutic options, cytotoxic chemotherapy remains the standard treatment for 

TNBC patients (Peddi et al., 2012).  However, only 50% of TNBC patients respond 

to primary cytotoxic agents and most cases are associated with early relapse within 3 

years of diagnosis and higher risk of mortality less than 12 months (Dent et al., 2007; 



 

2 

Sørlie et al., 2001).  Therefore, studies are now focusing on other cytotoxic agents 

that are not routinely used for breast cancer such as platinum-based drugs in order to 

find the most active agent for TNBC treatment.  Indeed, numerous clinical studies 

have shown promising results of using platinum-based drugs for treatment of TNBC 

in adjuvant, neoadjuvant, and metastatic settings (Sparano et al., 2008; Liedtke et al., 

2008; Byrski et al., 2012). 

One of the platinum-based drugs that has been actively studied for TNBC 

treatment is cisplatin (CP) (Hill et al., 2019).  Generally, CP exerts its cytotoxic 

properties by binding to N7-sites of purine residues on the nucleotides to form inter- 

and intra-strand DNA adducts and block the RNA transcription and DNA replication, 

signalling DNA damage in a cell (Basu & Krishnamurthy, 2010).  If not repaired, 

DNA-damage can induce cell-cycle arrest and ultimately cause apoptosis (Tanida et 

al., 2012). Apoptosis is a highly regulated natural process of cell death and in cancer, 

the loss of apoptosis has become a promising treatment strategy for decades (Pfeffer 

& Singh, 2018).  Despite being a potent anticancer drug, the clinical use of CP is 

limited due to associated toxicity and side effects in patients including nausea and 

vomiting, hepatotoxicity, nephrotoxicity, and cardiotoxicity (Huang et al., 2017; 

Pratibha et al., 2006; Hayati et al., 2015; Hu et al., 2018). These CP-related toxicities 

are dose-dependent, thus an overdose of this drug might cause significant deaths in 

patients (Tsang et al., 2009). Hence, another effective strategy to reduce CP-related 

toxicities for better cancer treatment is urgently needed.  

There is a growing body of data that suggested drugs combination can 

minimize the toxicity effect towards normal cells while still providing therapeutic 

effect, such as cancer cell death (He et al., 2019; Abe et al., 2019; Monroe et al., 

2019). The drugs that are used in combination may interact in many unexpected 

ways and exhibit distinct effects for instance, synergism, additive, and antagonism 

(Lehar et al., 2009). Among these interactions, achieving drug synergy is a highly 

pursued goal in anticancer drug combination studies (Yin et al., 2014). 

Hypothetically, drug synergy could be achieved by using drugs that complement 

each other in terms of anticancer properties but with non-overlapping toxicity 

profiles. Recent experimental efforts are focusing on identifying synergistic drug 
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pairs by using conventional cytotoxic drug with phytochemicals since natural 

compound has a safer toxicity profile compared to synthetic drugs (Ndreshkjana et 

al., 2019; Tan et al., 2019). In addition, phytochemicals have been proved to show 

wide range of biological activity including anti-inflammatory, anti-oxidant, and anti-

cancer properties (Yimer et al., 2019; Ozdemir et al., 2018; Singh et al., 2016). The 

combination of selected phytochemical with conventional chemotherapeutic may 

provide synergistic effect at a lower dose which can results to higher anticancer 

effect and reduced toxicity towards normal cells (Pezzani et al., 2019). 

