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ABSTRACT 

 

The purpose of this research is to develop supramolecular organogel with 

liquid crystal (LC) mesophase and fluorescent properties for optical application as 

chemosensor of metal ions and colour tunable materials. The organogel was 

synthesised utilizing 1,3,5-triazine-2,4,6-tricarboxamide (TZTC12NH) as the self-

assembly organic motif. In the first part of the research, TZTC12NH was synthesized 

in three steps to give a white powder solid in 52% yield. The compound was found to 

form columnar LC properties with mesophase range of 73.0 to 185.0oC and gave 

fluorescent emission maxima at 417 and 468 nm upon excitation at 254 nm. The 

compound was then utilized for the formation of an organogel at 10 wt. % of benzene 

which gave blue emission upon exposure to a wavelength excitation of 365 nm under 

a hand-held UV lamp. This organogel showed two emission bands centered at 417 and 

468 nm with enhanced intensity when excited at 254 nm. Besides, the organogel 

shifted the columnar LC mesophase of TZTC12NH to 61.3 - 178.2oC. Polarized 

optical microscope imaging indicated that the organogel displayed a focal conic fan-

like texture for typical arrangements of discotic hexagonal columnar LC. The 

organogel was utilized as chemosensor of metal ions via fluorescent quenching which 

showed selective response toward Cu2+ and Ag+ ions over other metal ions under 

consideration. The sensitivity based on linear Stern-Volmer plot Ksv value is 1.183 × 

105 M with LOD 1.104 × 10-6 M for Cu2+ ions and Ksv 1.135 × 105 M with LOD 1.057 

× 10-6 M for Ag+ ions, respectively. Upon doping the gel with Eu3+ ions at 0.01 M, the 

blue emission of the gel turned red under hand-held UV lamp and gave a new sharp 

emission band centered at 617 nm when excited at 250 nm due to the formation of 

metallogel. In addition, when few drops of methanoic acid were added to the gel, the 

red emission of the gel turned back to blue with disappearance of the emission band at 

617 nm. Hence, this research showed the successful synthesis of new TZTC12NH as 

simple supramolecular self-assembly organic scaffold for development of organogel, 

chemosensor and colour tunable material. 
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ABSTRAK 

Tujuan penyelidikan ini ialah untuk membangunkan organogel supramolekul 

yang memiliki sifat mesofasa hablur cecair (LC) dan pendarfluor untuk aplikasi optik 

sebagai penderia kimia bagi ion logam dan bahan tala warna. Organogel itu telah 

disintesis menggunakan 1,3,5-triazina-2,4,6-trikarboksimida (TZTC12NH) sebagai 

motif organik  swahimpunan. Dalam bahagian pertama penyelidikan ini, TZTC12NH 

telah disintesis dalam tiga langkah untuk menghasilkan pepejal serbuk putih dengan 

hasil 52%. Sebatian itu didapati membentuk sifat LC berturus dengan mesofasa dalam 

julat 73.0 hingga 185.0oC dan menghasilkan pancaran pendarfluor maksima pada 417 

and 468 nm apabila diuja pada 254 nm. Seterusnya, sebatian tersebut telah digunakan 

untuk membentuk organogel dengan menggunakan benzena 10 wt. % yang 

menghasilkan pancaran biru apabila terdedah kepada pengujaan pada panjang 

gelombang 365 nm di bawah lampu UV mudah alih. Organogel ini menunjukkan dua 

jalur pancaran yang berpusat pada 417 dan 468 nm dengan peningkatan keamatan 

apabila diuja pada 254 nm. Selain itu, organogel tersebut telah menganjak mesofasa 

LC berturus TZTC12NH kepada 61.3 - 178.2oC. Pengimejan mikroskop optik 

terpolarisasi menunjukkan bahawa organogel tersebut memaparkan tekstur kon 

tertumpu seperti kipas yang merupakan susunan tipikal LC berturus heksagon diskotik. 

