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ABSTRACT 

Virtual distribution of Biocompressed Natural Gas (BioCNG) is economically 

attractive to industries which are remotely located from natural gas pipeline. However, 

this concept poses some issues concerning logistics due to scattered spatial distribution 

of palm oil mills. Addressing these aspects requires an integrated spatial planning and 

optimization to synthesise location and allocate network of BioCNG virtual 

transportation to the respective industry. This study presented the development of 

integrated spatial planning and optimization of BioCNG supply and distribution 

network through virtual pipeline to meet on-site energy demand of specific industry. 

This study also aimed to investigate the contribution of optimized BioCNG supply 

chain towards systematic energy hub among other energy alternatives. The data from 

network analysis of aeronautical reconnaissance coverage geographic information 

system were coded into generalized algebraic modelling system and advanced 

interactive multidimensional modelling system modelling to generate supply cost 

curve for multiple source of energy carrier i.e. liquefied natural gas import, natural gas 

(NG) through pipeline network, and BioCNG supply chain through virtual pipeline. 

The results show that standardised optimum compression pressures of BioCNG 

without and with biogas upgrading are 53.8 bar and 215 bar respectively. Minimum 

total cost per energy of decentralised BioCNG supply chain is 3.57 USD/GJ while that 

of centralised BioCNG supply chain is 3.64 USD/GJ. Decentralised production 

pathway was found to be more economically effective compared to centralised 

production at the study area of Johor. To achieve a 20 % greenhouse gas (GHG) 

emission reduction, energy mix with a combination of NG from natural gas grid 

extension, BioCNG production with upgrading and coal is required for the demand 

locations considered. BioCNG production with upgrading is a cost effective mitigation 

method on GHG emission reduction. The optimum energy mix not only has lower 

emission level than baseline but also reduces the total energy supply cost by 19.1 %. 
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ABSTRAK 

Pengedaran Bio-gas asli termampat (BioCNG) melalui talian paip maya 

mempunyai manfaat ekonomi terutamanya untuk industri-industri yang terletak jauh 

dari talian paip gas asli. Namun, konsep ini menimbulkan isu-isu pengedaran 

disebabkan lokasi-lokasi kilang minyak kelapa sawit yang bertaburan. Untuk 

menangani aspek-aspek ini, kaedah kolerasi antara perancangan rangkaian pengedaran 

dan pemodelan pengoptimuman perlu dibuat untuk menghasilkan keputusan lokasi 

dan menentukan peruntukan untuk rangkaian pengedaran BioCNG melalui talian paip 

maya ke industri tertentu. Kajian ini menyampaikan pembangunan kaedah kolerasi 

antara perancangan rangkaian pengedaran dan pemodelan pengoptimuman untuk 

rangkaian bekalan dan pengedaran BioCNG melalui talian paip maya untuk memenuhi 

permintaan tenaga di lokasi masing-masing untuk industri tertentu. Kajian ini juga 

bertujuan untuk menyiasat sumbangan rantaian bekalan BioCNG yang optimum 

kepada interaksi sumber-sumber tenaga yang sistematik antara jenis-jenis tenaga lain. 

Data yang diperoleh daripada analisis rangkaian dengan menggunakan sistem 

maklumat geografi liputan peninjauan aeronautika telah dikodkan kepada sistem 

pemodelan algebra umum dan sistem pemodelan multidimensi interaktif lanjutan 

untuk mendapatkan keluk-keluk kos sumber tenaga untuk pelbagai sumber tenaga 

seperti pengimportan gas asli cecair, gas asli (NG) melalui rangkaian talian paip dan 

