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ABSTRACT

The dynamic response of a Low-Fidelity (LoFi) vehicle model exhibits a 
discrepancy when compared to a High-Fidelity (HiFi) vehicle model. HiFi model 
construction involves complex state-space equations, a high degree of freedom, and 
requires a huge quantity of early data to completely define this model. This causes a delay 
and makes the computation process less efficient. On the other hand, the LoFi model 
developed using simpler state-space equations is faster and computationally cheaper. 
However, the response accuracy of this model is lower than that of HiFi. Due to this 
competence mismatch, it constrains the ability and integration of LoFi model or HiFi 
model applications in vehicle dynamics research. In previous researches, the proposed 
surrogate model has been completely replaced any physics-based model for subsequent 
engineering applications once it has been generated. However, this model has limitation 
to perform fine tuning either on LoFi or HiFi models. The primary aim of this research 
was to formulate a surrogate-based modeling strategy by tuning LoFi model for optimizing 
the design of the passenger car suspension system. The study began with the development 
of HiFi and LoFi models in Matlab, and their performances were verified by comparing 
the results produced by MSC Adams software. The LoFi model was used to determine the 
overall relationship between the suspension system's main elements, namely spring 
stiffness (Ks) and damper rate (Cs), and the design criteria, namely Body Acceleration 
(BAcc), Dynamic Tire Load (DTL), and Suspension Workspace (SWS). Based on the 
Design Criteria Space (DCS) map and recommendations from the literature, the Design 
Objective Space (DOS) map for a passenger car suspension system was established. 
Following that, three approaches to formulating surrogate models were introduced, 
namely the Response-Based Approach (RBA), the Variable-Based Approach (VBA), and 
the Parameter-Based Approach (PBA). The VBA for the Quadratic Transformation 
Scheme (QTS) was found to be the most suitable for the proposed newly surrogate model. 
Next, the surrogate model was linked to an optimization strategy to tune the suspension 
elements. Finally, a single optimal solution was obtained using the Min-Max method. The 
optimal tuning for the suspension elements of the chosen passenger car was Ks = 12535.6 
N/m and Cs = 1416.7 Ns/m which increased the BAcc by 12.6% but at the expense of DTL 
performance by 6.4%, and keeping the SWS below the 7 mm restriction. In conclusion, 
the proposed surrogate-based modeling strategy could be a potential tool for optimizing 
the design of a passenger car suspension system.
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ABSTRAK