Thymoquinone (TQ) is a phytochemical derived from Nigella sativa and has 

been reported to exert numerous pharmacological activities such as such as anti-

inflammatory, antimicrobial, antidiabetic, and also anticancer (Yazdi et al., 2018; 

Chaieb et al., 2011; Younus et al., 2018; Asaduzzaman et al., 2017). In the previous 

years, emerging evidence has shown anticancer activity of TQ in many types of 

cancer, for instance, bladder, cervical, colon, gastric, glioblastoma, and breast cancer 

(Iskender et al., 2016; Reindl et al., 2008; Kundu et al., 2014; Zhu et al., 2016; 

Gurung et al., 2010; Rajput et al., 2013). TQ exhibited anticancer response on cancer 

cell lines through many cellular mechanisms such as anti-proliferation, cell-cycle 

arrest, and apoptosis induction (ElKhoely et al., 2015; Bhattacharya et al., 2015; 

Woo et al., 2013).  Particularly in TNBC, TQ inhibited growth of both MDA-MB-

468 and MDA-MB-231 cell lines by arresting G1 phase of the cell cycle and induced 

apoptosis through caspase-dependent and independent pathways (Sutton et al., 

2014). Moreover, TQ has been shown to protect normal cells from oxidative damage 

and prevents toxic side effects in many types of cells such as prostate epithelial cells, 

intestinal cells, lung fibroblasts, and breast epithelial cells (Kaseb et al., 2017; El-

Najjar et al., 2010; Gurung et al., 2010; Kabil et al., 2018). 

Previously, TQ has been used in combination with CP against cancer cell 

lines derived from colon, esophageal, oral squamous, gastric, ovarian, and also breast 

cancer (Zhang et al., 2016; Hu et al., 2018; Alaufi et al., 2017; Ma et al., 2017; 

Nessa et al., 2011).  Latest study by Liu et al. (2017) revealed that the combination 

of TQ and CP able to enhance the cytotoxicity against ovarian cancer cells (SK-OV-

3) by upregulating BAX and downregulating BCL2 gene which contributed to 
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apoptotic cell death (Liu et al., 2017).  Moreover, Sutton et al. (2014) has reported 

that TQ able to enhance the cytotoxic effect of CP against MDA-MB-468 TNBC 

cells, highlighting the potential of this drugs combination for TNBC treatment.  

However, no further evidence on the synergism of TQ and CP against any TNBC 

cells is discussed in the literature.  Taken the evidence that TQ in combination with 

CP may enhance the cytotoxic effect against cancer cells, this study was aimed to 

investigate the synergistic cytotoxic effect of combining TQ with CP against MDA-

MB-231 TNBC cells. 

1.2 Problem statement 

Cisplatin (CP) is cytotoxic, thus it targets all rapidly dividing cells including 

cancerous and normal cells. The use of cisplatin in the cancer treatment is limited 

with its severe toxicities in normal cells such as dose-dependent hepatotoxicity and 

nephrotoxicity (Pratibha et al., 2006; Sheth et al., 2017).  One of the strategy to 

reduce the toxic effect of CP is by combining CP with non-toxic phytochemical such 

as thymoquinone (TQ) to achieve higher therapeutic index at lower doses, avoiding 

the dose-limiting effect of CP against normal cells (Jafri et al., 2010).  The protective 

effect of TQ against cisplatin-induced toxicity have been well documented in many 

studies (Ulu et al., 2012; Al-Malki & Sayed, 2014).  From these findings, combining 

TQ with CP may serves as an effective way to reduce the dose-limiting effect of CP.  

Previously, the combination of TQ with CP have been found to enhance the 

cytotoxic effects and induced apoptosis in several cancer including colon, 

esophageal, gastric, oral squamous, and ovarian cancer (Zhang et al., 2016; Hu et al., 

2018; Ma et al., 2017; Alaufi et al., 2017; Nessa et al., 2011).  Taken these findings 

into consideration, the present study was carried out to investigate the possible 

synergistic cytotoxic effect of combining TQ and CP against MDA-MB-231 TNBC 

cell line. 
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1.3 Research objectives 

This project aims to investigate the possible synergistic cytotoxic effect of 

thymoquinone (TQ) in combination with cisplatin (CP) against MDA-MB-231 triple 

negative breast cancer (TNBC) cell line and the underlying mechanism of cell death 

induction.  The specific objectives of this research were: 

(a) To evaluate the effect of TQ, CP, and their combination on the cell viability 

of MDA-MB-231 TNBC cells and WRL-68 liver cells using MTT 

colorimetric assay. 

