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ABSTRACT 

Robust and efficient separation of emulsified oil and water mixtures is 

practically required as it still remains a global challenge.  Existing conventional 
methods of oil-water separation using ceramic membranes still suffer some setbacks 
from membrane brittleness and fouling due to their innate inflexible ionic and covalent 
bonding and microfiltration pore size. Simultaneous superoleophobic and 

superhydrophilic surfaces are desired for various applications where emulsified oil 
separation is required. This study focused on improving the mechanical strength of the 
bare membrane (BM), addressing the prevailing fouling of membranes, and interactive 
effects of material properties and operating variables of the system. In the first stage, 

BM was successfully fabricated using phase inversion and sintering technique from 
kaolin-based ceramic material at different bore fluid flow rates (12.0-15.0 mL/min), 
kaolin content loadings (38-42 wt.%), and sintering temperatures (1300-1400 oC) and 
was examined for physicochemical properties. BM fabricated at 42 wt.% kaolin 

loading, 15 mL/min bore fluid flow rate and 1400 oC sintering temperature showed the 
best mechanical strength of 126.00 MPa, an average pore size of 3.50 µm, and pure 
water flux of 108.57 L/m2.h. The result suggested an improvement in the mechanical 
strength and that BM was within range of microfiltration application. Due to its pore 

structures, it was prone to membrane fouling for oil-water separation. In the second 
stage, BM was modified through a simple dip-coating process with poly(diallyl 
dimethylammonium chloride)-alumina-perfluorooctanoic acid (PAP) and poly(diallyl 
dimethylammonium chloride)-perfluorooctanoic acid (PP) as interfacial materials. 

The interfacial materials were prepared using sol-gel method. Effects of coating layer 
cycles on BM were examined for surface wettability.  Physicochemical properties of 
the PAP-BM and PP-BM including the surface morphologies and topologies were also 
studied. Highest average roughness, Ra of 1.042 was obtained for PAP-BM while BM 

with Ra of 0.665 showed the lowest. Oil contact angle (OCA) of PAP-BM was found 
at 155o while water contact angle (WCA) displayed time dependence mode as values 
decreased from 25o to 5o after 10 min of penetration.  The third stage involved the 
performance evaluation using statistical software Design-Expert 7.0.0 based on 

response surface methodology. Three independent parameters (feed concentration, pH, 
and pressure) were examined for interactive effects on the two dependent parameters 
(oil rejection and water flux). Prior to that, the results of the antifouling test showed 
the total fouling resistance of   ̴66% and   ̴73%, reversible fouling resistance of   ̴52% 

and   ̴26% and irreversible fouling resistance of   ̴14% and  ̴48% for PAP-BM and BM, 

respectively. The ANOVA results revealed that the optimum conditions o f the 
emulsified oily wastewater separation were obtained to be 600 ppm, 3.0 bar, and 9.0 

for feed concentration, pressure and pH, respectively. Under these conditions, 174.35 
L/m2.h of water flux and 98.63% of oil rejection were achieved experimentally. Oil 
rejection and water flux were found to be primarily affected by the feed concentration, 
pressure and pH. Hence, PAP-BM can tolerate and display intermittent 

superoleophobic and superhydrophilic surfaces, which was further evaluated based on 
its performance in a cross-flow filtration system.   
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ABSTRAK 

Pemisahan campuran minyak dan air yang cekap diperlukan secara praktikal, 

kerana ia masih menjadi satu cabaran global.  Kaedah konvensional sedia ada untuk 
rawatan air sisa berminyak menggunakan membran seramik, masih mengalami banyak 
kekurangan dari segi kerapuhan membran dan pengotoran membran berpunca dari 
ikatan ionik dan kovalen tidak stabil serta saiz liang mikropenurasan. Permukaan 

