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ABSTRACT 

 Attenuation and velocity of an ultrasound wave parameter can be analyzed to 

estimate the quality of the bone. However, the bone quality evaluation using 

ultrasound is still not comparable with X-ray densitometry. Considering the 

parameters of the fast and slow waves perhaps develop the measurement accuracy of 

the ultrasound. Currently, fast and slow waves measured using through transmission 

(TT) technique. Nonetheless, this technique applied two transducers, which limited 

to certain parts of the skeletal structure. Based on pulse-echo (PE) technique which is 

much easier to use due to single transducer uses and analyse fast and slow waves 

might be able to solve the problems. Therefore, the objective of this study is to 

conduct simulation and experiment of the PE technique to study the correlation 

between fast and slow waves with various porosities and thicknesses of two-

dimentional cancellous models and bone phantom (polyurethane (PU) foam) and 

comparing the result obtained to the result of the TT technique and previous works. 

The ultrasound wave measurement was done based on TT and PE technique for both 

simulation and experiment. The measurement also was repeated for every porosity 

and thickness. The “incident” and “reflected” waves then separated using 

bandlimited deconvolution method by estimating the time threshold between transfer 

function of the fast and slow waves. Then, the parameters for mix, fast and slow 

waves were calculated, plotted against porosity for several thicknesses and compared 

in terms of their correlation coefficient. There are two types of bone models 

orientation (parallel and perpendicular) and two types of materials in the simulation 

(bone and PU – to compare with experiment). The result showed some of the fast and 

slow waves were in good agreement with previous work in terms of the behaviour of 

the wave parameters against porosity for every thickness. Moreover, the bone 

orientations (simulation), frequency spectral content and domination of the wave can 

influence the behaviour of the fast and slow waves. The thickness factor influences 

the parameters of fast and slow waves. Nonetheless, the reaction varied depending on 

the porosity level. Based on the phase velocity parameters, the separation of the fast 

and slow waves are easier for the thicker samples for PU materials (simulation and 

experiment) but the same for bone materials. The overall correlation coefficient of 

the amplitude and signal loss parameters for the reflected wave was slightly lower 

compared to incident wave due to suffering additional propagation loss. 

Nevertheless, for the attenuation parameters, most incident and reflected fast and 

slow waves shows a consistent trends and good correlation coefficient for simulation 

and experiment (Bone – R2
βI/Rfast = 0.52/0.50average and R2

βIslow = 0.67average) (PU – 

R2
βI/Rfast = 0.86/0.61max) (Experiment – R2

βIfast = 0.88max and R2
βRfast = 0.58average, 

R2
βIslow = 0.65max and R2

βRslow = 0.70average). This indicates that, the reflected fast and 

slow wave showed similar behaviour as the incident fast and slow wave and feasible 

to be applied in PE measurement technique. The result from simulation (PU 

materials) was also in good agreement with the experiment. The overall result shows, 

considering reflected fast and slow waves especially the attenuation parameter to 

estimate bone quality, might be able to improve the measurement accuracy for PE 

technique. 
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ABSTRAK 

 Pelemahan dan halaju parameter gelombang ultrabunyi boleh dianalisis untuk 

menganggar kualiti tulang. Walau bagaimanapun, penilaian kualiti tulang 

menggunakan ultrabunyi masih tidak setanding dengan densitometri sinar-X. 

Memandangkan parameter gelombang cepat dan lambat mungkin meningkatkan 

ketepatan pengukuran ultrabunyi. Pada masa ini, gelombang cepat dan lambat diukur 

menggunakan teknik penembusan transmisi (TT). Namun, teknik ini menggunakan 

dua transduser yang terhad untuk sebahagian struktur rangka. Berdasarkan teknik 

gema nadi (PE) yang lebih mudah digunakan kerana menggunakan transduser 

tunggal dan analisis gelombang cepat dan lambat mungkin dapat menyelesaikan 

masalah ini. Oleh itu, objektif kajian ini adalah untuk menjalankan simulasi dan 

eksperimen menggunakan teknik PE untuk menyiasat korelasi antara gelombang 

cepat dan lambat dengan pelbagai porositi dan ketebalan model kanselus dua – 

dimensi dan tulang fantom (busa poliuretana (PU)) dan membandingkan hasil yang 

diperolehi dengan hasil daripada teknik TT dan hasil kerja sebelumnya. Pengukuran 