Gerak balas dinamik bagi model kenderaan fideliti rendah (LoFi) menunjukkan 
percanggahan jika dibandingkan dengan model kenderaan fideliti tinggi (HiFi). 
Pembinaan model HiFi melibatkan persamaan keadaan ruang yang kompleks, darjah 
kebebasan yang tinggi, dan ia memerlukan kuantiti data awal yang banyak untuk 
mentakrifkan model ini sepenuhnya. Hal ini menyebabkan kelewatan dan proses 
pengiraan menjadi kurang cekap. Sebaliknya, model LoFi yang dibangunkan 
menggunakan persamaan ruang keadaan yang lebih mudah, lebih pantas dan pengiraannya 
adalah lebih murah. Namun demikian, ketepatan gerak balas bagi model ini adalah lebih 
rendah berbanding dengan model HiFi. Disebabkan oleh ketidakpadanan kebolehan ini, ia 
mengekang keupayaan dan penyepaduan untuk aplikasi model LoFi atau model HiFi di 
dalam penyelidikan dinamik kenderaan. Dalam penyelidikan terdahulu, model surrogate 
yang dibangunkan menggantikan sepenuhnya sebarang model berasaskan fizik untuk 
aplikasi kejuruteraan sejurus setelah ia dihasilkan. Walau bagaimanapun, model ini 
mempunyai kelemahan untuk melaksanakan penalaan halus sama ada ke atas model LoFi 
atau pun HiFi. Matlamat utama penyelidikan ini adalah untuk merumuskan strategi 
pemodelan berasaskan surrogate dengan penalaan model LoFi untuk mengoptimumkan 
rekabentuk sistem gantungan kereta penumpang. Kajian bermula dengan membangunkan 
model HiFi dan LoFi dengan menggunakan Matlab dan prestasinya disahkan dengan 
membandingkan keputusan yang dihasilkan oleh perisian MSC Adams. Model LoFi telah 
digunakan untuk menentukan hubungan keseluruhan di antara elemen-elemen utama 
sistem gantungan iaitu kekakuan pegas (Ks) dan kadar redaman (Cs) dengan kriteria- 
kriteria rekabentuk iaitu Pecutan Badan (BAcc), Beban Tayar Dinamik (DTL) dan Ruang 
Kerja Suspensi (SWS). Berdasarkan peta Ruang Kriteria Rekabentuk (DCS) dan saranan- 
saranan dari literatur, peta Ruang Objektif Rekabentuk (DOS) untuk sistem gantungan 
kereta penumpang telah diwujudkan. Berikutnya, tiga pendekatan untuk merumus model 
surrogate diperkenalkan iaitu Pendekatan Berasaskan Gerak Balas (RBA), Pendekatan 
Berasaskan Pembolehubah (VBA) dan Pendekatan Berasaskan Parameter (PBA). VBA 
untuk Skim Transformasi Kuadratik (QTS) didapati paling sesuai sebagai model 
surrogate. Seterusnya, model surrogate ini dipautkan kepada strategi pengoptimuman 
untuk menala elemen-elemen suspensi. Akhir sekali, satu penyelesaian optimum 
diperolehi melalui kaedah Min-Mak. Penalaan optima untuk elemen-elemen gantungan 
kereta penumpang yang dipilih ialah Ks = 12535.6 N/m dan Cs = 1416.7 Ns/m yang dapat 
meningkatkan prestasi BAcc sebanyak 12.6%, tetapi mengorbankan prestasi DTL 
sebanyak 6.4%, dan mengekalkan SWS di bawah had 7 mm. Kesimpulannya, strategi 
pemodelan berasaskan surrogate boleh menjadi satu alat yang berpotensi untuk 
mengoptimumkan rekabentuk sistem gantungan kereta penumpang.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Passenger car is a complex system. It consists of many systems, and the 

suspension system is one of the essential systems in a car. A suspension system can 

enhance or degrade the behaviours of ride and handling and it can be divided into two 

types, i.e., passive suspension and active suspension systems. The technology of the 

active suspension system is more advanced than the passive system. However, the 

advancement has no effect on the passive suspension system, which is still found on 

the majority passenger car brands today, particularly for upper mid-range class and 

below. This is due to the feature offered by its lighter weight, lower energy 

consumption, easier maintenance, and lower price compared to active suspension or 

semi-active suspension systems. Automakers have been searching for any new 

technology that will help them remain ahead of the competition due to strong 

competition in the automotive sector. An excellent passive suspension system design 

always offers a strong alibi in promoting car sales. Therefore, this research that focuses 

on the passive suspension system design is still necessary and relevant.

The primary purpose of the suspension system is to provide a flexible mediator 

between the wheel system and the body car system. This flexible mediator system must 

be able to satisfy two basic needs, which are (i) isolating the road inputs from the body, 

and (ii) reducing the vertical wheel load variations. Spring and damper are two 

essential elements in a flexible mediator system for achieving good performance in 

ride and handling (Nunney, 2007).

The design of a complex system such as a suspension system requires a lot of 

calculations, often repeated for various combinations of the design variables. This 

makes modelling a necessity, as it allows the prediction of the system behaviour before
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it is built and tested. In this research context, modeling refers to the process of 

formulating mathematical representations of real-world suspension systems.

British Engineer Maurice Olley (1946) began to establish the behaviour of a 

suspension system by using a simple model or lumped mass model. During the last 

forty years, there have been massive improvements in computers and computations. 

Consequently, this rapid progress has led to enormous efforts to increase the 

complexity of the model so that the model resembles the actual physical system as 

close as possible. However, a complex model always requires more data and funding, 

besides consuming more time. It is common to be hindered from continuing the 

analysis until it is accurately defined to match the actual car behaviour at the early 

design cycle. When there are demands to compress the engineering timetable or 

difficulty installing the measurement instruments to the test car, modeling becomes 

more prominent in vehicle engineering.

