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ABSTRACT

The use of robotics in precision agriculture has significantly improved productivity

over the years by automating activities such as spraying, harvesting, and sowing. Without

robots, the typical way of applying a fixed amount of pesticide over a specific season or time

not only results in economic loss via wasted pesticide but also leads to sub-optimal results

in terms of pest control leading to low yield and loss of capital in the agricultural industry.

Existing techniques for automating pesticide application only focus on the problem of best

route selection for the pesticide spraying robots given a predetermined demand for pest without

due consideration to the dynamic and complex nature of the interaction between pests and host

plants. Moreover, these techniques either consider simplistic scenarios with only one robot or

even if they consider a fleet of vehicles, the proposed solution results in poor coordination among

the robots resulting in slow field coverage times as well as higher charge or fuel consumption.

To solve these issues, this research introduces the concept of active demand management to the

agricultural vehicle routing problem (VRP) along with an e�cient solution for vehicle routing

using model predictive control (MPC). Demand management is introduced and modelled using

the mass-spring damper system along with an estimate of the risk of a pest infestation to obtain

a state-space model. Analogous to an electromechanical system, the notion of damping is

related to pesticide demand, with an objective to reduce demand. The resulting state-space

model is then utilized to solve the agricultural VRP for two cases, a single vehicle and a fleet

of vehicles. For the single vehicle case, a discrete-time MPC plant model is used to optimize

the delivery of pesticide such that the demand is minimized or in other words to reduce the risk

of pests while using a greedy algorithm to e�ciently route the vehicle to a specific area in an

agricultural field. To solve the problem of pesticide application using a fleet of vehicles, an MPC

algorithm is converted into a mixed integer linear programming (MILP) optimization problem.

The optimization problem in addition considers the charging and capacity constraints for a

set of autonomous vehicles (AV) also considers the evolution of charge and pesticide amount

carried by the AVs. This results in an overall solution to autonomous mobility on demand in

the agricultural industry. Extensive MATLAB/Simulink simulations show that the proposed

technique not only results in significant reduction of up to 80% in terms of field coverage time

but also results in a reduction of up to 93% in terms of charge consumption as compared to

state of the art existing techniques. The percentage improvement achieved demonstrates the

advantage of using MPC.
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ABSTRAK

Penggunaan robotik dalam pertanian teliti telah menambah baik pengeluaran dengan

automasi penyemburan, penuaian dan penyemaian. Tanpa robot, kaedah menggunakan jumlah

racun perosak yang tetap pada musim dan masa yang tertentu bukan sahaja merugikan

ekonomi dengan pembaziran racun perosak tetapi, menyebabkan keluaran yang tidak optimum

dari segi kawalan perosak yang menjurus kepada pengurangan hasil dan kerugian modal

dalam industri pertanian. Teknik-teknik yang sedia ada bagi pengautomatan aplikasi

penyemburan racun perosak hanya mencari laluan yang terbaik kepada robot penyembur

racun perosak dengan memberikan permintaan yang telah ditentukan terlebih dahulu terhadap

perosak, tanpa mengambil kira interaksi antara perosak dan tumbuhan yang dinamik

dan kompleks.Teknik-teknik ini hanya mengambil kira senario yang mudah dengan hanya

menggunakan sebuah robot atau sekiranya sekumpulan kenderaan diambil kira, penggunaan

bahan api yang tinggi. Untuk menyelesaikan isu ini, penyelidikan ini memperkenalkan

konsep pengurusan permintaan aktif kepada masalah laluan kenderaan pertanian (VRP) yang

efisien untuk laluan kenderaan menggunakan kawalan ramalan model (MPC). Pengurusan

permintaan telah diperkenalkan dan dimodelkan menggunakan sistem spring-jisim peredam

bersama anggaran risiko serangan makhluk perosak untuk menghasilkan model keadaan-

ruang. Serupa dengan sistem elektromekanikal, peredam merujuk kepada permintaan racun

perosak dengan objektif untuk mengurangkan permintaan.Model keadaanruang akan digunakan