BioCNG melalui talian paip maya. Keputusan menunjukkan bahawa tekanan 

mampatan yang seragam dan optimum untuk BioCNG tanpa dinaiktaraf ialah 53.8 bar 

dan untuk BioCNG dinaiktaraf ialah 215 bar. Kos keseluruhan terendah per tenaga 

untuk pengeluaran BioCNG tidak berpusat ialah 3.57 USD/GJ dan pengeluaran 

BioCNG berpusat ialah 3.64 USD/GJ. Pengeluaran BioCNG tidak berpusat didapati 

lebih efektif dari segi ekonomi berbanding dengan pengeluaran BioCNG berpusat 

untuk kawasan kajian di Johor. Untuk mencapai 20 % pengurangan pelepasan gas 

rumah hijau (GHG), komposisi tenaga yang optimum terdiri daripada NG melalui 

sambungan grid gas asli, BioCNG dinaiktaraf dan arang batu diperlukan untuk lokasi-

lokasi permintaan yang dipertimbangkan. BioCNG dinaiktaraf berkesan untuk 

mengurangkan pelepasan GHG dari segi kos. Komposisi tenaga yang optimum ini 

bukan sahaja mengurangkan pelepasan GHG tetapi juga mengurangkan jumlah kos 

sumber tenaga dengan 19.1 % pengurangan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

According to Ministry of Energy, Green Technology and Water (KeTTHA) 

(2017), Malaysia has guaranteed to reduce carbon emission intensity by a maximum 

of 45 % by the year 2020 with 2005 baseline. Energy consumption for industrial sector 

contributes to a significant amount for total energy usage in Malaysia. Industrial 

energy usage in Malaysia at year 2013 was estimated as 565.1 PJ, which was 

equivalent to 26.2 % of total national energy consumption (Energy Commission, 

2015). Energy Commission (2015) also stated that energy supplies such as natural gas, 

coal and oil are still widely been used for commercial energy demand and electricity 

generation in Malaysia. It is inevitable that country’s future growth will increase 

national energy demand. If usage of fossil fuels in energy mix remains as the main 

energy source, CO2 emission will continue to increase. Emission level exceeded to 

157.5 Mt by 2003 and the year afterwards. According to Energy Information 

Administration (EIA), energy demand increased at a rate of 5 % to 7.9 % annually for 

the next 20 years from 2004 onwards (EIA, 2006). If future energy demand continues 

to increase at this rate, energy security is becoming a serious issue because fossil fuel 

is a non-renewable energy and will eventually deplete. In this study, biocompressed 

natural gas (BioCNG) energy supply is proposed to mitigate the greenhouse gas 

(GHG) emission and meet the industrial energy demand simultaneously. 
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Energy is one of the most important driving force of economy and 

modernization of a country. In fact, global energy demand increases significantly that 

it is increased from 14.5 × 1010 MW in 2007 to 21.8 × 1010 MW in 2035 

(Hasanuzzaman et al., 2012). Solar panels, wind turbines, biomass energy and micro 

hydro power plants are among promising renewable energy sources in Malaysia. 

Biogas has shown promising development since 2013 due to the Feed-in Tariff 

mechanism under the enforcement of the Renewable Energy Act 2011 (Hashim and 

Ho, 2011). Biogas could be generated from palm oil mill effluent (POME), landfill 

gas, and organic waste through anaerobic digestion. 

1.1.1 From Palm Oil Mill Effluent (POME) to Biocompressed Natural Gas 

(BioCNG) 

Biogas is produced by anaerobic digestion of POME and it can be upgraded to 

higher energy density product that is biomethane. Biomethane is recognized to be a 

higher grade fuel than biogas because it is less corrosive and higher energy content 

than biogas. Biomethane can be further compressed and stored for future use. Such 

compressed biomethane is also known as BioCNG. Biomethane will eventually be 

transported to end users. BioCNG can be utilized as heat, combined heat and power 

(CHP) and transportation fuel (Mshandete and Parawira, 2009). 

As the second world largest palm oil mill exporter in the world, huge amount 

of POME generated in Malaysia. In this study, POME is proposed as a feedstock for 

BioCNG production due to the abundant supply in Malaysia and its high organic 

contents. Moreover, POME contains biodegradable constituents with a biological 

oxygen demand (BOD) to chemical oxygen demand (COD) ratio of 0.5 and this 

implies that POME can be treated easily using biological means (Metcalf, 2003). 

POME produced huge amount of biogas from its anaerobic process and it can reach to 

15 billion m3 annually (Zafar, 2015). 