Organogel tersebut telah digunakan sebagai penderia kimia ion logam melalui 

pelindapan pendafluor yang menunjukkan tindak balas selektif terhadap ion Cu2+ dan 

Ag+ melebihi ion logam yang lain di bawah pertimbangan. Kepekaan masing-masing 

berdasarkan nilai Ksv plot Stern-Volmer ialah 1.183 × 105 M dengan LOD 1.014 × 10-

6 M bagi ion Cu2+ dan Ksv 1.135 × 105 M dengan LOD 1.233 × 10-6 M bagi ion Ag+. 

Apabila didopkan dengan ion Eu3+ 0.01 M, pancaran biru gel itu bertukar menjadi 

merah di bawah lampu UV mudah alih dan memberikan jalur pemancaran baharu yang 

tajam berpusat pada 617 nm apabila diuja pada 250 nm disebabkan oleh pembentukan 

metalogel. Tambahan lagi, apabila beberapa titis asid metanoik ditambah kepada gel 

tersebut, pancaran merah gel tersebut kembali semula menjadi biru dengan kehilangan 

jalur pemancaran pada 617 nm. Oleh itu, penyelidikan ini telah menunjukkan 

TZTC12NH telah berjaya disintesis sebagai perancah organik penswapasangan 

supramolekul ringkas bagi pembangunan organogel, penderia kimia dan bahan tala 

warna. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the study 

Supramolecular organic soft materials have received much attention because 

of their potential applications in diverse field such as sensors, organic light-emitting 

devices, luminescent materials, self-healing materials and gels. These materials are 

fabricated through rational design and synthesis of organic molecules as 

supramolecular building moieties. A proper design of molecular building moieties to 

tune the strength and direction of interactions between the molecules play a crucial 

role in developing functional supramolecular materials. These materials are expected 

to give intriguing properties via self-assembly by non-covalent interactions [1,2]. The 

molecules self-assemble to form different shapes, sizes and structure, depending on 

the molecular structure and the functional groups present [3]. Although a large number 

of supramolecular building moieties are available, however, many of them require 

multi-step synthesis or exhibit limited aggregation. In the past decades a little number 

of simple organic molecules were known for the construction of supramolecular 

architectures, such as benzene-1,3,5-tricarboxamide (BTA) [4], and 1,3,5-

cyclohexane-tricarboxamide (CTA) [5]. Therefore, it is crucial to rationally design and 

develop new system as supramolecular building scaffold for the construction of novel 

functional materials. Hence, due to the excellent electronic and optical properties of 

1,3,5-triazine, the development of new supramolecular organic motif from 1,3,5-

triazine would contribute immensely to the construction of diverse structures with 

tunable properties and functionalities for versatile applications. 
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1.1.1 Organogels 

Interestingly, among the supramolecular soft materials, organogels have 

gained immense attention among the researchers, due to their outstanding properties 

and broad applications such as in template materials, opto-electronic materials, 

sensing, drug and gene delivery, and cosmetics [6,7]. Generally, organogels are formed 

by self-assembly of organic molecules leading to the formation of fibrous network 

immobilising organic solvents. The non-covalent interactions among the fibres create 

the 3D network [8,9]. In most cases, hydrogen bonding, π-π stacking, van der Waals 

interactions are chiefly utilized in the construction of a suitable structure for gelation 

[10]. Despite the enormous benefit of organogels in the fabrication of functional 

materials, it has been found to have their limitations. They can be easily thermally 

deformed which limits their functions in applications at extreme conditions such as 

aerospace, marine, military technology and metrology research. Therefore, in order to 

develop high-performance organogel, it should be able to have thermal resistivity over 

extreme heat environment. Besides, organogels with fluorescent and liquid crystal 

properties are required for their sensitive response to multiple external stimuli as 

functional soft materials. 

Recently, the physical gelation of functional fluids such as liquid crystals is a 

new approach to the development of functional supramolecular organogel, which leads 

to the formation of a new class of anisotropic gels that have great potentials for 

electrical, and functional materials [11]. For these kinds of gels, the anisotropic 

transitions due to liquid crystals introduce new order and mobility into the gels which 

could enhance their physical properties [12]. Thus, considering these properties, it is 

important to rationally design and develop supramolecular organogel with liquid 

crystal properties over a wide temperature range and fluorescent properties as well as 

thermally stable in their functions. However, many reports have been focused only on 

the development of supramolecular organogel from luminescent organic 

chromophores with complicated molecular design and synthesis, without liquid crystal 

properties or with the disappearance of liquid crystal properties at a small mesophase 

range. [13,14]. Therefore, it is vital to develop supramolecular luminescent organogel 
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from a simple organic molecule having both liquid crystal mesophase over a wide 

temperature range and fluorescence properties for wider applications. 

