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ABSTRACT

Microelectrical discharge machining (^EDM) is a non-traditional machining 

technique that has high potential in the processing of semiconductor materials. This 

technique can produce complex three-dimensional (3D) shapes without cutting 

forces, to eliminate the tendency of crack propagation, due to the localized pressure 

on the workpiece. Additionally, it can also produce high precision and good surface 

quality machining results. However, this method has only been used to machine 

highly conductive materials such as metals and highly doped silicon (Si) wafers. 

While this method is not suitable for undoped or lightly doped Si wafers, increasing 

the conductivity of the Si wafers requires an additional process and cost. This work 

aims to investigate the |iEDM performance for machining highly and lightly doped 

n-type Si wafers with various electrical conductivities. The machining performance 

was examined on both high- (1-10 Q.cm) and low- (0.001-0.005 Q.cm) resistivity Si 

wafers by means of a range of discharge energies (DE). The results revealed that the 

parameters of the electrical resistivity and DE of the |iEDM have a great influence on 

the Si wafer machining performance, in terms of machining time, material removal 

rate (MRR), surface quality, surface roughness (SR), and material mapping. The 

minimum amount of DE required to machine the Si wafer was 5^J for both low and
5 3high-resistivity Si, of which the highest MRR of 5.842 x 10- mm /s was observed 

for the low-resistivity Si. On the contrary, the best SR, Ra, of 0.6203 |im was 

achieved for high-resistivity Si, indicating a higher carbon percentage after the 

machining process. A novel machining method called heat-assisted |iEDM, which 

increases the conductivity of the lightly doped Si wafer prior to the machining, was 

used. A p-type Si wafer was tested, and the machining performance was observed 

while varying the temperature values of the Si wafers in the range of 30 -  250 °C. 

The results indicated that increasing the machining temperature contributes to a
c o

higher MRR, lower tool wear rate and lower SR. MRR of 1.43 x 10- mm /s and a 

SR of 1.487 |im were achieved at 250 °C. This study is expected to promote the 

advancement of microelectromechanical systems devices in the electronics field, as 

well as the ability to achieve a high aspect ratio machining with high surface quality 

results.
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ABSTRAK

Pemesinan nyahcas mikro-elekrik (^EDM) adalah satu teknik pemesinan 

tidak tradisional yang mempunyai potensi yang tinggi dalam pemprosesan bahan 

semikonduktor. Teknik ini boleh menghasilkan bentuk 3-dimensi (3D) kompleks, 

tanpa daya pemotong, bagi mengelakkan kecenderungan retak disebabkan tekanan ke 

atas bahan kerja. Tambahan pula, ia boleh menghasilkan keputusan pemesinan yang 

berketepatan tinggi dan mempunyai kualiti permukaan yang baik. Namun begitu, 

kaedah ini digunakan dalam pemesinan bahan berkonduktif tinggi seperti logam dan 

silicon (Si) wafer berkonduktif tinggi. Namun, kaedah ini tidak sesuai bagi Si wafer 

tidak berkonduktif atau berkonduktif rendah, peningkatan kekonduksian memerlukan 

proses tambahan dan kos. Dalam kajian ini, penyiasatan prestasi |iEDM sebagai alat 

untuk memesin Si wafer yang berkonduktif tinggi dan rendah dengan nilai 

kekonduksian berbeza dikaji. Prestasi pemesinan dikaji bagi kedua-dua Si wafer 

jenis-n berintangan tinggi (1-10 Q.cm) dan rendah (0.001-0.005 Q.cm), dengan 

mengunakan tenaga nyahcas (DE) dalam julat tertentu. Keputusan kajian ini 

mendedahkan bahawa parameter rintangan elektrikal dan DE dari |iEDM 

mempunyai pengaruh besar terhadap prestasi pemesinan Si wafer, dari segi masa 

pemesinan, kadar penyingkiran bahan (MRR), kualiti permukaan, kekasaran 

permukaan (SR) dan pemetaan bahan. DE yang diperlukan untuk memesin kedua- 

dua Si wafer berintangan rendah dan tinggi adalah 5 J  dengan MRR tertinggi 5.842
5 3x 10- mm /s, dicatat oleh Si berintangan rendah. Sebaliknya, SR terbaik, Ra bernilai 