Potential power generation from POME generated is 4,179,168 MWh in year 

2014 as reported by Environmental Technology Research Centre of Standard and 
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Industrial Research Institute of Malaysia (ETRC SIRIM) (2014). The excess electricity 

from undigested POME is 4,127,551.3 MWh. Currently, application of biogas is 

mainly for palm oil mills on-site energy demand or natural gas grid injection through 

feed-in-tariff (FiT) mechanism (ETRC SIRIM, 2014). The potential for transporting 

upgraded biogas for industrial usage is yet to be explored. This is due to the excess 

amount of biogas generated onsite as indicated in Table 1.1. 

Table 1.1 Sample of excess amount of biogas generation (ETRC SIRIM, 2014) 

Palm Oil Mill POME 

Capacity 

(m3/y) 

Potential 

Electricity 

Generation 

(MW) 

Electricity 

Injected to 

Grid (MW) 

Excess 

energy 

(MW) 

Excess of 

biogas 

(m3/y) 

Johor Labis 216,000 1.44 1.25 0.19 285,326 

Kilang Kelapa 

Sawit Serting 

194,000 1.30 1.10 0.20 300,343 

Transportation by trail is commonly known as a virtual pipeline and is the most 

suitable alternative for remote energy distribution. A commercialised virtual pipeline 

usually consists of three interdependent components, namely the mother station 

(compression), the transportation and the consumption station/gas district station 

(Udaeta et al., 2012). Virtual pipelines are substitute to physical pipelines that 

distribute natural gas via land or sea transport for industrial usage. The virtual natural 

gas pipeline replicates the continuous flow of a static physical natural gas pipeline, 

delivering energy where physical pipelines is immature or non-existent. Gas is 

processed and compressed at its source location, and made readily available for fuel 

replacement in industry. Biogas as fuel for transportation, has been pioneered and 

tested by Sime Darby by pressurising up to 250 bar (Nasrin et al., 2017). The 

compressed or liquefied gas can be transported to another location for use, in various 

applications ranging from fuel displacement for industrial usage, power generation and 

natural gas vehicle (NGV) fuelling. In this study, virtual pipeline of BioCNG is 

considered. 
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1.1.2 BioCNG as a Promising Energy Supply 

One believes in bioenergy as significant in meeting the sustainable 

development goals of renewable energy and climate change; the other criticizing 

bioenergy as an inefficient renewable energy in contrast to solar and wind energy (Pfau 

et al., 2017). It is estimated that by 2030 ‘modern bioenergy’ (produced by using 

biomass technologies like biorefineries, anaerobic digestion of residues, bioreactors 

for torrefaction, carbonization, or gasification, and other technologies) would reach 

the potential of being the most highly growing renewable energy source (IRENA, 

2016). 

Chandra et al. (2011) compared the performance of a constant speed internal 

combustion engine using CNG and conventional BioCNG. The findings of their 

research show that engine performances for regular CNG and conventional BioCNG 

were similar in terms of brake power output, specific gas consumption, and thermal 

efficiency. Another study carried out by Subramanian et al. (2013) also showed no 

significant difference in vehicle fuel economy and emissions of regular CNG and 

conventional BioCNG. 

Emissions from engine with bus operated on BioCNG were compared to that 

of diesel fuels. The results showed that there was substantial decrease in emissions 

from BioCNG buses (Ryan and Caulfield, 2010). Under suitable modifications vehicle 

can be operated on BioCNG and few countries in world having BioCNG fuelling 

stations. As far as global warming potential is considered BioCNG is way better than 

fossil fuels like CNG and gasoline. A case study which was carried out in Ireland 

showed that oil replacement with biomethane would directly save € 500 million out of 

€ 5.9 billion (Thamsiriroj et al., 2011). A 5.9 kW stationary diesel engine was 

converted to spark ignition engine to operate on CNG, BioCNG and biogas generated 

from Jatropha and Pongamia oil seed cakes (Chandra et al., 2011). The BioCNG 

showed similar engine performance as compared to CNG in terms of brake horse 

power and specific gas consumption.  
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By compressing the biogas reduces storage requirements, concentrates energy 

content and increases pressure level required to overcome resistance to gas flow (Singh 

et al., 2016). A case study was carried out on feasibility of filling biogas into cylinders 

in Punjab, India. The biogas generated from corporation area was 28 m3 which was 

then purified, compressed and filled into cylinders. The gas was sufficient to provide 

fuel for 85,000 people (Verma and Samanta, 2016). A project was undertaken to 

compress and store biogas generated from kitchen waste. A foot lever compressor was 

designed and biogas was compressed to 4 bars in 0.5 m3 tank (Ray et al., 2016). 

