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ABSTRACT 

  Thin film composite reverse osmosis (TFC RO) membrane has been 

commercially used to desalinate salty water since the 1970s to produce clean water to 

address water scarcity issue in many countries. However, the commercial TFC RO 

membranes are still associated with several drawbacks including 

permeability/selectivity trade-off and scaling problem. Thin film nanocomposite 

(TFN) membrane incorporating titania nanotube (TNT) as previously reported, was 

found to offer outstanding features as the incorporation of TNT in polyamide (PA) 

layer could improve membrane pure water flux (PWF) and salt separation 

performance. However, TNT tends to have high aggregation ability and low dispersion 

in the organic solvent, which reduces its practicability for TFN membrane 

development. Therefore, this study aimed to develop a new type of TFN membrane 

incorporated with TNT functionalized using an environmentally friendly plasma-

enhanced chemical vapour deposition (PECVD) method. The surface of TNT was 

respectively functionalized with 2-hydroxyethyl methacrylate (HEMA) and methyl 

methacrylate (MMA) at different plasma deposition times (5 and 10 min). Results 

showed that the incorporation of 0.05 w/v% MMA-modified TNT (5 min) into the 

membrane outperformed the HEMA-modified TNT (5 min) with respect to PWF and 

NaCl rejection, achieving 52.5 L/m2.h (measured at 15 bar) and 97.6% (tested at 2000 

ppm NaCl feed solution at 15 bar), respectively. This is due to the even distribution of 

MMA-modified TNT throughout the PA layer which increased the membrane water 

affinity. The TFN membrane incorporated with MMA-modified TNT was further 

coated using hydrophilic acrylic acid (AA) via PECVD method as a strategy to heal 

the surface defects of the selective layer caused by TNT incorporation. The NaCl 

passage was observed to reduce from 2.43% to 1.50% (tested at 2000 ppm NaCl feed 

solution at 15 bar) without significantly altering PWF. This membrane also exhibited 

extraordinary anti-scaling performance with a higher flux recovery rate (FRR) (>85%) 

compared to the unmodified TFC membrane (74.8%), which is mainly attributed to its 

enhanced surface negative charge and improved hydrophilicity. Likewise, the 

developed AA-modified TFN membrane could effectively mitigate the silica scaling 

by achieving higher FRR (88.1%) than the unmodified membranes. In conclusion, this 

work demonstrated the potential of using PECVD method to rapidly modify not only 

the surface properties of nanomaterials but also the top PA selective layer of TFN 

membranes, overcoming the drawbacks associated with the TFC membrane and 

improving the TFN membrane for enhanced salt rejection and anti-scaling 

performance without trading-off its water permeability.     
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ABSTRAK 

Sejak tahun 1970-an, membran osmosis balikan komposit filem nipis (TFC 

RO) telah digunakan untuk penyahgaraman air masin supaya menghasilkan air yang 

bersih dan juga untuk mengatasi masalah kekurangan air yang  dialami seluruh dunia. 

Walau bagaimanapun, membran TFC RO masih mengalami beberapa kelemahan, iaitu 

masalah tahap tukar ganti antara fluks air dan penolakan garam dan juga masalah 

penskalaan. Membran nanokomposit filem nipis (TFN) dengan penambahan titania 

nanotiub (TNT) yang dilaporkan sebelum ini didapati menawarkan ciri-ciri yang baik 

disebabkan penambahan TNT dalam lapisan poliamida (PA) boleh meningkatkan fluks air 

tulen (PWF) membran dan kecekapan pemisahan garam. Walau bagaimanapun, TNT 

mempunyai kecenderungan penggumpalan yang tinggi dan penyerakan rendah dalam 

pelarut organik boleh menghadkan kegunaannya untuk pembangunan membran TFN. 