0.6203 |im, dicapai oleh Si berintangan tinggi, dan peratusan karbon yang tinggi 

ditunjukkan selepas ia dimesin. Salah satu teknik pemesinan baru dinamakan bantuan 

haba |iEDM, dapat meningkatkan kekonduksian Si berintangan sederhana, sebelum 

dimesin. Si wafer jenis-p telah diuji dalam kajian ini, dan prestasi pemesinan dinilai, 

sementara nilai suhu Si wafer dibezakan dalam julat 30-250 °C. Keputusan 

menunjukkan peningkatan suhu menghasilkan MRR yang tinggi, kadar penggunaan
5 3alat yang rendah dan SR yang rendah. MRR bernilai 1.43 x 10- mm /s dan SR 

bernilai 1.487 |im dicapai pada suhu 250 °C. Kajian ini dijangka dapat mempromosi 

sistem bahan mikroelektronik dalam bidang elektronik, dan berupaya mencapai 

keputusan pemesinan pada nisbah yang tinggi dengan kualiti permukaan yang baik.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Micromachining has become an essential tool for the fabrication of miniature 

sensors, actuators and microsystems. It has also been used to fabricate three­

dimensional (3D) microstructures and is the foundation of a technology called 

Microelectromechanical Systems (MEMS). Micromachining technology provides 

great flexibility and low cost in the case of the mass production of silicon (Si) for 

MEMS applications [1]. Since MEMS technology has encouraged the progress of 

semiconductor integrated circuit (IC) design, it has drawn significant attention to use 

Si as one of the essential elements in the manufacturing process. The significant 

investment in Si IC has led to the advancement of material structure technology on a 

scale of less than a micrometer. Basic processing steps of IC manufacturing 

technology involve thin film deposition, doping and lithography, micromachining 

techniques including special deposition, etching and bonding processes that allow for 

the formation of three-dimensional micro-structures.

Traditional MEMS fabrication methods based on chemical etchings use two­

dimensional (2D) photolithography for the processing of Si bulk MEMS Systems. 

The chemical etching has been proven to be efficient in the formation of 2D 

structures. However, it is not applicable to form 3D structures. This is due to its 

dependency on crystal orientations and line-of-sight etching. Non-traditional 

machining techniques such as ultrasonic machining, ion beam milling, laser 

machining and electrical discharge machining (EDM) have been developed to 

address these limitations.
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1.2 Problem Statement

Existing conventional Si machining techniques are commonly based on a 

photolithography process and chemical etching which lacks the ability to form 

complex 3D geometries. This is due to its dependency on crystal orientation and line 

of sight etching [2]. The increasing commercial interest toward microsystems 

demands for complex Si 3D structures. To meet these rising demands, non-traditional 

micromachining techniques such as laser and EDM have been explored. 

Theoretically, these techniques can produce Si structures of any suitable form. 

However, various practical issues such as cracks and thermal damage are associated 

with these techniques. EDM is among the proven machining methods that produce 

high precision and good surface quality 3D structures, but it can only be used for 

machining conductive material. This is because the material removal process starts 

with electro-thermal action with repeated electrical discharges occurring between the 

tool and workpiece. EDM is a thermal machining method with non-contact force, 

and is ideal for machining hard and brittle semiconductors such as Si [3]. Over the 

past few years, many researchers have reported the machining of the Si wafer with 

EDM, but the Si wafers had to be doped and coated with conductive material such as 

gold [4], nickel [5], and aluminum [6] to make them machinable. The machining 

performance showed promising results, but the additional process involved would 

have an effect on the material properties. This work proposes a heat-assisted 

microelectrical discharge machining (^EDM) method, without the need for a coated 

layer. The effect of the temperature would alter the electrical conductivity of the Si 

wafer to be machined by |iEDM.
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1.3 Research Objectives

The main objectives of this research are to machine lightly doped Si wafers 

using a new machining technique of heat-assisted |iEDM. The specific objectives are 

as follows:

(a) To evaluate the effect of temperature on the electrical resistivity of lightly 

doped Si wafers.

(b) To find the optimal machining parameter for die-sinking |iEDM technique 

with different Si resistivity.

(c) To develop a heat-assisted |iEDM method for machining lightly doped Si 

wafers.

(d) To analyze the |iEDM performance, including the material removal rate 

(MRR), tool wear rate (TWR), surface quality and the material property.