gelombang ultrabunyi dilaksanakan berdasarkan teknik TT dan PE untuk kedua-dua 

simulasi dan eksperimen. Pengukuran juga diulang untuk setiap keliangan dan 

ketebalan. Gelombang "tuju" dan "pantulan" telah dipisahkan menggunakan kaedah 

penyahkonvolusi jalur terhad dengan menganggarkan ambang masa antara fungsi 

pemindahan gelombang cepat dan lambat. Kemudian, parameter untuk gelombang 

campuran, cepat dan lambat dikira, diplot terhadap keliangan untuk beberapa 

ketebalan dan dibandingkan dari segi pekali korelasi mereka. Terdapat dua jenis 

orientasi model tulang (selari dan serenjang) dan dua jenis bahan dalam simulasi 

(tulang dan PU – untuk dibandingkan dengan eksperimen). Keputusan menunjukkan 

bahawa, sesetengah gelombang cepat dan lambat selari dengan kerja sebelum ini dari 

segi kelakuan parameter gelombang terhadap keliangan untuk setiap ketebalan. 

Selain itu, orientasi tulang (simulasi), kandungan spektral frekuensi dan penguasaan 

gelombang dapat mempengaruhi tingkah laku gelombang cepat dan lambat. Faktor 

ketebalan mempengaruhi parameter gelombang cepat dan lambat. Namun, tindak 

balas adalah berbeza-beza bergantung kepada tahap keliangan. Berdasarkan 

parameter halaju fasa, pemisahan gelombang cepat dan lambat adalah lebih mudah 

bagi sampel yang tebal untuk bahan PU (simulasi dan eksperimen) tetapi sama untuk 

bahan tulang. Pekali korelasi keseluruhan parameter amplitud dan kehilangan isyarat 

untuk gelombang pantulan sedikit rendah berbanding gelombang tuju kerana 

mengalami kehilangan perambatan tambahan. Walaupun begitu, bagi parameter 

pelemahan, kebanyakan gelombang tuju dan pantulan cepat dan lambat menunjukkan 

trend yang konsisten dan pekali korelasi yang baik untuk simulasi dan eksperimen. 

(Tulang – R2
βI/Rfast = 0.52/0.50average and R2

βIslow = 0.67average) (PU – R2
βI/Rfast = 

0.86/0.61max) (Eksperimen – R2
βIfast = 0.88max and R2

βRfast = 0.58average, R2
βIslow = 

0.65max and R2
βRslow = 0.70average). Ini menunjukan, gelombang pantulan cepat dan 

lambat menunjukan kelakuan yang sama dengan gelombang tuju cepat dan lambat 

dan boleh diaplikasikan kepada teknik pengukuran PE. Hasil daripada simulasi 

(bahan PU) juga adalah selari dengan eksperimen. Hasil keseluruhan menunjukan, 

mengambil kira gelombang pantulan cepat dan lambat terutamanya parameter 

pelemahan untuk menganggarkan kualiti tulang mungkin dapat meningkatkan 

ketepatan pengukuran untuk teknik PE.
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Study 

 Ultrasound systems are widely used and they can be found in many 

applications such as in engineering, medicine [1], biology, and other areas [2]. 

Generally, the ultrasound is a cyclic sound pressure with frequencies greater than 20 

kHz, the limit of human hearing [3]. In medical diagnostic, ultrasound frequency 

used was ranging from 1 to 20 MHz [3]. However, for bone densitometry 

application, the frequency range for the ultrasound wave is usually around 0.2 to 2 

MHz which is lower than the frequency used for conventional ultrasound imaging 

due to bone highly attenuated nature [4]. There are several modalities of the 

ultrasound medical application such as A-mode, B-mode, M-mode and Doppler 

imaging where each modality has it’s own specific uses [5]. Ultrasound technology 

was introduced for bone related purposes taking place since 1950 where the 

ultrasound application was used to monitor fracture healing at the tibia (shin bone) 

[6]. Ultrasound wave also can be used to determine the geometrical outcome of 

double co-planar edge cracks on the stress intensity factor in the human femur bone. 

The results of these findings can be used to suggest appropriate implants to minimize 

the effects of stress at the bone, thereby speeding up the time taken by the bone to 

recover from the fracture [7]. 

