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ABSTRACT

Surgical dexterity is an essential criterion to evaluate candidates for surgical 
competency. Many factors may affect surgical dexterity but they were not studied in 
depth in previous works. There was a lack of evidence presented using objective 
measurements to identify factors that could potentially influence surgical dexterity. 
Hence, this thesis aims to investigate the correlation between various human factors 
and the manual dexterity of surgeons, with the aid of a 3D virtual reality simulator and 
objective measurements. A custom data acquisition module was developed, namely 
“Green Target Module”, to acquire positional data of hand movements from the 
subjects when controlling a cursor in a 3D virtual reality (VR) scene. The positional 
data were recorded and extracted into seven objective parameters, which were 
endpoint accuracy, endpoint precision, motion path length, economy of movement, 
motion smoothness, motion path accuracy and motion path precision. Body posture, 
visual magnification and handedness were investigated to identify the setups that 
resulted in better performance. In addition, a questionnaire was filled by all subjects 
to collect their background information and habits, such as specialty, years of 
experience, sleeping duration, coffee intake and video games ability, in order to 
investigate how these human factors affect the surgical dexterity. A total of 34 subj ects 
from different surgical backgrounds were recruited for the experiments. All subjects 
performed better with sitting posture, lOx visual magnification and when using the 
dominant hand. No significant differences were found across groups with different 
daily sleeping hours. In terms of specialty, oral and maxillofacial surgeons recorded 
significantly longer path length and lower economy of movement, motion path 
accuracy and precision compared to ophthalmology surgeons, obstetrics and 
gynaecology surgeons, and neurosurgeons. However, they performed smoother 
motions compared to ophthalmology surgeons, obstetrics and gynaecology surgeons, 
and general surgeons. In terms of experience, surgeons with 6 to 10 years of experience 
performed shorter motion path length and better economy of movement than those 
with less than 6 years and more than 10 years of experience. Interestingly, surgeons 
who had less than 11 years of experience performed better in motion path accuracy, 
motion path precision, motion smoothness and endpoint accuracy compared to 
surgeons who had more or equal to 11 years of experience. For coffee consumption, 
surgeons with daily coffee intake of less than 1 cup performed significantly smoother 
path, higher motion path accuracy and precision compared to those who consumed 
more. Surgeons with exposure to video games recorded shorter path length and better 
economy of movements, endpoint accuracy and precision compared to those without. 
Finally, deep learning based on convolutional neural network was used to classify the 
category of factors related to human dexterity. The highest average accuracy and 
weighted Fl-score for classifying specialty, year of experience, daily sleeping hours, 
daily coffee consumption, and video game exposure were (97.29%, 94.25%), (90.04%, 
85.18%), (90.37%, 90.3%), (90.97%, 84.6%) and (92.9%, 92.65%). In conclusion, 
surgical dexterity has been investigated and classified using deep learning on a 3D 
virtual reality simulator.
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ABSTRAK