1.1.2 Metal ions Sensing 

Environmental pollution is one of the major concerns of the scientific 

community especially transition metal ions can have adverse effects on animals and 

the environment. For example, copper is an essential mineral, however, excess copper 

can constitute a health risk. Such as gastrointestinal health problems, and in the long 

term, kidney damage. Silver also plays a significant role in different industrial fields 

such as photography imaging, soldering production, electrical and electronics, 

automobiles and as a catalyst in oxidation reactions. However, the Ag+ ions are highly 

toxic to aquatic organisms and may accumulate in the human body through the food 

chain. The high concentration of Ag+ ion can lead to a variety of adverse health effects, 

brain damage, nerve damage and immune systems [15–17]. Therefore, it is crucial to 

detect transition metals to assess health risks and for environmental monitoring [18–

20]. Transition metals accumulate in the environment gradually due to mining, 

smelting and processing of minerals, combustion of coal and oil, incineration of waste, 

production and recycling of electronics, electroplating [21,22]. 

The conventional methods to determine transition metals involve Atomic 

Absorption Spectroscopy (AAS), Inductively Coupled Plasma Emission Spectroscopy 

(ICP-ES), Inductively coupled plasma atomic emission spectrometry (ICP-AES), 

Inductively coupled plasma mass spectrometry (ICP-MS). While these techniques are 

capable of accurately detecting low levels of transition metals, they often require 

extensive sample preparation and expensive instrumentation and thus are low 

throughput [23]. Therefore, the development of other techniques which are 

inexpensive and fast is of great practical importance. Optical sensing of metal ions, 

especially using organic fluorescent materials is of immense importance to many areas 

of science, technology and ecology. This technique has certain advantages; because it 

does not require extensive sample preparation, instrumentation and it is relatively fast 

and sensitive [24]. Moreover, during the last decade, optical sensing of metal ions 
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based on conjugated aromatic macrocyclic compounds has received significant 

attention Figure 1.1 [25–27]. However, this strategy has experienced some limitations. 

Thus, it requires synthetic efforts for covalent immobilisation of the chromophore to 

the metal receptor, and due to their extended conjugation they tend to form strong π-

interactions and experiences self-quenching of fluorescence with increase in 

concentration. Furthermore, their properties are not easily tunable [28]. Interestingly, 

supramolecular self-assembly utilising non-covalent interactions represent a 

promising strategy for the development of well-controlled materials with dynamic and 

tunable properties, especially supramolecular organogel which possess rapid response 

to external stimuli, inherent reversibility owing to the non-covalent nature of the 

aggregation process. Therefore, it is essential to develop chemosensor from simple 

1,3,5-triazine derivative as organogel with fluorescent and liquid crystal properties for 

sensing metal ions utilising its alkyl amide NH units as the metal ions binding sites. 

 

Figure 1.1 Macrocyclic organic motif for sensing metal ions [27] 

 

1.1.3 Colour Tunable Materials 

Recently, interest have been focused on the development of colour tunable 

fluorescent materials for display and organic-light-emitting-diodes (OLED) 

applications [29]. Supramolecular organogels are also reported to give luminescent 

colour changes upon metals permeation and metallogel formation [30]. This system 

demonstrated colour tunable metallogel with phosphorescent properties by silver ion 
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(Ag+) permeation. Hence, considering the advantage of trivalent europium ion, with 

narrow-band luminescence with high colour purity and quantum efficiencies would be 

suitable for the development of efficient colour tunable material. These properties are 

observed not only for Eu3+ ions doped into crystalline host matrices or glasses but also 

for europium(III) complexes with organic ligands. These ligands can act as an antenna 

to absorb the excitation light and to transfer the excitation energy to the higher energy 

levels of the Eu3+ ion, from which the emitting excited levels can be populated [31]. 

Therefore, it is essential to investigate the colour tunable properties of 1,3,5-triazine 

supramolecular organogel by europium ion (Eu3+) permeation within the 3D gel 

structure. 