1.4 Scope of Study

The scope of this research focuses on the development of a |iEDM technique 

for machining highly and lightly doped Si wafers. The machining process involved 

two techniques, which are the die-sinking |iEDM and the proposed heat-assisted 

|iEDM. The materials used for the die-sinking |iEDM are highly and lightly doped Si 

wafers of n-type and p-type to characterize the effect of the electrical resistivity to 

the |iEDM Si machining. The proposed heat-assisted machining covered temperature 

ranges from 30 to 250 °C to heat the Si wafers in order to be machined by the |iEDM 

by reducing its resistivity during machining. The measurement of the Si wafer 

resistivity was performed using a four-point probe method setup to analyze the 

resistivity value of Si wafers that are machined by |iEDM. The machining 

performance of Si wafers using |iEDM were analyzed and characterized based on 

MRR, TWR, surface quality and surface characterization. In addition, using 

COMSOL Multiphysics Finite Element Analysis tool, validation of MRR at various 

temperatures was performed and compared with the experimental data.
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1.5 Significance of Study

The rapid growth of micro and nano fabrication technologies has driven 

MEMS sensors and actuators to be utilized in various fields such as robotics, 

automotive, biomedical and portable electronic devices. These applications have 

successfully fabricated micro-scale measurement devices that were once an 

impossible challenge. Additionally, MEMS have provided benefits in 3D 

micromachining structures, which makes the fabrication processes of MEMS devices 

crucial. The ^EDM is among the micromachining techniques used to fabricate 

MEMS devices, which enables fast and precise 3D structure formation in the Si 

wafers. However, it is only effective on the surface of the material that is conductive. 

This research aims to enhance the functionality of the |iEDM by developing 

improved machining capabilities in a heat-assisted technique to temporarily increase 

the electrical conductivity of Si during |iEDM, without affecting the Si properties. 

Moreover, the blower fan was used to remove debris in order to generate stable 

machining rather than using vibrations, which also limits the possibility of bending 

the electrode during machining. Meanwhile, this method has salient implications in 

the machining field of micro and nanotechnology research for various applications. 

In addition, the develop machining method is expected to improve machining 

efficiency, without permanently changing the electrical and mechanical properties of 

Si.

1.6 Thesis Outline

This study focuses on the micromachining of lightly doped Si wafers using 

heat-assisted |iEDM, and the impact of temperature variations on the electrical 

conductivity of Si. This thesis consists of six chapters. Chapter 1 contains a brief 

overview of the micromachining process, as well as their applications in the MEMS 

system. This chapter also discusses the problem statement, objectives, scope and 

significance of the study.

4



Chapter 2 discusses the literature review undertaken, which includes types of 

non-traditional micromachining techniques such as ultrasonic machining, ion-beam 

machining, laser beam machining and EDM on Si wafers. The characteristics and 

fundamentals of each of the micromachining techniques are discussed in relation to 

the types, material removal process performance, and reviews of previous work on 

the machining of Si wafers. The last section discusses the contrast of the 

characteristics of these four machining techniques.

Chapter 3 presents the research methodology, as well as the workflow and 

simulation of the MRR results that have been used to validate the experimental 

results. The Si wafer micromachining experiments are divided into two categories, 

namely, a die-sinking |iEDM and heat-assisted |iEDM. A brief explanation of the 

experimental work and the measurement of the electrical resistivity of Si wafers 

using a four-point probe method are also presented in this chapter.

Chapter 4 reports the experimental works of the machining of Si wafers with 

various resistivity levels by die-sinking |iEDM that operates by means of various 

ranges of discharge energy (DE). The chapter starts with the experimental setup and 

the parameters used to evaluate the effects on the machining performance. Finally, 

the findings of this investigation, along with the analysis data, are presented and 

characterized.

Chapter 5 proposes a novel heat-assisted |iEDM that operates by means of 

temperature variation during machining. The chapter starts with measurements of the 

resistivity of Si wafers, followed by the experimental setup of the heat-assisted 

|iEDM. Next, the experimental findings and analysis data based on the machining 

performance are discussed and characterized accordingly.

Finally, the thesis concludes with Chapter 6, wherein the key results are 

recapped and some worthy directions for future work are presented, followed by a 

list of publications arising from the thesis.

5
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