Ketangkasan pembedahan adalah kriteria penting untuk menilai calon bagi 
kecekapan pembedahan. Banyak faktor boleh mempengaruhi ketangkasan pembedahan 
tetapi tidak dikaji secara mendalam dalam kajian sebelum ini. Terdapat kekurangan bukti 
yang pemah dikemukakan menggunakan pengukuran objektif untuk mengenai pasti faktor 
yang berpotensi mempengaruhi ketangkasan pembedahan. 01 eh itu, tesis ini bertujuan 
untuk mengkaji hubungan antara pelbagai faktor manusia dan ketangkasan insani pakar 
bedah, dengan bantuan simulator realiti maya 3D dan pengukuran objektif. Modul 
perolehan data khusus telah dibina, iaitu "Modul Sasaran Hijau", untuk memperoleh data 
posisi pergerakan tangan dari subjek ketika mengawal kursor dalam pandangan realiti 
maya 3D. Data kedudukan direkod dan diekstrak kepada tujuh parameter objektif, iaitu 
kejituan titik akhir, kepersisan titik akhir, panjang laluan gerakan, ekonomi pergerakan, 
kelancaran gerakan, kejituan laluan gerakan dan kepersisan laluan gerakan. Postur badan, 
pembesaran visual dan dominasi tangan disiasat untuk mengenai pasti pengaturan yang 
berprestasi lebih baik. Sebagai tambahan, borang soal selidik diisi oleh semua subjek 
untuk mengumpul maklumat latar belakang dan tabiat mereka, seperti bidang kepakaran, 
tahun pengalaman, tempoh tidur, pengambilan kopi dan kemampuan permainan video, 
untuk menyiasat faktor manusia yang mempengaruhi ketangkasan pembedahan. Seramai 
34 subjek dari latar belakang pembedahan yang berbeza direkrut untuk eksperimen. 
Semua subjek berprestasi lebih baik dengan postur duduk, pembesaran visual lOx dan 
penggunnaan tangan dominan. Tidak terdapat perbezaan signifikan antara kumpulan 
dengan tempoh tidur harian yang berbeza. Dari segi bidang kepakaran, pakar bedah mulut 
dan rahang atas merekodkan secara signifikan laluan gerakan yang lebih panjang dan 
ekonomi pergerakan, kejituan dan kepersisan laluan gerakan yang lebih rendah berbanding 
dengan pakar bedah mata, pakar bedah obstetrik dan ginekologi, dan pakar bedah saraf. 
Walau bagaimanapun, mereka melakukan gerakan yang lebih lancar berbanding dengan 
pakar bedah oftalmologi, pakar bedah obstetrik dan ginekologi, dan pakar bedah am. Dari 
segi pengalaman, pakar bedah dengan pengalaman 6 hingga 10 tahun menghasilkan 
panjang laluan gerakan yang lebih pendek dan ekonomi pergerakan yang lebih baik 
daripada mereka yang mempunyai pengalaman kurang dari 6 tahun dan lebih dari 10 
tahun. Yang menariknya, pakar bedah yang mempunyai pengalaman kurang dari 11 tahun 
menunjukkan prestasi yang lebih baik dalam kejituan dan kepersisan laluan gerakan, 
kelancaran pergerakan dan kejituan titik akhir berbanding dengan pakar bedah yang 
mempunyai pengalaman lebih atau sama dengan 11 tahun. Bagi pengambilan kopi, pakar 
bedah dengan pengambilan kopi harian kurang dari 1 cawan menghasilkan secara 
signifikan laluan yang lebih lancar, kejituan dan kepersisan laluan gerakan yang lebih 
tinggi berbanding dengan mereka yang minum lebih banyak. Pakar bedah yang 
mempunyai pendedahan kepada permainan video mencatatkan panjang laluan yang lebih 
pendek dan ekonomi pergerakan, kejituan dan kepersisan titik akhir yang lebih baik 
berbanding dengan yang tiada. Akhimya, pembelajaran dalam berasaskan jaringan saraf 
konvolusional digunakan untuk mengklasifikasikan ketangkasan pembedahan mengikut 
kategori faktor yang dikaji. Ketepatan purata tertinggi dan skor-Fl berwajaran untuk 
mengklasifikasikan bidang pengkhususan, tahun pengalaman, tempoh tidur harian, 
penggambilan kopi harian, dan pendedahan kepada permainan video adalah (97.29%, 
94.25%), (90.04%, 85.18%), (90.37%, 90.3%), (90.97%, 84.6%) dan (92.9%, 92.65%). 
Kesimpulannya, ketangkasan pembedahan telah disiasat dan dikelaskan menggunakan 
pembelajaran dalam pada simulator realiti maya 3D.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Surgery can be defined as a work of art that necessitates the use of one’s hands 

[1], Indeed, surgeons need to possess good hand eye coordination with excellent visuo- 

spatial awareness as well as a high degree of fine motor skills in order to ensure that 

complex surgical operations are performed accurately and safely for preventing or 

reducing blood loss [2]-[5], A significant amount of surgical training and repeated 

practice are needed to improve the surgical performance and competency level of a 

surgeon [6], [7], Hence, surgical education plays an crucial role in providing highly 

efficient training and effective practice platforms to enhance the surgical skills of 

resident surgeons [8], [9],

To continue with a surgical career path, medical graduates will usually have to 

become house officers (HO). Then, he or she is led by a surgical expert via mentorship 

at a designated hospital after graduating from medical school [10], They have to grab 

opportunities to learn the craft via direct observation, and try to mimic the motions of 

an experienced mentor in the operating room (OR) and at the bedside [11], As reflected 

in the frequently quoted phrase “See One, Do One, Teach One”, there is no doubt that 

learning, practicing and teaching through mentorship are becoming an essential legacy 

for a young surgeon-to-be to inherit the necessary surgical skills [12], [13], It is not 