Johnathon and Ajay (2018) compared the techno-economic feasibility of four 

different pathways of upgrading biogas to value-added products. These four pathways 

are the production of 1) purified biogas for grid injection; 2) BioCNG; 3) methanol via 

thermochemical conversion; and 4) methanol via biological conversion using 

methane-oxidizing bacteria. They concluded that BioCNG had the highest net present 

value (NPV), followed by purified biogas for grid injection, biological methanol 

production, and thermochemical methanol production. Moreover, Nasrin et al. (2020) 

demonstrated that the integrating biogas and BioCNG plant in palm oil mill is a viable 

business model, technically and economically, in providing commercial and 

environmental benefits to palm oil industry and industrial users. Hence, BioCNG 

energy supply is selected to be investigated in this study. 

1.2 Problem Statement 

POME is the most potential biogas feedstock which is accounted for 99.8 % of 

total potential energy generation when compared to biogas feedstocks of cattle 

livestock and landfill in Malaysia (Gopinathan et al., 2018). This quantity represents a 

sizeable opportunity to produce new wealth creation through biogas for industrial 

usage. Following are the gaps identified in the current research on biogas for industrial 

usage. 

1. Biogas as fuel for transportation had been pioneering tested by Sime Darby 

which the biogas was pressurized up to 250 bar (Nasrin et al., 2017), however, 



 

6 

this high pressure may not be necessary for industrial demand. High 

compression pressure will lead to high compression costs while reducing 

transportation costs due to higher energy density in BioCNG cylinder. None of 

the research investigated the trade-off between compression pressure of 

BioCNG cylinder and the cost of transportation. Hence, determination of 

optimum compression pressure of BioCNG cylinder is essential to make biogas 

for industrial usage becomes economically viable. 

2. Palm oil mills are mostly located in rural areas where energy demands are low, 

any form of energy based on POME whether it is electricity or BioCNG has to 

be transported to a local town which is often over 10 km away from the palm 

oil mills (Mohtar et al., 2017). None of the research considered detail 

transportation networks involved on distribution of BioCNG cylinder. Hence, 

supply cost curve for various transportation networks such as decentralised and 

centralised system should be considered for accurate cost estimations. 

3. BioCNG cylinder can be considered as energy storage. Nevertheless, none of 

the studies examined the optimal scheduling of BioCNG to fulfil dynamic 

industrial demand. Moreover, energy supply of BioCNG cylinder can only take 

certain values with gap of energy content of one cylinder. The energy supply 

of BioCNG cylinder is different than pipeline transport of energy which can 

take any values given that the values are positive. Hence, this atypical concept 

of energy storage with BioCNG cylinder should be investigated. 

1.3 Objectives of the Study 

The main aim of this research is to develop a comprehensive and systematic 

framework for BioCNG supply chain with POME feedstock to end user of industrial 

demand. In order to achieve the ultimate goal of this research, four objectives are listed 

as follow: 
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i. To develop an operational model of BioCNG supply chain in order to 

determine optimum compression pressure of BioCNG cylinder and its 

feasibility for industrial purposes. 

ii. To develop a spatial explicit optimization model of BioCNG supply chain 

in order to optimize the network design of BioCNG distribution networks 

with the consideration of centralisation and decentralisation production. 

iii. To determine optimal energy allocation of BioCNG among other energy 

alternatives for industrial demand with environmental and cost 

consideration. 

iv. To investigate optimal scheduling of BioCNG supply chain for dynamic 

industrial demand with the consideration of BioCNG cylinder as energy 

storage. 

1.4 Scope of the Study 

A number of scopes related to studied research objectives have been identified as 

follow: 

1. Developing an optimization model related to operational aspects in order to 

determine optimum compression pressure of BioCNG cylinder and its 

feasibility for industrial purposes. This optimization model should be able to 

identify: 

i. Correlation of optimum compression pressure of BioCNG cylinder 

with transportation distance between POM and industrial demand. 

ii. Cost breakdown of BioCNG supply chain with respect to increasing 

compression pressure. 
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iii. Standardised compression pressure of BioCNG supply chain and its 

feasibility. Standardized compression pressure is defined as a single 

selected compression pressure used for all BioCNG cylinder 

distributions instead of assigning particular compression pressure for 

each distributions. 