Oleh itu, tujuan kajian ini adalah untuk membangunkan membran TFN baharu dengan 

penggabungan TNT berfungsi menggunakan kaedah pemendapan wap kimia plasma 

(PECVD) yang mesra alam. Permukaan TNT masing-masing difungsikan dengan 2-

hidroksiletil metakrilat (HEMA) dan metil metakrilat (MMA) monomer pada masa 

pengendapan plasma yang berbeza (5 dan 10 minit). Keputusan menunjukkan bahawa 

penggabungan 0.05 w/v% MMA-terubahsuai TNT (5 min) ke dalam membran 

memberi kesan lebih baik HEMA-terubahsuai TNT (5 min) terhadap PWF dan 

penolakan NaCl masing-masing mencapai 52.5 L/m2.h (ukuran pada 15 bar) dan 

97.6% (diuji pada larutan NaCl 2000 ppm). Ini adalah disebabkan oleh pengagihan 

MMA-terubahsuai TNT yang seragam pada seluruh lapisan PA telah meningkatkan 

kehidrofilikan membran. TFN membran yang gabung dengan MMA-terubahsuai TNT 

telah dilapisi dengan asid akrilik (AA) yang bersifat hidrofilik melalui kaedah PECVD 

sebagai strategi untuk menyembuhkan kecacatan pada permukaan lapisan PA yang 

disebabkan oleh penambahan TNT. Pengeluaran garam NaCl dilaporkan berkurang 

dari 2.43% kepada 1.50% (diuji pada 2000 ppm NaCl dan 15 bar) tanpa menpengaruhi 

kebolehtelapan air tulen. Membran ini juga menunjukkan prestasi anti penskalaan yang 

baik dengan kadar perolehan fluks (FRR) yang lebih tinggi (> 85%) berbanding 

dengan membran TFC (74.8%). Ini disebabkan peningkatan cas negatif dan sifat 

hidrofilik. Membran TFN terubahsuai AA dapat mengatasi penskalaan silika dengan 

mencapai FRR yang lebih tinggi (88.1%) berbanding dengan membran yang tidak 

terubahsuai. Kesimpulannya, kerja penyelidikan ini menunjukkan potensi kaedah 

PECVD bukan sahaja mengubah sifat permukaan bahan nano, tetapi juga lapisan PA 

membran TFN, mengatasi kekurangan membran TFC dan memperbaiki membran 

TFN untuk meningkatkan penolakan garam dan sifat anti penskalaan tanpa 

mengorbankan kebolehtelapan air.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Research 

Population growth, climate change, urbanisation and demographic change in 

the 21st century had caused numerous challenges for supplying sufficient clean water 

to people. It is estimated about 4 billion people in the world are now affected by water 

scarcity, which is higher than the previous estimation of three billion people (Plessis, 

2018). Water scarcity has become a severe global issue even though the Earth 

comprises 75% of water. Nevertheless, it must be noted that close to 97.5% of the 

water available in the world is covered by seawater and other saline aquifers and thus 

can’t be directly accessed/used by human (Meissner and Mampane, 2005). 

Furthermore, not all of the fresh water is applicable for humans as some of them are 

contaminated due to water pollution.  

Water demand also increases following the increase in the human population. 

As economic development and industrialisation grow in the last five decades, colossal 

population growth worldwide has risen tremendously and this has led to the 

transformation of massive biodiversity and ecosystem loss. The continuous increase 

of human population also results in higher demand for shelter, food and other 

resources. According to the United Nations World Water Development Report 2019, 

about 22 countries are experiencing severe water stress level (more than 70%) as 

depicted in Figure 1.1. This situation is significant especially for the United Arab 

Emirates, Sub-Saharan Africa, Saudi Arabia and Palestine (Azoulay, 2019). In order 

to solve the water scarcity issue, strategies such as seawater desalination is applied.  

Desalination can be applied to waters with different salinity levels, such as 

estuarine water, brackish groundwater and seawater. There are two major desalination 

technologies that are available for the treatment, which are membrane-based and 
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thermal-based desalination. However, due to the high energy consumption of thermal-

based technology, membrane desalination is the cost-effective alternative way that is 

widely used for the water desalination process (World Health Organization, 2011). 

 

Figure 1.1 Global overview of countries experiencing different levels of water 

stress (Azoulay, 2019)  

Among the membrane technologies, reverse osmosis (RO) is the most widely 

used membrane for desalination in a global scale. This is due to the continuous 

improvement with concerted research in terms of membrane material, module design, 

pre-treatment process and energy recovery device. The improvement in mechanical, 

chemical and biological strength of RO membranes has also reduced its cost per unit 

volume for treated water by ten folds since 1978 (Lee, Arnot and Mattia, 2011). Such 

membranes can minimize fouling and concentration polarization to maximize 

permeate flux. 