1.2 Problem Statement 

A large number of supramolecular building organic motif involving conjugated 

organic dye systems are available however, many of them require tedious and 

multistep synthesis or show limited aggregation properties [3]. Hence, there is need to 

synthesise a simple supramolecular organic motif with access to intermolecular 

hydrogen bonding to enhance molecular aggregation for the development of 

supramolecular functional materials. Therefore, in this study a simple supramolecular 

organic motif 1,3,5-triazine-2,4,6-tricarboxamide (TZTC12NH) was synthesised. 

Organogels are soft material that can be easily deformed by thermal stress 

which limits their functionalities. Many organogel developed base on conventional 

organic chromophore experience aggregation-caused quenching (ACQ), and reported 

without LC properties or narrow mesophase range [32]. In order to circumvent this 

limitations. This research have developed supramolecular organogel base on 1,3,5-

triazine-2,4,6-tricarboxamide with aggregation-induced emission and liquid crystal 

(AIE-LC) properties over wide temperature range. 

Although the instrumental technique can detect low levels of transition metals 

ions, they often require extensive sample preparation, expensive instrumentation and 

time consuming. In addition, the handling specialized instrument required skilled 
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personnel [23]. Therefore, the optical method is gaining attention due to high 

sensitivity, selectivity, inexpensive, ease of measurement and quick response time 

[24]. Optical chemosensor based on organic dye systems has been developed but 

requires tedious synthesis for covalent immobilization of the chromophore to the metal 

receptor. In addition the optical properties of the compound are not easily tunable 

because it involve covalent interactions [28]. Therefore, there is need to develop a 

simple supramolecular self-assembly organic system utilizing non-covalent 

interactions with tunable properties. Moreover, the utilization of gel material to sense 

metal ions is rare and unexplored. 

Colour tunable organogel material have been developed from hydrophobic 

pyrazolate complex by doping with Ag+ [30]. However, the organogel was reported 

without liquid crystal properties which limit its functionalities at certain temperature. 

It is known that luminescence properties associated with the delocalized π-electron 

system are enhanced due to orientation of molecules induced by liquid crystal ordering 

[33]. Moreover, emission signals from organic chromophores are normally associated 

with background signal interference which limits the quality of the images [34]. To 

overcome this limitations there is need to incorporate liquid crystal properties in colour 

tunable materials and also by doping with lanthanide ions because lanthanide ions are 

known to exhibit sharp emission line with brilliant colour purity and high quantum 

yield [35]. 

1.3 Research Objectives 

The objectives of the research are: 

(a) To synthesize and characterize new 1,3,5-triazine tricaboxamide (TZTC12NH) 

bearing hydrophobic alkyl side chain. 

(b) To prepare a new supramolecular organogel utilizing 1,3,5-triazine 

tricaboxamide and study the properties 
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(c) To investigate chemosensor capability of 1,3,5-triazine tricaboxamide 

organogel for sensing metal ion. 

(d) To investigate fluorescence colour tunable properties of 1,3,5-triazine 

tricaboxamide organogel by lanthanide metal ion doping. 

 

1.4 Scope of Study 

This research focused on the synthesis of 1,3,5-triazine-2,4,6-tricaboxamide 

(TZTC12NH) bearing hydrophobic alkyl side chains as a new supramolecular building 

moiety. The fluorescent and liquid crystal properties of the compound was explored. 

Moreover, the compound was utilized in the preparation of 1,3,5-triazine-2,4,6-

tricaboxamide organogel (TZTC12 organogel) and its gelation capability in various 

organic solvents was tested. In addition, the photophysical and liquid crystal properties 

of the gel was investigated. The performance of the organogel in sensing relative 

abundance biologically important transition metal ions such as Cu2+, Zn2+, Ag+, Cd2+, 

Ni2+, Co2+, Mn2+ , and Fe2+ was also examined. Furthermore, luminescence colour 

tunable properties of the organogel was evaluated by doping with lanthanide ions such 

as Eu3+ , Nd3+, Er3+ and dedoping with methanoic acid. The samples were characterized 

by Nuclear magnetic resonance spectroscopy (1H-NMR), Fourier-transform infrared 

spectroscopy (FTIR), matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS), Diffuse reflectance UV-vis spectroscopy (UV-

Visible), Fluorescence spectroscopy (FL) X-ray powder diffraction (XRD), 

Differential Scanning Calorimetry (DSC), scanning electron microscope (SEM), 

Polarizing optical microscope (POM) and Thermogravimetric analysis (TGA).  