2. Developing a spatial explicit optimization model of BioCNG supply chain in 

order to optimize the network design of BioCNG distribution networks with 

the consideration of centralisation and decentralisation production. This 

optimization model should be able to identify: 

i. Cost comparison of centralised and decentralised production of 

BioCNG supply chains. 

ii. Optimum location and capacity of centralised processing plant of 

BioCNG supply chain. 

3. Developing an optimization model to determine optimal energy allocation of 

BioCNG among other energy alternatives for industrial demand with 

environmental and cost consideration. This optimization model should be able 

to identify: 

i. Supply cost factors of each energy pathways from source locations to 

demand locations. Energy pathways considered are BioCNG supply 

chains with and without biogas upgrading, Compressed Natural Gas 

(CNG) production, Natural Gas (NG) from grid extension, Liquefied 

Natural Gas (LNG) import and coal. 

ii. Optimal energy mix of energy pathways to meet GHG emission target 

with minimum total cost of energy supply. 

4. Developing priority ranking of energy substitutions and integrated spatial 

pinch analysis to investigate progressive steps of energy substitutions to 

achieve optimal energy mix with environmental and cost considerations. These 

ranking and analysis should be able to identify: 
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i. Best energy substitution based on original energy mix of selected 

industrial demand. 

ii. Graphical representations of progressive steps of energy substitutions 

to achieve optimal energy mix. 

5. Developing a spatial analysis to compare total cost of energy pathways in 

spatial attributes with the consideration of undeveloped area with non-existent 

road networks. This analysis should be able to identify: 

i. Geographical influences of source and demand locations towards the 

cost differences among energy pathways. 

6. Developing a pinch analysis to investigate optimal scheduling of BioCNG 

supply chain for dynamic industrial demand with the consideration of BioCNG 

cylinder as energy storage. This analysis should be able to identify: 

i. BioCNG purchasing amount, inventory storage size, initial inventory, 

and outsource energy amount. 

1.5 Significance of Study 

The main contribution of this research is to produce a structural and 

comprehensive framework based on optimization modelling approach and integrated 

pinch analysis approach to evaluate the economic and environmental impacts for the 

development of a sustainable energy hub involving BioCNG energy supply. The 

specific research contributions are described as follows: 

1. An optimized BioCNG supply chain is generated with optimization in terms 

of operational and spatial aspects. These include operational production of 

BioCNG and network design of its distribution networks to optimize BioCNG 

supply chain. The developed methodologies based on real time situation can 
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be utilized by decision makers to invest in BioCNG supply chain with 

minimum cost. 

2. This research also evaluates the potential of BioCNG supply chain for 

improving current energy mix. Optimal energy allocation of BioCNG supply 

chain among other energy alternatives considered that are LNG import, CNG, 

NG from grid extension, and coal is successfully determined. The findings 

can be used as a guideline for decision makers to develop a more cost 

effective and environmental friendly energy mix. 

3. Ranking of energy substitution operations is determined to show priority 

energy substitution steps to be taken for decision makers. The priority ranking 

is especially beneficial when financial resource is limited to implement 

optimum energy mix. 

4. Optimal scheduling of BioCNG supply chain with the consideration of 

dynamic industrial energy demand is determined. Optimal scheduling of 

BioCNG supply chain provides decision makers with the theoretical values 

of BioCNG purchasing amount, inventory storage size, initial inventory, and 

outsource energy amount. 

5. All of the optimization models and analysis are generalized to provide 

flexibility for application in other locations and introducing new technologies 

or energy alternatives. It opens opportunities for the models and analysis to 

be further applied to the whole Malaysia, or even other countries. The 

generalized methodologies also provide future-proof assistance to decision 

makers for comparing BioCNG supply chain with any future energy supplies 

developed. 
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1.6 Thesis Outline 

Overall, this thesis comprises of eight chapters, a graphical presentation of the 

entire studies performed in this thesis work is shown as Figure 1.1. 

 

Figure 1.1 Thesis outline  
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