In 1959, cellulose acetate (CA) membranes were introduced as the first 

asymmetric RO membrane by Loeb and Sourirajan. However, CA membranes 

exhibited several limitations, including low pH tolerance and temperature range, 

susceptible to microbiological attack, low water permeability and inability to 

withstand high pressure.  
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To overcome this, thin film composite (TFC) membranes were introduced by 

adding a polyamide (PA) layer on top of a microporous, polymeric based support 

membrane. TFC membranes show enhanced stability in acidic and alkaline 

environments, coupled with excellent salt rejection and adequate flux flow compared 

to the CA membrane (Lee et al., 2011).  

Despite the fact that TFC membranes offer superior salt rejection and water 

flux, high resistance to pressure compact, wider operating temperature and pH range 

as well as a higher resistivity towards biological attack, it is still susceptible to trade-

off relationship between water permeation and ion rejection (Yin and Deng, 2015) as 

well as membrane scaling (Bush et al., 2018). Scaling which occurs on membrane 

surfaces can lead to flux decline which inherently affects the quality of water produced. 

Although appropriate cleaning methods can be applied to overcome membrane 

scaling, such approach at the same time increases maintenance cost.  

One of the strategies that researchers frequently employ to alter the 

physicochemical properties of membrane is through the incorporation of inorganic 

hydrophilic nanofillers within the membrane PA selective layer (Lai et al., 2019a; 

Chong et al., 2019). However, nanofillers' aggregation could potentially cause surface 

defects due to void formation within the PA layer (Yin et al., 2012; Dong et al., 2015; 

Yang et al., 2020). Other than the addition of nanofillers, modifying the membrane 

surface properties can also be considered as an effective and potentially viable path to 

improve membrane desalination performances and scaling resistance (Saqib and 

Aljundi, 2016; Goh et al., 2019b).  

Numerous surface modifications such as surface coating, layer-by-layer (LbL) 

assembly, surface adsorption and chemical grafting have been explored by researchers 

(Kang and Cao, 2012; Asadollahi, Bastani and Musavi, 2017). However, most of these 

techniques are time-consuming and require multiple complex steps, which restricts its 

application. On the other hand, another emerging surface modification technique 

available is the plasma polymerization method. This is a chemical-free reaction 

technique which is able to form a thin film layer on any surfaces within a few seconds. 

They are advantageous compared to other surface grafting and surface coating 
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techniques as they are chemical free, be able to conduct in low heat, high precision 

and rapid. Therefore, employing plasma treatment on the surface of RO membrane is 

considered to be a promising technique to improve the surface physicochemical and 

anti-scaling properties. Plasma will generate free radicals in the plasma chamber and 

induce monomer polymerization on the RO membrane surface. Therefore, this study 

intends to develop a new type of surface-modified TFN membrane, integrated with  

functionalized nanomaterials via plasma-enhanced chemical vapor deposition 

(PECVD) to overcome the highlighted limitations. 

1.2 Problem Statements 

TFC membranes that consist of an ultrathin PA selective layer supported by a 

microporous substrate have been widely used in the desalination industry due to their 

stability in a wide range of temperature and pH (compared to cellulose-based 

membranes), high resistance towards pressure and reasonably good anti-biofouling 

properties. However, commercial TFC RO membranes still suffer a main drawback 

which is the trade-off relationship between salt rejection and permeate flux (Ong et 

al., 2016). One strategy to overcome this limitation is by incorporating hydrophilic 

nanofillers within the PA layer to improve the resultant membrane hydrophilicity and 

salt separation efficiency (Yin and Deng, 2015; Yang et al., 2020).  