 

Base on the following observations, in this research compound with C12 alkyl 

chain was chosen. The alkyl chains provide flexibility and van der Waals interactions 

necessary for LC formation. The shorter alkyl chain length form no LC properties or 

less ordered LC as compare to longer chain. Although the mesophase temperature 

increase with increase alkyl chain length [36]. On the other hand, it has been observed 

that trialkyl cis-1, 3, 5-cyclohexanetricarboxamides with C12 alkyl chain was able to 

form stable organogel, but when the alkyl chain was shortened below C12 the gel fail 
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to form due to poor hydrophobic interaction [37]. Moreover, the gel from carbamates 

with alkyl side chains of different lengths, gelation was possible only up to an alkyl 

side chain length of 12 carbons. Beyond 12 carbons precipitation occurs, due to the 

dominant van der Waals interaction between the alkyl chains [38]. The research outline 

is illustrated in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Research outline 

Synthesis of 1,3,5-triazine-2,4,6-tricarboxylic acid 

Synthesis of 1,3,5-triazine-2,4,6-trichloride 

 

Synthesis of 1,3,5-triazine-2,4,6-tricarboxamide 

 

Characterization 

1H-NMR, FTIR, MALDI-TOF-MS, 

XRD, FL, UV-Vis, DSC, POM 

 

Preparation of organogel  

Characterization: 

SEM, XRD, FTIR, DSC, 

POM, TGA, FL, UV-Vis 

 

Investigation of the metal 

ions sensing capability of 

the organogel 

 

 

 

 

Evaluation of the colour tunable 

properties of the organogel by 

doping with lanthanide ions 

 

 

Stage 2 

Stage 4 

Stage 3 

Stage 1 
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1.5 Significance of the Study 

The research is important as the first example of 1,3,5-triazine tricaboxamide 

bearing aliphatic alkyl side chain self-assembly soft organic motif. This finding would 

contribute immensely in the area of supramolecular chemistry. Because of the 

tendency of three amide groups to form intermolecular H-bonding interactions, 

aliphatic alkyl chain for van der Waal interactions and aromatic triazine ring for π-π 

stacking interactions that will lead to a versatile supramolecular building block for 

many applications. Besides, the formation of the novel supramolecular organogel from 

1,3,5-triazine tricaboxamide with AIE-LC properties would lead to the development 

of diverse functional materials for more extensive applications.  

 

In addition, the use of 1,3,5-triazine tricaboxamide with aggregation-induced 

emission (AIE) is more effective than without AIE characteristics, because AIE 

molecules were induced to emit by aggregate formation. Based on their mechanism of 

restriction of intramolecular rotations, which provides a stable emission for application 

as luminescent materials [39]. However, the utilization of this material without AIE 

properties require the incorporation of emissive functional group. This will lead to 

formation of extended π-conjugation, which promotes loss of excitation energy due to 

strong π-π stacking interactions. The interaction may results in self-quenching of the 

emission [40]. 

Furthermore, the utilization of this new organogel from 1,3,5-triazine 

tricaboxamide for sensing metal ions would contribute significantly to the area of 

optical chemosensor of metal ions. Due to the combination of aggregation-induced 

emission and liquid crystal (AIE-LC) properties the organogel emission will be stable 

enough to be utilized as chemosensor of metal ions with enhanced sensitivity. In view 

of the fact that, AIE and LC characteristics gives both restriction of intramolecular 

rotations and molecular order to promote stable emission which will .lead to enhanced 

sensitivity. Moreover, the study of the TZTC12 organogel for colour tunable material 

by doping with europium ion would provide new supramolecular colour tunable 

material, for display, opto-electronic and imaging applications, considering the 

advantages of trivalent europium ion having narrow-band luminescence with high 

colour purity and quantum efficiencies. 
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