 Based on the attenuation and velocity, ultrasound parameters were analyzed 

to assess the quality of bone [8]. The velocity  of ultrasound corresponds  to density 

and elasticity of the bone whereas attenuation corresponds to the structure of the 

bone [8]. From the clinical aspect, the ultrasound possesses invaluable interest due to 

widely available, low cost, non-ionizing radiation, portable, short examination time, 

and capability of real-time image display compared to other modalities such as X-ray 



 

2 

based bone densitometry [4]. There are three types of ultrasound measurement 

techniques, such as through transmission technique (TT), axial transmission (AT) 

technique and pulse-echo technique (PE). The TT measurement technique was one of 

the earliest and most common techniques to estimate bone quality. This is due to the 

technique being easy to implement and analyze since the propagation of wave was 

straightforward, where one transducer transmitted the wave that passed through the 

samples and received to the other transducer that act as receivers [4]. Meanwhile, the 

AT measurement technique usually used to investigate long or cortical bones and the 

ultrasound probe commonly used was scanner type, where there have several 

transmitters and receivers in the single probe [4, 9, 10]. For the PE measurement 

technique, only one transducer used and acted as both transmitter and receiver [4]. 

 Osteoporosis disease is generally characterized by a systemic impairment of 

bone mass, strength, and microarchitecture, which increases the propensity of 

fragility fractures. Osteoporosis was also known as a silent disease because the 

disease is often detected when the fracture has occurred [8, 11]. The cause for the 

diseases to occur was usually due to low Vitamin D intake (important for bone 

health), lack of calcium and food fortification consumed [11]. Additionally, there is 

also lack of sun exposure because of the tendency to remain indoors during the day 

due to the hot and humid climate as well as the increase in urban living. This 

problem was happen globally including in Malaysia [11]. Thus, bone quality checks 

regularly can be one method of disease prevention for osteoporosis before its get 

worse. 

 Current measurement techniques available are based on X-ray and 

ultrasound. However, both techniques have pros and cons in measuring the quality of 

the bone. For the X-ray based densitometry, Dual X-Ray Absorptiometry (DXA) and 

Quantitative Computed Tomography (QCT) can estimate bone quality and predict 

bone fracture more precisely [12]. Even so, both techniques mentioned above involve 

ionization of radiation wherein could be harmful to the patient's body if it is exposed 

many times [8]. Moreover, most of the equipment is non-portable and requires a high 

cost to operate and for maintenance purposes. Because of that, another alternative 

method is introduced namely Quantitative Ultrasound (QUS). QUS method is much 
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safer, cheaper, and portable. However, DXA is still an option for most hospitals to 

evaluate bone despite QUS measurement has been proven to predict hip fractures and 

all osteoporotic fractures with similar relative risk as other central X-ray based bone 

density [13]. This is due to QUS only analyzing overall ultrasound waves which 

cannot provide enough information regarding bone microstructural [13, 14]. Hence, 

researchers still find the best solution to improve the accuracy of bone density 

estimation based on ultrasound technology. 

 The combination of solid and fluid (pore part) of the cancellous bone was 

found to be supporting two types of wave that corresponds to each solid and fluid in 

the porous structure of the bone [15]. The two types of wave are known as the fast 

wave and slow waves. The previous study shows the microstructure and other 

properties of the cancellous bone correlate more with the fast and slow waves [16-

22] and by analyzing ultrasound the fast and slow waves might able to improve the 

bone quality estimation based on ultrasound. Even so, the observation of fast and 

slow wave in time domain is affected by the degree of anisotropy of the cancellous 

bone and these waves can overlapped with each other [15]. Bandlimited 

deconvolution is created as one of the methods to separate fast and slow waves [23, 

24]. This method successfully separates fast and slow waves at least in the TT 

measurement technique. The discovery of fast and slow wave might useful to 

increase the precision of bone health using ultrasound. 

1.2 Motivation of the Study  

 The increased the number of old people also one of the reasons to find a new 

solution regarding bone quality estimation. At the local level, the population of 

elderly in Malaysia have increased proportionally to the technology advancement 

and health standard [25]. In 2050, the Malaysian population aged over 50 years 

projected to increase by 163% in the next 4 decades, rising from 5.3 million in 2013 

to 13.9 million [25]. Life expectancy will also rise from 74 years to 81 years and 

approximately one-third of the total population are those aged over 50 years by 2050 

[25].  
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 Large-scale epidemiological fracture studies need to be funded and conducted 

as there is still a lack of data on fractures due to osteoporosis in Malaysia and hip 

fracture incidence data in the year of 1996 and 1997 are the most reliable at the 

moment [25]. New data collection on hip fractures has been conducted by the 

Malaysian Osteoporosis Society (MOS) for the year of 2012 and will compare it with 

data in the year of 1996 and 1997. As many as 90 per 100,000 individuals per year 

suffered hip fracture in the year of 1996 to 1997 that occurred to those over the age 

of 50. From this report [26], the increase in the elderly population might contributed 

to the increase in such cases.  