Many varieties of inorganic nanofillers such as graphene oxide (GO), 

multiwalled carbon nanotubes (MWCNTs), titanium dioxide (TiO2), titania nanotube 

(TNT) and metal-organic framework (MOF) have been utilized for TFN membrane 

fabrication (Bano et al., 2015; Emadzadeh et al., 2015b; Kadhom, Hu and Deng, 2017; 

Al Mayyahi, 2018). Nevertheless, direct incorporation of hydrophilic nanofillers into 

the PA layer of TFN membranes is not preferable as it does not disperse uniformly in 

organic solutions during interfacial polymerization (IP) reaction. Poor nanofiller 

dispersion can lead to particle agglomeration, which in turn would diminish the 

membrane performance. In order to enhance its dispersion stability in non-polar 

solvents, researchers explored ways to modify the surface of titanium-based 

nanofillers with silane coupling agents such as 3-aminopropyltriethoxysilane (APTES) 
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and N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS) to improve its 

dispersion stability  (Zhang et al., 2013; Emadzadeh et al., 2015b; Amini, Rahimpour 

and Jahanshahi, 2016). However, silane coupling agents which consist of amino 

groups and 3 ethoxy groups are highly hazardous to the environment (Wang et al., 

2011). In addition, modification using silane coupling agents is time consuming as it 

typically requires 24 h to complete the surface modification (including intensive 

cleaning process) (Zhang et al., 2013; Emadzadeh et al., 2015b). In this study, the 

surface modification of TNT was carried out by depositing a thin methyl methacrylate 

(MMA) film on the outer surface of TNT via an environmentally friendly yet rapid 

PECVD method. This approach in general can complete the modification within 

seconds. It is expected that the deposition of hydrophobic MMA on the surface of TNT 

would improve the dispersion stability of TNT in the organic solvent during IP process.  

There are numerous membrane surface modification methods found in the 

literature, including surface coating, surface grafting, and plasma polymerization and 

the incorporation of nanoparticles. Previous studies have demonstrated the weakness 

of surface coating (Ni et al., 2014) and grafting that negatively affected membrane 

water flux (Wang et al., 2015b; Vatanpour, Sheydaei and Esmaeili, 2017; Liu et al., 

2019b). Surface coating is not preferable as it can deteriorate over time while surface 

grafting has poor control on the density of thin film layer formed and has potential to 

damage the membrane pore structure (Zhao and Yu, 2015). These limitations can 

adversely affect both membrane permeation rate and membrane stability over time. On 

the other hand, modification using grafting or physical adsorption methods require 

additional cross-linking steps, which may be economically undesirable (Kwon et al., 

2012a). PECVD method has shown that it can overcome the beforementioned 

limitations by altering the membrane surface in low reaction time, high versatility and 

a homogeneous deposition layer (Wang et al., 2018b). 

Although better dispersion of nanomaterials in organic solutions can be 

achieved with surface modification/functionalization, agglomeration could not be 

completely eliminated as strong van der Waals attractive force between nanoparticles 

could lead to agglomeration, especially at high loadings used (Al Aani et al., 2018; Lai 

et al., 2019a). The aggregation of nanomaterials in the PA layer may develop defects 
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(hole/voids) which inhibit salt removal rate (Emadzadeh et al., 2014; Lau et al., 2015; 

Liu et al., 2020). For instance, Emadzadeh et al. (2015a) reported that NaCl rejection 

of RO membrane was significantly attenuated from 94.05% to 85.87% upon the 

incorporation of 0.1 wt% nanofillers into the PA layer, although the flux increased. 

Ghanbari et al. (2015) discovered that the lower selectivity of TFN membranes against 

NaCl was attributed to nanomaterials' aggregation which led to the development of 

defects in the PA layer. Furthermore, hydrodynamic shear stress during filtration 

process is also cited as another reason which causes detachment of nanomaterials and 

diminishes the performance and stability of TFN membrane (Park et al., 2016; Shao 

et al., 2017). To overcome nanofillers leaching from PA layer and surface defects due 

to nanomaterials embedment, in this work, a hydrophilic acrylic acid (AA) monomer 

was deposited onto the surface of TNT-incorporated TFN membrane via PECVD to 

produce a defect-free nanocomposite membrane.  

On the other hand, silica is an abundant and ubiquitous mineral found in natural 

waters with a typical concentration between 20 and 60 mg/L (Mi and Elimelech, 2013). 

However, once the silica concentration in the solution is beyond its solubility limit 

(generally in the range of 120–150 mg/L near pH 7 at 25⁰C (Mi and Elimelech, 2013; 

Milne et al., 2014)), insoluble silica will form and adhere on the membrane surface. 