(b) To determine the synergistic cytotoxic effect of TQ in combination with CP 

using Combination Index (CI) method by Chou-Talalay. 

(c) To determine the apoptotic effect of TQ, CP, and their synergistic 

combination on the cell nuclei morphology and cellular apoptosis/necrosis 

using fluorescent DAPI staining and Annexin-V FITC/PI staining assay 

respectively. 

(d) To evaluate the activity of caspase-8 and caspase-9 that are respectively 

responsible for initiation of extrinsic and intrinsic apoptosis and executioner 

caspase-3/7 using Caspase-Glo assay. 

(e) To evaluate the mRNA expression of target genes associated with 

transcription factor (p53, p63, and p73), cell cycle arrest (p21), extrinsic 

apoptosis (TNF and Fas), and intrinsic apoptosis signaling (PUMA, NOXA, 

Bak, Bax, and BCL2) using quantitative Real-Time Polymerase Chain 

Reaction (qRT-PCR). 

1.4 Research scopes 

In order to achieve the objectives of this study, the effect of TQ, CP, and their 

combination on the cell viability of MDA-MB-231 TNBC cells and WRL-68 liver 

cells were first evaluated using MTT assay.  The synergistic combination dose of TQ 

and CP was determined using Chou-Talalay Combination Index (CI) method.  The 

CI method utilized CompuSyn software for automated simulation of the CI values 
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and dose reduction index (DRI) together with generation of other graphs including 

dose-effect curves, median-effect plot, and isobologram.  The cytotoxic effect of TQ, 

CP, and their synergistic combination on the cell nuclei morphology and cellular 

apoptosis/necrosis were determined using blue-fluorescent DAPI staining and 

Annexin-V FITC/PI staining assay.  The photograph of DAPI stained cell nuclei was 

collected using Eclipse Ti Series inverted microscope equipped with Nikon‟s NIS 

elements imaging software (Nikon Instruments Inc., Tokyo, Japan).  Whereas, the 

relative fluorescence unit (RFU) of Annexin V FITC/PI stained cells were measured 

using GloMax®-Multi Detection System (Promega Corp., Madison, Wisconsin, 

United States).  Next, the apoptotic effect of the treatments on the activity of initiator 

caspases (caspase-8 and -9) and executioner caspases (caspase-3/7) were evaluated 

using luminescent Caspase-Glo assays.  The results were recorded in the form of 

relative luminescent unit (RLU) using GloMax®-Multi Detection System (Promega 

Corp., Madison, Wisconsin, United States).  The caspase-8 and -9 used in this study 

distinguished the involvement of the extrinsic and intrinsic apoptosis induced by the 

treatment.  Further evaluation on the mRNA expression of the downstream proteins 

involved in the transcription factors, cell cycle, extrinsic, and intrinsic signalling 

pathways was performed using qRT-PCR.  The markers used in this study were p53, 

p63, and p73 for transcription factor, p21 for cell cycle, TNF and Fas for extrinsic, 

and PUMA, NOXA, Bax, Bak, and BCL2 for intrinsic signalling.  The qRT-PCR 

was performed using BioRad CFX96 Real Time PCR System (Bio-Rad Laboratories, 

Inc., Hercules, California, United States).  The fold gene expression of the sample 

was calculated using the delta-delta CT (2–∆∆Ct) method. 

1.5 Research significance 

The study of the cytotoxicity of TQ and CP can provide more therapeutic 

potential for cancer treatment.  The synergistic combination dose of TQ with CP can 

possibly solve the toxicity issue of CP towards normal cells.  Their synergistic 

interactions can provide more understanding about signalling pathways such as 

apoptosis induction in the treatment of cancer. 
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