untuk menyelesaikan masalah VRP dalam dua kes, iaitu untuk sebuah kenderaan dan

sekumpulan kenderaan. Bagi kes sebuah kenderaan, model MPC masa-diskrit telah digunakan

untuk mengoptimumkan penghantaran racun perosak dengan meminimumkan permintaan,

dengan erti kata lain mengurangkan risiko makhluk perosak dan algoritma tamak digunakan

untuk menghalakan kenderaan ke sesuatu kawasan tertentu dalam kawasan ladang. Untuk

menyelesaikan masalah penyemburan racun serangga bagi sekumpulan kenderaan,algoritma

MPC telah diubah kepada masalah pengoptimuman pengaturcaraan nombor bulat linear

campuran (MILP). Masalah pengoptimuman mengambil kira kekangan pengecasan dan kapasiti

bagi sekumpulan kenderaan autonomi ( AV) yang juga mengambil kira evolusi pengecasan

dan jumlah racun serangga yang dibawa oleh AV. Hal ini menghasilkan penyelesaian yang

menyeluruh kepada pergerakan autonomi dalam permintaan industri pertanian. Simulasi meluas

menggunakan MATLAB/Simulink telah menunjukkan bahawa teknik yang dicadangkan bukan

sahaja menghasilkan pengurangan masa liputan yang signifikan sehingga 80%, malah juga

mengurangkan jumlah pengecasan sehingga 93% berbanding dengan teknik-teknik yang sedia

ada. Peratus peningkatan yang dicapai menunjukkan kelebihan menggunakan MPC.
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CHAPTER 1

INTRODUCTION

1.1 Background

Pests are creatures that cause damage to crops, livestock and forestry, and

nuisance to people in farms and homes. Pests include insects, mites, pathogens, weeds,

nematodes, and arthropods. Agricultural and horticultural crops are attacked by a

variety of pest species. The damage inflicted by pests can be direct crop injury as

well as indirect fungal, bacterial or viral infections. With the ever increasing demand

for more production, pests are considered a major constraint in crop productivity and

profitability around the world. This may lead to an estimated 45 % of pre- and post-

harvest losses [2] thereby necessitating the need to improve yield and provide an optimal

environment for plant growth. Pesticide application is, therefore, critical to overcome

the pest problems. Pesticide, however, can be toxic and hazardous for the environment

as well as humans and animals. The traditional approach of applying a fixed amount of

pesticide over a specific time leads to problems like wastage of capital, pest resistance

and sub-optimal pest management as pests and diseases typically have an uneven spatial

and temporal distribution [3,4]. Di�erent species of pests react di�erently to variations

in temperature and rainfall. The particular conditions with a significant impact on

pests and crops include extreme temperatures, precipitation level variation and extreme

flooding[5]. Thus, the spatiotemporal variability in weather conditions resulting from

short- and long-term climate variability could a�ect water availability, soil conditions,

crop yield, and crop vulnerability to pest and pathogen infestations.

The favourable weather conditions that influence pest infestations on farm lands

include temperature, wind, rainfall, and relative humidity [6]. Seasonal variability in

weather patterns with preceding or dominant impact climate conditions provide not

only a favourable environment for the production and distribution of insect species, but

also a�ects crop growth and development, and ultimately the final yield.
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The Existing e�orts on pest prediction successfully forecast pest infestation

according to weather conditions [7,8]. However, these e�orts have only focused on the

vehicle routing problem (VRP) without considering the risk of pests by assuming- a

pre-determined demand for pesticide application based on the actual pest presence in

the agricultural fields. This assumption not only defeats the purpose of precision

agriculture but also results in sub-optimal controllers. Thus, it is imperative to

apply the optimal amount of pesticide at an optimal time and place. Most of the

aforementioned e�orts consider the pesticide management problem as VRP, such as

optimizing the path taken by vehicles to apply pesticide to an agricultural field given

a pre-determined mapping of pests. Moreover, these techniques are based on complex

optimization algorithms such as tabu search algorithm [9,10], fluid search optimization