The complex model and the simple model are also known as High-Fidelity 

(HiFi) model and Low-Fidelity (HiFi) model respectively. The advantage of the HiFi 

model is the response is more accurate than LoFi Model. On the other hand, the LoFi 

model has the advantage of being computationally faster and cheaper. The responses 

between the LoFi model and the HiFi model are incompatible with one another 

(Markine and Toropov, 2002). This incompatible response exists ‘as is’ since both 

models are correct, each has its purpose and advantage. The mismatch response 

performance proves that modeling is a challenging engineering decision process.

1.2 Problem Statement

Based on the literature review, previous researchers had only studied whether 

to use the LoFi model or HiFi model in their research. Thus, this research intends to 

formulate a generic strategy to tune the LoFi model so that the tuned-LoFi model has 

similar accuracy as the HiFi model. In other words, this tuned-LoFi model or the 

surrogate model will have the advantages of both the LoFi and the HiFi models.
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The optimization process involves gigantic iteration steps when searching for 

optimal solutions in a broad design objective space. Reliance on the HiFi model causes 

the process of searching for optimal solutions to become slower and inefficient. The 

simplicity and computationally faster features inherited by the surrogate model can 

speed up the optimizing operation of the passenger car suspension system.

1.3 Research Aim and Objectives

This research aims to formulate a surrogate-based modeling strategy for the 

design optimization of the passenger car suspension system. In order to attain this aim, 

three objectives had been underlined as follows:

(i) Developing a strategy to devise two design maps: design criteria space 

and design objective space for passenger car suspension system 

through LoFi and HiFi models.

(ii) Formulating a robust strategy to tune the LoFi model to match the 

same level of accuracy as the HiFi model. The tuned-LoFi model is 

known as a surrogate model.

(iii) Optimizing the suspension element settings through the integration of 

the surrogate model.

In brief, the details of research work to satisfy the first, second, and third 

objectives will be sequentially explained in Chapter 3, Chapter 4 and Chapter 5.

1.4 Scope of Research

The scope of this research is bounded as follows:
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(i) This research gives full attention on the ride dynamics aspect only. In

other words, the research will not consider the subjective part of ride 

segment.

(ii) The suspension system is used for passenger car application.

(iii) The suspension system is used to support the front-end corner.

(iv) The type of suspension system is passive suspension system or

McPherson suspension system.

(v) The tuning of suspension elements is focused on the spring and damper. 

In other words, the tuning involves two key suspension properties 

which are spring stiffness and damper rate.

(vi) Two types of fidelity model should be developed. The first fidelity 

model is a quarter car model with two degrees of freedom. The second 

fidelity model is a full car model with seven degrees of freedom. The 

first and the second models are defined as the LoFi and the HiFi models 

respectively.

(vii) The surrogate model is created by tuning the LoFi model to be like the 

HiFi model.

(viii) The surrogate model must be integrated to the optimization process for 

suspension system tuning.

1.5 Research Methodology

Figure 1.1 shows the research methodology for this research. Fundamentally, 

there are three primary phases in this research. In the first phase, four models of vehicle 

suspension system, namely multi-fidelity model will be formulated and analysed 

subjected to a random road input. The random road input, suspension, and damper 

models are obtained from published work. In general, these models will be constructed 

using two different architectures. The first and second architectures implement
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mathematical code in Matlab/Simulink environment and multi-body approach in MSC 

Adams respectively. The purpose of multi-body models (in MSC Adams) is mainly 

for verifying the model in mathematical code one. The vehicle models will be 

constructed in two scales, i.e., (i) quarter car scale and (ii) full car scale. Quarter car 

scale and full car scale are classified as LoFi model and HiFi model respectively. The 

design objective spaces for addressing ride dynamics are expected to be produced at 

the end of this phase. This primary phase will be discussed in more detailed in Chapter 

3.

The findings from previous phase will be used for the second phase. In order 

to increase the efficiency of the dynamic simulation, Audze-Eglais method is utilized. 

The design spaces are discretized into two, three, four, five, and ten sampling nodes. 