 In terms of ethnic breakdown, the highest cases of hip fractures occur in the 

population of Chinese women about 44.8% of the overall case against the Malay and 

Indian women [25]. The total cost of hospital treatment for hip fracture patients in 

1997 is estimated at 6.8 million USD (RM 22 million) and of that amount, the cost of 

rehabilitation or treatment in a nursing home is not included [25]. The number and 

cost of hip fractures are expected to increase in line with the increasing population of 

the elderly [27]. Hence, action is required to tackle the projected burden of 

osteoporosis as indicates the rising of the elderly population. 

1.3 Problem Statement 

 Emerging of the ultrasound fast and slow waves propagate through 

cancellous bone shows a very good agreement with bone microstructural, thereby, 

increasing precision of bone estimation based on QUS. Only Through-transmission 

(TT) measurement technique successfully applies the concept of two modes 

ultrasound waves at the wrist for the current two modes ultrasound wave machine 

[13, 14]. Still, the TT measurement technique is limited to certain parts of the 

skeletal area whereas fracture risk caused by Osteoporosis disease often occurs not 

only at the wrist but also occurs at the hip and spine which can increase mortality 

rate [13, 14].  
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 However, another measurement technique namely Pulse-echo (PE) technique 

is proposed to solve these problems as the technique only uses one transducer and is 

capable of measuring at the vital skeletal site. Yet, the accuracy of PE technique is 

still not powerful compared to TT technique because of the complex behaviour of 

reflected and backscattered wave relation with inhomogeneity of cancellous bone. 

Because of that, Hosokowa et al. [16, 28-30] demonstrated Finite Difference Time 

Domain (FDTD) simulation to show that fast and slow waves  can be reflected and 

backscattered too, hence, considering fast and slow wave might improve the PE 

technique for bone quality estimation. Thus, the PE measurement technique that 

applies the concept of two modes ultrasound wave is proposed to evaluate bone 

density with high precision and not limited to certain skeletal sites such as the spine. 

Therefore, this research will look into the research of ultrasound PE 

measurement technique utilizing both simulation and experiment to examine the 

correlation of fast and slow waves parameters with various porosities of bone models 

and phantoms. The consistency of the trends and performance of the correlation 

coefficient for various thicknesses of the bone models and phantoms will also be 

observed. The recorded reflected wave (original wave or mix wave) will be 

processed by using the bandlimited deconvolution method in order to decompose 

into the individual reflected fast and slow waves. Then, the result of the correlation 

coefficient between the ultrasound parameters of the mix, fast and slow waves will 

be compared. Previously, there are no attempts by other researchers to decompose 

the reflected waves obtained from PE technique into individual reflected fast and 

slow waves using the bandlimited deconvolution method. Hence, the overall result of 

PE technique will be compared to the TT technique since this technique has been 

done many times to analyze fast and slow waves. 

1.4 Hypothesis 

 The hypotheses of the study are as follows: 
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1. When porosity of the cancellous bone increases, slow wave amplitude 

 increase, while fast wave amplitude decreases. 

2. Attenuation of the fast wave is directly proportional, while attenuation of 

 slow wave is inversely proportional to the  increases of cancellous bone 

 porosity. 

3. Reflected fast and slow wave parameters were found to correlate more with 

 the bone microstructure of the bone models compared to the reflected mix 

 wave. 

1.5 Research Questions 

 The research questions of the study are as follows: 

1. Is the reflected fast and slow waves obtained from PE measurement technique 

 can be  decomposed from mix wave using the bandlimited deconvolution 

 method just like the incident fast and slow wave obtained from TT 

 measurement technique? 

2. Is the behaviour of incident fast and slow wave parameters using TT 

 measurement technique is the same as the reflected fast and slow wave 

 parameters using PE measurement technique? 

3. What are the ultrasound wave parameters that related most to changes in 

 porosity of the cancellous bone structure? 

1.6 Objective (s) of the Study 

 This study embarks on the following objectives: 
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1. To prove that the reflected fast and slow waves obtained from pulse-echo  

 technique can be decomposed from mix wave using a bandlimited  

 deconvolution method for both simulation and experiment. 

2. To formulate the correlation of the reflected fast and slow wave’s parameters 

 with various porosity level and thicknesses of the cancellous bone models 

3. To compare the behaviour and performance of parameters of the fast and 

slow waves for both PE and TT measurement technique in simulation which 

is based on the Elastodynamic Finite Integration Technique (EFIT) and 

experiment, where both are based on QUS measurement method. 