This has a significant impact towards membrane performance and its flux recovery 

rate (FRR). Currently, silica scaling control for desalination membranes relies heavily 

on scaling inhibitors such as polyacrylate and polyphosphonate-based antiscalants 

(Tong et al., 2017). However, the utilization of anti-scalants increases its operating 

cost and can also cause organic and biological fouling (Sweity et al., 2015; Turek et 

al., 2017). According to Tong et al. (2017), the scaling rate is highly dependent on the 

membrane surface charge. Negatively charged membrane surface can exhibit high 

selectivity and excellent anti-scaling properties by incorporating hydrophilic 

nanoparticles or deposition of hydrophilic polymeric based thin film.  

In this work, MMA-modified TNT was embedded within the PA selective layer 

as a solution to improve compatibility of inorganic nanomaterials within polymeric 

matrix. Even though the MMA-modified TNT is able to reduce the agglomeration 

(within the PA layer) to certain extent, the membrane surface imperfection 
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(nanovoids/holes) can still occur and cannot be completely avoided. To address this 

issue, the AA monomer was deposited on the surface of TFN membrane via PECVD 

method to heal the surface imperfection. Moreover, the AA-modified TFN membrane 

with great amount of carboxyl groups is believed to enhance the membrane scaling 

resistance. It is expected that the hydrophilic AA deposited on the membrane surface 

would possess higher surface energy barrier against silica nucleation while the 

increased silica solubility at alkaline condition (higher pH) can reduce the formation 

of silica aggregation on the membrane surface. The AA-modified TFN RO membrane 

incorporated with optimized PECVD-modified TNT is believed to improve the anti-

scaling properties and overcome the trade-off effect on salt rejection and permeate flux 

of membrane. 

1.3 Research Objectives 

Based on the problem mentioned above, this work aims to develop a new 

generation of TFN RO membrane using the PECVD method for effective desalination 

process. More specifically, the objectives of this work are: 

1. To investigate the impacts of different types of PECVD-modified TNT and the 

plasma modification time on the dispersion stability of nanomaterials in the 

organic solvent and thus its influence on the TFN membrane properties in terms 

of water flux and salt separation. 

2. To assess the efficiency of the PECVD method by depositing a hydrophilic 

polymer atop the PA layer in order to minimize surface imperfections of TFN 

membrane upon the modified TNT incorporation. 

3. To evaluate the effect of feed solution pH and concentration of the silica in the 

feed solution on the anti-scaling properties of TFC and selected PECVD-

modified TFN membranes.  
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1.4 Scope of Study 

In order to achieve the objective of the research, the following scopes are listed: 

For Objective 1: 

(a) Synthesizing TNT (with diameter ranging between 20 and 48 nm) from TiO2 

nanoparticles via hydrothermal method. 

(b) Modifying the outer surface of TNT with hydrophilic HEMA monomer and 

hydrophobic MMA monomer via PECVD method with different plasma 

duration time (5 min and 10 min). The plasma duration should be controlled at 

maximum 10 min to prevent the formation of very thick coating layer. 

(c) Studying the morphology of pristine and PECVD-modified TNT using high 

resolution transmission electron microscopy (HRTEM). 

(d) Characterizing the chemical properties of pristine and PECVD-modified TNT 

via Fourier transform infrared spectroscopy (FTIR).  

(e) Characterizing the crystallinity of TNT via X-ray diffraction spectroscopy 

(XRD).  

(f) Fabricating TFC membrane using m-phenylenediamine (MPD) (2% (wt/v)) 

and trimesoyl chloride (TMC) (0.1% (wt/v)) via IP method. 

(g) Fabricating TFN membranes by incorporating pristine and PECVD-modified 

TNT (at a fixed loading of 0.05% (wt/v)) within the PA selective layer via IP 

method. 

(h) Studying the impacts of plasma duration of PECVD-modified TNT (5 min and 

10 min) and different coating materials (HEMA and MMA monomers) on the 

properties of TFN membranes. 
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(i) Characterizing surface properties of TFC and TFN membranes using different 

analytical instruments, including field emission scanning electron microscope 

(FESEM), FTIR, atomic force microscopy (AFM), X-ray photoelectron 

spectroscope (XPS), energy dispersive X-ray (EDX), and contact angle 

measurements. 