[11], simulated annealing [12], and evolutionary algorithms [13, 14]. The objective of

optimal pesticide application is not only to control but also to predict and mitigate the

onset of a pest infection given the basic risk factors such as susceptibility of host plants,

a virulent pathogen or pest and favourable weather conditions. The aforementioned

studies [7, 8] mainly forecast the onset of pests in such a way that optimal and timely

pesticide application can be used not only to reduce the damage to plants but also

to reduce the amount of pesticide used leading to an overall environmentally friendly

and e�cient approach. Exploiting the insights gained from these recent studies on

predicting a pest infestation based on various risk factors, this research proposes

a dynamic model to reduce the risk of pests even before the infestation starts. In

particular, an active suspension system is proposed which takes as input not only the

pre-determined demand of pests (such as the actual pest situation) but also the risk of

a pest infestation at a specific instant of time to optimize the amount of pesticide to be

sprayed at a specific location. The existing techniques are only considered the actual

pest infestation to determine the optimal amount of pesticide to be sprayed. However,

this approach does not reduce the risk of pests but can only control a pest infestation

once it occurs.

The interactions between pests and a host plant are considered to be a complex

and dynamic system with existing works also showing a significant correlation of

weather with the onset of pests [6, 15]. Therefore, the pest forecasting problem gets

more complex with the addition of further uncertainty in the form of weather data.

The problem of pest management, therefore, requires an interdisciplinary approach
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that spans prediction, dynamics, optimization and control theory. The objective of

optimal pesticide application is to predict and mitigate the onset of a pest infestation

given the basic risk factors such as susceptibility of host plants, a virulent pathogen or

pest and favourable weather conditions such as temperature, wind, rainfall, and relative

humidity [6]. Seasonal variability in weather patterns with preceding or dominant

impact climate conditions provides not only a favourable environment for the production

and distribution of insect species, but also a�ects crop growth and development, and

ultimately the final yield. Recent e�orts [7, 8] have analyzed the weather forecast to

predict the risk of pests and thus, have applied pesticide in advance to avoid large scale

damage to the valuable crops. In an e�ort to pro�er a di�erent approach to the solution

of the pest management problems identified above, this work focuses on the problem

of e�cient precision pesticide application using predictive control based on dynamic

demand management (DM).

The agricultural field is divided into multiple areas and then, using an active

mass-spring suspension system, a dynamic model is created to demand the management

of pesticide by considering the pest risk. This demand management model is then, used

in conjunction with discrete-time model predictive control (DMPC) to determine the

optimal time, place, and amount of pesticide to be used. On the other hand, in order

to optimize the path taken by the vehicle/robot to apply pesticide in each sampling

instant of DMPC, two di�erent techniques were considered. Firstly, a greedy algorithm

is proposed for a single vehicle to e�ciently solve the vehicle routing problem and

secondly, a DMPC based algorithm is proposed for a fleet of autonomous vehicles/robots

to perform the task. However, the agricultural field is assumed to be a collection of

di�erent areas where, the demand for each area is generated using a mass-spring

damper system. The demand for each area is thereby considered in each time step of

a model predictive control (MPC) based algorithm to optimize the assignment of AVs

in di�erent areas as well as routing them. Thus, in each time interval, based on the

predicted future states of the model, the vehicle routing is controlled so as to minimize

the charge consumed and field coverage time after a certain time period.
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1.2 Problem Statement

In most of the farming practices, pesticides are usually applied uniformly

throughout the fields to control the spread of diseases despite the fact that several

pests and diseases exhibit an uneven spatial distribution, especially during the early

stages of development. Thus, it is important to apply an optimal amount of pesticide at

an optimal time and place. The existing works su�er from one or more of the following

problems. Firstly, pesticide application problems are formulated as a vehicle routing

problem with fixed and pre-determined demand. This leads to static models which

do not consider the dynamics of pest’s infestation [7, 8, 15]. Secondly, most existing

techniques either consider a simple model consisting of a single vehicle or a fixed layout

for the agricultural field with multiple vehicles [9,10]. This approach compromises the

generality of the proposed techniques and results in limited applicability. Thirdly, as

most of the existing techniques are based on optimization technique which only look

at one time interval, the resulting assignment and scheduling of a fleet of vehicles to

multiple areas result in poor coordination among the vehicles. This leads to ine�cient

fuel/charge consumption as well as longer field coverage time. Finally, most of the

existing techniques use complex meta-heuristic-based optimization algorithms. This

results in higher computational complexity for the proposed techniques and eventually,

these techniques are not feasible for real-time control of autonomous vehicles.