enough for house officers to learn surgical skills through observations as the 

executions are also crucial for mastering surgical skills by imitating the motions and 

hands-on practice for multiple times repeatedly [14],

Conventionally, house officers improve their surgical skills by practicing 

incisions, sutures, knot tying and other basic procedures on animal organs or synthetic 

models [15], Although this method could help the house officers to train and improve
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their surgical skill competencies, it still increases the risk of difficulties if there are 

unsuspected conditions in the patients encountered [16], Since animal organs or 

artificial cadavers are used for practicing in normal conditions, they do not provide the 

challenge or special circumstances that are often faced in real patients [17], [18], In 

order to mimic the unexpected situations that are rarely found from animal organs and 

artificial cadavers, virtual reality simulators have been introduced and are widely used 

to practice as well as assess the surgical skills of house officers [19]—[21].

With the growth of technology, virtual reality simulations have been in great 

demand for surgical training and assessments [22], [23], They are usually implemented 

together with robotic machines and displays to mimic responsive feedback as well as 

visualise the scenes based on the movements from handling and control [24], Besides, 

the usage of the virtual reality simulations is broadening to telemedicine with the aid 

of 5G [25], and even includes gaming [26], The implementation of virtual reality 

simulation has shifted surgeons to the laboratory to learn basic surgical skills, instead 

of taking higher risks on living patients in the operating room [27], It shows that many 

solutions including simulation have been proposed to provide more learning 

opportunities within current resource constraints [28],

There are various virtual simulators that can be used by house officers. For 

instance, the LAP Mentor high-fidelity virtual reality simulator (3D Systems, formerly 

Simbionix USA Corp, Cleveland, OH) can assess endoscopic skills [29], and knee 

arthroscopy simulator can assess the arthroscopy skills [30], [31], Several studies have 

identified the importance of virtual reality to support the surgical skills evaluation 

using objective measurements and matrices with the simulator supports [32], [33], 

Therefore, it is crucial to study the motions of dexterous surgeons in order to achieve 

an objective assessment of surgical skills using automated technology [34],

However, several arguments have arisen from the use of virtual reality 

simulations as a surgical evaluation tool. This is because results have found a lack of 

correlation between participants’ scores using the current academic factors and the 

scores from any of the surgical dexterity tests according to Jardine et al. [35], Current 

academic factors are usually cognitive attributes, that consist of structured tests of
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knowledge. However, the result from Ogunyemi et al. showed the mean of overall 

scores from 20 top-ranked candidates were significantly higher than other candidates 

[36], given that both authors are using the same LAP Mentor simulator. VR simulation 

is still recommended to evaluate visual spatial and psychomotor skills as these are 

surgical skills criteria [35], With this recommendation, Ahmmad et a t proposed the 

use of objective measurements to evaluate the surgical dexterity performance by using 

“Green Target Module” with custom hardware setup [37], [38], However, it was found 

that there is a lack of discussion about the factors affecting surgical dexterity 

performance by evaluating objective measurements.

Figure 1.1 LAP Mentor high-fidelity virtual simulator

Therefore, this study proposes further investigation into the factors that affect 

the performance of surgical skills using objective measurements. Many studies have 

shown that postures [39]—[41 ], visual magnifications [42]-[44] and handedness [45]— 

[47] of surgeons causing fatigue [48] during surgical procedures can result in the 

performance of overall surgical outcomes being affected. However, some studies were 

evaluated based on subjective surveys without objective measurements and the 

experiment settings would be a factor that affect the surgical dexterity assessment. 

Besides, it has also been found that different surgical backgrounds would affect the 

psychomotor performance of participants depending on the experimental set up. This 

is not limited to experience [49], [50] and expertise [51] [53] of the subject, but also 

includes specialty [54]—[56], sleep deprivation [57]—[59], coffee consumption [60]- 

[62], and video game exposure [63]—[66].
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The first part in this study investigated controllable settings that can help 

improve performance outcome of surgeons in a simple hand movement task. In the 

second part, further analysis was conducted to identify human factors that may affect 

a surgeon’s hand dexterity. With that, the settings and human factors that influences 

hand dexterity of surgeons can be identified. Finally, the last part of this work used the 

hand motion data obtained from the surgeons to create a deep learning model that can 

identify the background of a surgeon based on the input hand motion data. This deep- 

learning model is envisioned to be relevant in a surgical simulator where users can 

perform some tasks and the surgical training simulator would be able to gauge the 

performance level of the user as benchmarked with existing surgeons’ skill level.