(j) Comparing the pure water flux (PWF) and NaCl rejection of TFC and resultant 

TFN membrane incorporated with pristine and PECVD-modified TNT at 15 

bar using 2000 ppm of NaCl aqueous solution. 

 

For Objective 2: 

(a) Studying the effects of two different types of hydrophilic monomers, i.e., AA 

and HEMA, on the surface properties and filtration performance of XLE 

commercial membrane (Dow FilmTec) based on the PECVD technique. 

(b) Investigating the impact of plasma deposition time (15 s, 1 min and 5 min) on 

the surface properties of XLE commercial membrane. 

(c) Characterizing surface properties of XLE commercial membrane with and 

without PECVD modification using FTIR, FESEM, contact angle 

measurements and zeta potential analysis.  

(d) Selecting the optimum plasma duration and hydrophilic monomer from the 

surface modification of the XLE commercial membrane and apply it for self-

synthesized TFC and TFN RO membranes (from objective one). 

(e) Characterizing surface properties of PECVD-modified TFC and TFN 

membrane using different analytical instruments including FESEM, TEM, 

FTIR, AFM, zeta potential analysis, and contact angle measurements. 

(f) Evaluating PECVD-modified TFC and TFN membrane performance with 

respect to PWF and NaCl rejection (2000 ppm NaCl aqueous solution) at 

operating pressure of 15 bar. 
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For Objective 3: 

(a) Evaluating the effect of silica feed concentration (100 ppm, 168 ppm and 300 

ppm) solution on anti-scaling properties of TFC, TFN, and PECVD-modified 

TFN membranes for 720 min at 15 bar. It is important to evaluate the silica 

resistance of membranes at different silica saturation level. 

(b) Investigating the effect of silica feed pH value (pH 4, pH 6.7 and pH 10) on 

anti-scaling properties of TFC, TFN and PECVD-modified TFN membranes 

for 720 min at 15 bar. 

(c)  Evaluating the prolonged stability of unmodified and PECVD-modified TFN 

membranes in terms of anti-scaling properties for 4-cycle silica filtration 

process with each cycle lasted for 6 h at 15 bar. 

(d)  Characterizing the surface properties of scaled TFC, TFN, and PECVD-

modified TFN membranes using different analytical instruments, including 

FTIR, FESEM, EDX and UV-vis spectrophotometer analysis.  

(e) Studying the TNT leaching stability of TFN and PECVD-modified TFN 

membrane using pure water prolonged filtration test (up to 480 min). 

(f) Comparing the TNT leaching tendency of TFN and PECVD-modified TFN 

membrane using inductively coupled plasma mass spectrometer (ICP-MS) to 

determine the Ti element in feed and permeate solution. 

1.5 Significance of Study 

The present RO technology has been in operation for over half a century in 

various industrial sectors. It has exhibited exemplary performance in removing wide 

range of dissolved ions including monovalent salts. However, despite its many 

advantages, one of the limitations of PA TFC RO membrane is the trade-off effect 

between water flux and selectivity, together with membrane scaling. The incorporation 

of TNT into membrane is believed to be able to overcome such trade-off effect. 

Although the incorporation of TNT can enhance membrane water flux and salt 

rejection, weak dispersion of hydrophilic TNT in organic solvent can result in severe 

TNT agglomeration. As a result, the membrane performance would deteriorate due to 
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the formation of surface defects/holes. Therefore, in this work, the outer surface of 

TNT is functionalized with hydrophobic monomer via PECVD method to improve the 

dispersion stability within the organic solvent during IP process. PECVD method 

offers progressive platforms for rapid surface functionalization of materials while 

allowing simultaneous tuning of surface morphology. Moreover, the highly versatile 

and environmentally friendly PECVD method only utilizes plasma discharge energy 

to activate and polymerize the precursors. It eliminates the use of any hazardous 

solvents/chemicals during the modification process. On the other hand, desalination 

industries rely heavily on chemical inhibitor to minimize silica scaling of RO 

membrane and this study introduces an eco-friendly PECVD surface modification 

technique to mitigate silica scaling onto TFN membranes by improving its surface 

chemistry. The deposition of hydrophilic AA containing carboxyl functional group as 

shown in this work is found to increase the membrane surface negativity, leading to 

improved antiscaling performance by repelling similar charge of from the membrane 

surface.
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