In view of the aforementioned problems, this study focuses on solving the above

issues by developing an e�cient solution for pesticide management which considers

dynamic pesticide demand using real-time risk of pests. Moreover, the proposed

technique uses predictive control to improve coordination among a fleet of vehicles

over an optimization window which goes beyond the current time interval by predicting

the state for several future time intervals. This results in a larger covered area of the

agricultural field.
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1.3 Objectives

Given the aforementioned problem statement, the main objectives of this thesis

are as follows:

i. Model dynamic pesticide demand management using an active mass-spring

suspension system.

ii. Develop a discrete-time model predictive controller to reduce the demand for

pesticide.

iii. Develop an autonomous on-demand scheduling and assignment algorithm to

optimize pesticide application using a fleet of vehicles.

1.4 Scope

The scope and limitations of this work are as follows:

i. Although, the proposed technique does not consider a fixed layout for the

agricultural field, the starting and ending points for each vehicle are considered

the same.

ii. All vehicles consume charge at the same rate according to distance. Moreover,

the charge rate at the charging station is considered to be the same for all

vehicles.

iii. This study does not develop a pest risk prediction model. The use of any existing

pest risk infection model is based on assumption. Thus, the performance of

the proposed technique may be limited by the choice of a prediction model.

iv. It is assumed that all areas are connected through at least one path. The

proposed technique assumes that only one vehicle can serve a given area at any

one time.

v. All the simulations are performed in MATLAB/Simulink.
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1.5 Research Significance

Some of the potential applications for this research are:

i. The proposed technique can be used to control the onset of a pest infection by

optimizing pesticide application in advance,i.e., even if there are no pests but if

the pest risk prediction model predicts the onset of pests, the proposed technique

utilizes this information to avoid pest infestation before it occurs. Thus, unlike

any existing technique, this research considers a pro-active approach which

results in significant savings in terms of pesticide used as well as field coverage

time (and according to fuel/charge).

ii. The proposed technique uses predictive control to e�ciently coordinate a fleet

of vehicles over multiple time intervals. However, the existing techniques can

only perform optimization over one time interval. This results in significantly

faster convergence times and lower fuel or charge consumption.

iii. MPC is well-known for its lower computational complexity as compared to

evolutionary algorithms. Thus, the proposed technique takes advantage of this

fact and uses MPC to e�ciently solve the agricultural VRP problem.

iv. The proposed technique is the first of its kind which can be used for autonomous

mobility on demand in the domain of agriculture.

1.6 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides an elaborate discussion of the existing literature related to

this thesis. In particular, the focus of this chapter is to provide a foundation for demand

management technique in various sectors, an overview of multi-objective optimization

problem (MOP) as used in agricultural VRP and various MPC techniques applied in the

field of agriculture. Finally, the chapter concludes with the presentation of the research

niche identified in the review which forms the objectives of this thesis.

6



Chapter 3 presents the proposed technique. Various aspects of the proposed

technique are discussed including the use of an active mass-spring suspension system

for state-space model formulation, the MPC plant model, and scheduling and assigning

pesticide demand to a fleet of vehicles with charge and capacity constraints, etc.

Chapter 4 presents the evaluation of the proposed technique using simulations

in MATLAB/Simulink. The various performance aspects discussed in this chapter

include the system dynamics for stability, field coverage time and total charge consumed.

Moreover, a comprehensive comparison with existing techniques in literature is also

presented.

Finally, Chapter 5, presents the conclusions for this thesis and also highlights

the future recommendations.

7
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