1.2 Problem Statements

There are numerous studies related to the assessment of surgical skills using 

commercialised or developed simulators which are available to surgeons nowadays. 

However, there is still a lack of evidence on the use of objective measurements to 

identify settings and other human factors that could potentially affect surgical 

performance. This is due to the different experiment setups implemented and various 

surgical backgrounds of the participating subjects. Hence, different physical factors 

and human factors are required for further investigation to identify the reasons behind 

the discrepancies found in similar research. Before investigating the factors, a module 

with higher flexibility is required to enable the experiment setups to be altered. 

Additionally, the module needs task that can assess surgeons with different surgical 

backgrounds and assess their basic psychomotor skills.

A small study previously conducted by Ahmmad [67] found that some 

parameters, such as motion smoothness and end-point accuracy, were significantly 

different between the surgeon and non-surgeon groups. This showed the potential of 

using objective based measurements to identify skill level of a surgeon. This study will 

use the module, knowledge and techniques learnt from the earlier research to further 

the investigation with a larger population of surgeons and surgeons from different 

surgical backgrounds to obtain a more in-depth understanding of surgical dexterity. 

The investigation will look at the surgeons’ dexterity under different experimental
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controlled factors and human factors, and then to use their hand motion data to 

implement an artificial intelligence (Al) classification algorithm that can categorise 

recorded hand motion data into different surgical backgrounds.

1.3 Research Objectives

This research aims to first identify settings that can help improve dexterity and then 

investigate the influence of various human factors towards manual dexterity, using 

psychomotor measurements. The findings may help the surgical community to identify 

ways to improve surgical outcome. Additionally, the hand motion data would be useful 

for the development of a classification algorithm in a surgical trainer to rate a trainee’s 

skill level. Hence, this research emphasises the following objectives:

1. To determine, using objective-based measurements, the controllable settings that 

allow surgeons to perform better on a 3D virtual reality (VR) simulator.

2. To determine the influence of various human factors towards hand dexterity 

performance with a 3D virtual reality (VR) simulator.

3. To configure a convolutional neural network (CNN) model that can distinguish the 

motion data of surgeons into different human factors on a 3D virtual reality (VR) 

simulator.

1.4 Research Scope

Surgical skills are assessed from several angles. Theoretical knowledge and surgery 

procedural skills are not assessed but manual dexterity is emphasised in this study. 

However, manual dexterity can be assessed by using various types of simulators or 

hardware combinations implemented. Moreover, there are many variables found in 

controlling the experiment settings and the participants with different surgical 

backgrounds. Thus, there are some scopes are highlighted to achieve the objectives, such 

as follows.

i. The combination hardware and custom build software data acquisition module are 

used to record and assess the manual dexterity.
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ii. The controllable settings that will be investigated in this study will be posture (sitting 

versus standing), handedness (dominant versus non-dominant) and viewing 

magnifications of lx and lOx.

iii. The human factors to be studied are specialty, year of experience, sleeping hours per 

day, coffee consumption per day and video game exposure.

iv. The deep learning classification algorithm uses convolutional neural network and 

only classifies the hand motion which was obtained from the best performing 

experimental controlled settings

v. The hand motion data would be classified based on the human factor categories.

1.5 Thesis Organisation

The thesis is organised into seven chapters. Chapter 1 briefly explains the 

general background of the surgical skills assessments, problem statements, research 

objectives and research scope of this thesis. Next, Chapter 2 provides a literature 

review of the existing factors analysis such as postures, handedness and visual 

magnification, and different human factors such as specialty, year of experience, 

sleeping hour, coffee consumption and video game exposure investigated with 

different experimental setups. Following that, Chapter 3 explains the methodology of 

this study detailing the data acquisition tool development, data collection, data pre­

processing and data analysis. The study encompasses two main investigations on 

experimental controlled factors and human factors affecting dexterity, followed by a 

deep learning configuration that categorises the factors affecting surgical dexterity. 

Chapter 4 shows the results, analysis, and discussion for the experimental controlled 

factors whereas Chapter 5 presents the results, analysis, and discussion for human 

factors. Chapter 6 explains the results, analysis, and discussion about deep learning 

classification on human factors. Finally, Chapter 7 concludes with the findings and 

contributions of this study, in addition to a few recommendations for possible future 

work.
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