1.7 Scope of the Study 

 The scopes of the study are divided according to the objectives described in 

section 1.6. They are as follows: 

1. To prove that the reflected fast and slow waves obtained from pulse-echo  

 technique can be decomposed from mix wave using a bandlimited  

 deconvolution method for both simulation and experiment. 

 (a) The bandlimited deconvolution method will be used to distinguish  

  overlapping incidents and reflected fast and slow waves. 

 (b) Two types of materials will be involved in the simulation, which are 

  bone and PU materials in order to compare with the experiment that 

  uses bone phantom (PU foam).  

2. To formulate the correlation of the reflected fast and slow wave’s parameters 

 with various porosity level and thicknesses of the cancellous bone models. 

 (a) The ultrasound parameters will be computed to the incident and  

  reflected unseparated wave (mix), fast and slow waves.  
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 (b) The parameters computation will be done to several thicknesess of  

  bone models/phantom. 

3. To compare the behaviour and performance of parameters of the fast and 

 slow waves for both PE and TT measurement technique in simulation which 

 is based on the Elastodynamic Finite Integration Technique (EFIT) and 

 experiment, where both are based on QUS measurement method. 

 (a) The ultrasound parameters will be plotted against porosity for several 

  thicknesess and compare in term of their correlation coefficient for  

  both simulation and experiment. 

 (b) The comparison will be done between unseparated (mix), fast and  

  slow waves for TT and PE measurement technique in order to  

  determine which wave has a higher correlation with porosity and is 

  consistent for every thickness. 

1.8 Significance of the Study 

 The significances of the study are as follows: 

1. The separation and estimation of reflected fast and slow wave can provide an 

 additional option to improve the current PE measurement technique by 

 considering the two modes wave in their measurement to estimate bone 

 quality. 

2. The finding of the study can be useful to other researchers as an example to 

 investigate the correlation of the parameters of reflected fast and slow waves 

 using bandlimited deconvolution method, since there are no attempts 

 previously made to obtain and analyze the reflected fast and slow waves  in 

 real experiments. 
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3. Despite the bone phantom was not a real human bone, but, the microstructure 

 of the PU foam made by Sawbones® have biomechanical properties similar to 

 the real human bone and this PU foam was used as a standard material for 

 testing  orthopaedic devices and instruments.  

4. This study is relevant in bone estimation based on ultrasound wave research, 

 especially for understanding the behaviour of both incidents  and reflected 

 fast and slow waves towards various porosities and thicknesses of the porous 

 structure. 

1.9 Thesis Outline 

 The thesis outline consists of an introduction, literature review, proposed 

method, methodology, result and discussion as well as the conclusion. 

Chapter 1. Introduction 

This chapter comprised the background, motivation, problem statement, hypothesis, 

research question, objective and scope as well as the significance of the study.  

Chapter 2. Literature review and theoretical background 

The literature review cover the information and theory related to the study such as 

the structure of human cancellous bone, related disease as well as bone losses. 

Moreover, this chapter also studies the current method to estimate bone quality such 

as X-ray based measurement. In addition, the current method to estimate bone 

quality based on ultrasound is also studied. Last but not least, regarding the 

application of fast and slow wave for the bone quality estimation, as well as previous 

works, also be studied. 
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Chapter 3. Proposed method – fast and slow wave 

In this chapter, the study was focused on the theory of the fast and slow wave that 

applied in the mathematical model of the propagation of ultrasound through the 

porous structure. Moreover, the proposed method that was implemented based on the 

mathematical models also presented, including the overall picture of the method of 

the study that were conducted. 

Chapter 4. Methodology 

The methodology chapter discuss the process of the study, especially in terms of data 

collection and analysis. The measurement technique of both TT and PE as well as the 

information about the simulation and experiment was also shown and discussed such 

as the simulation software, bone models (simulation), bone phantom (experiment), 

experimental setup, a method to separate fast and slow waves and ultrasound 

paramater calculation.  

Chapter 5. Result and discussion 

This chapter discuss the result obtained from the simulation and experiment for both 

incidents  and reflected waves. The results also cover the two types of material, such 

as bone and PU material.  The simulation results based on PU material were 

compared with the results of the experiments, which also use PU foam. The 

parameters were calculated and then plotted against porosity for every thickness in 

order to study the correlation between them. Then, the result was compared between  

the TT and PE measurement technique for mix and two modes wave to determine 

which one of these waves are correlated more with various porosities and 

thicknesses. Last but not least, the result obtained were be verified with previous 

works. 

Chapter 6. Conclusion 

The conclusion chapter cover the finding of the overall study, limitation and 

recommendation as well as the future improvement that can be done in order to 

pursue the research to the next level. 
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