Furthermore, these sampling results will be validated against the twenty sampling 

nodes. Several formulations of surrogate model are going to be introduced in this 

thesis, later. Each surrogate model is designed such that it can be easily attached and 

detached from the main strategy’s framework. Statistical measurements such as R2 

(read as r-square), root mean squared error (RMSE), and maximum absolute error 

(MAE) are employed to check the quality of surrogate model. Additionally, the 

advantages and limitation of the surrogate model are addressed. Eventually, the best 

surrogate model can be identified with respect to the suspension system design. This 

secondary phase will be discussed in more detailed in Chapter 4.

In the final phase, the finding (i.e., the best surrogate model) from phase two 

is assimilated into the framework of design optimization scheme. In the beginning, the 

tuning of suspension elements is compromised using Space Transformation method 

(STM). Following that, the surrogate model is linked to a population-based 

optimization algorithm. Both methods will produce a Pareto front or set compromise 

solution. The Pareto front obtained using a population-based optimization method is 

compared to the Pareto front obtained using STM. Furthermore, one datum car is 

selected and the Pareto front is normalized against that car. Through application of 

min-max method, a single compromise solution is eventually ascertained. Finally, a 

complete strategy of surrogate-based design optimization of vehicle suspension system
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is proposed in this thesis. This tertiary phase is discussed in more detailed in Chapter 

5.

Objective 2:

Objective 1:

E. Execution of Low- and High-Fidelity 
Models ’ Simulation According to the 

Sampling Plan.

D. Sampling Plan (DoE):
Audze-Eglais Method

F. Choose Approach and 
Transformation Scheme:

i. Response-Based Approach.
ii. Variable-Based Approach.
iii. Parameter-Based Approach.

H. Key Performance Indicator:
i. MAE, RMSE, and R2 (Quantitative Inspection)

ii. TD and GDD (Qualitative Inspection)
iii. Correlation, Validation and S ensitive Analysis

J. The Best Surrogate Model

Objective 3:
K. Surrogate-based 

Design Optimization

No

Figure 1. 1 Flowchart of overall research methodology.
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1.6 Thesis Structure

This thesis is structured into six chapters. Chapter 3, Chapter 4 and Chapter 5 

are the three specific chapters explaining the study that had been conducted to achieve 

the research objectives.

Chapter 1 sets the scene for the thesis. It describes the research background, 

problem statement, research aim and objectives, scope of the project, and research 

methodology. At the end of the chapter, thesis structure is set out.

Chapter 2 provides literature review on the three main parts which determine 

the knowledge gap and competence for assisting these doctoral thesis works. Modeling 

issues in passive suspension system of passenger car is elaborated in the first part of 

the review. In the second part, numerous attempts to optimize the passive suspension 

system through various computational optimization strategies were reviewed. The last 

part of this chapter provides reviews on the surrogate modeling strategies.

Chapter 3 explains the development of two mismatch fidelity models, namely 

low- and high-fidelity models in the Matlab environment. A multi-body simulation 

approach is used to verify the model's correctness. The LoFi model is then used to 

determine the relationship between the suspension system's main elements, namely 

spring stiffness and damping ratio, and the design criteria, namely Body Acceleration 

(BAcc), Dynamic Tire Load (DTL), and Suspension Workspace (SWS). This 

relationship is clarified by the Design Criteria Space (DCS) map. The design objective 

for a passenger car suspension system is established using DCS and a few 

recommendations from the literature.

Chapter 4 proposes three formulation variations for tuning the LoFi model so 

that the tuned-LoFi model inherits two key features required for an analytical model, 

namely (i) the model is as simple as the LoFi model and (ii) the model can generate 

responses as good as the HiFi model. The variants are the Response-Based Approach 

(RBA), Variable-Based Approach (VBA), and Parameter-Based Approach (PBA). 

The tuned-LoFi model is called a surrogate model.
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Chapter 5 discusses the use of a surrogate model to optimise the design of a 

passenger car suspension system. The optimal solution candidates for suspension 

element setting are determined using a proposed method known as the Space 

Transformation Method (STM). STM performance was validated by comparing the 

results to the Genetic Algorithm, a well-known population-based method. The Min- 

Max method is used to arrive at a single compromised design solution. Finally, a 

comparison of the suspension before and after tuning is performed.

Chapter 6 concludes the work and explains how the objectives are met. 

Besides, the novelty contribution of this study to the current field of knowledge is also 

explained. This chapter also provides several recommendations as the continuation of 

the proposed formulation for future research.
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