oliofobik lampau dan hidrofilik lampau secara serentak dikehendaki untuk pelbagai 
aplikasi di mana pemisahan emulsi minyak diperlukan. Kajian ini juga bertujuan untuk 
meningkatkan kekuatan mekanikal membran terdedah (BM), menangani kekotoran 
membran, dan mengkaji kesan saling tindak antara sifat bahan dan pembolehubah 

operasi sistem. Pada peringkat pertama, BM telah berjaya dihasilkan menggunakan 
penyongsangan fasa dan teknik sinteran dari bahan seramik berasaskan kaolin pada 
kadar aliran cecair jara yang berbeza (12.0-15.0 mL / min), beban kandungan kaolin 
(38-42 wt.%), dan suhu sinteran (1300-1400 oC) dan telah diperiksa untuk sifat-sifat 

fisikokimia. BM yang dihasilkan pada 42 wt.% kaolin, 15 mL / min kadar aliran cecair 
jara dan suhu sinteran 1400 oC menunjukkan kekuatan mekanikal terbaik pada 126.00 
MPa, purata saiz liang 3.50 μm, dan fluks air tulen 108.57 L/m2.h.  Keputusan kajian 
menunjukkan peningkatan pada kekuatan mekanikal dan BM berada dalam julat 

aplikasi mikropenurasan. Oleh kerana struktur liangnya, ia terdedah kepada kekotoran 
membran bagi pemisahan air minyak. Pada peringkat kedua, BM diubahsuai menerusi 
proses lapisan celup mudah bersama asid poli (dialil dimetilammonium klorida)-
alumina- perflorooktanoik) (PAP) dan poli (dialil dimetilammonium klorida)-

perflorooktanoik) (PP) sebagai antara muka bahan. Bahan antara muka disediakan 
menggunakan kaedah sol-gel. Kesan kitaran salutan ke atas BM diperiksa untuk 
kelembapan permukaan. Ciri-ciri fisikokimia PAP-BM dan PP-BM termasuk 
morfologi permukaan dan topologi juga dikaji. Purata kekasaran tertinggi, Ra 1.042 

diperoleh untuk PAP-BM manakala BM dengan Ra 0.665 menunjukkan nilai terendah. 
Sudut sentuhan minyak PAP-BM ditemui pada 155o manakala sudut sentuhan air 
memaparkan mod bersandarkan masa kerana nilai menurun daripada 25 o kepada 5o 
selepas 10 minit penembusan. Peringkat ketiga melibatkan penilaian prestasi 

menggunakan perisian statistik Design-Expert 7.0.0 berdasarkan kaedah sambutan 
permukaan. Tiga parameter tidak bersandar (kepekatan suapan, pH, dan tekanan) telah 
diperiksa untuk kesan interaktif pada kedua-dua parameter bersandar (penolakan 
minyak dan fluks minyak). Sebelum itu, keputusan ujian anti-kotoran menunjukkan 

jumlah kotoran sebanyak ~66% dan ~73%, kotoran berbalik sebanyak ~52% dan 
~26% dan kekotoran yang tidak dapat dipulihkan masing-masing sebanyak ~14% dan 
~48% untuk PAP-BM dan BM. Keputusan ANOVA menunjukkan bahawa keadaan 
optimum pemisahan air sisa berminyak diperoleh masing-masing bernilai 600 ppm, 

3.0 bar, dan 9.0 untuk kepekatan suapan, tekanan dan pH. Di bawah syarat-syarat ini, 
174.35 L/m2.h fluks minyak dan 98.63% penolakan minyak telah dicapai secara 
eksperimen. Penolakan minyak dan fluks minyak didapati terjejas terutamanya oleh 
kepekatan makanan, tekanan dan pH. Oleh itu, PAP-BM boleh mentoleransi dan 

memaparkan permukaan oliofobik super dan hidrofilik super yang berselang-seli 
berdasarkan prestasi PAP-BM dalam sistem penapisan aliran silang. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Introduction 

Oily wastewater produced by industry has become a global issue affecting 

human and aquatic lives. Predominantly, oily wastewater contains different forms of 

oils such as stable emulsified oils, unstable dispersed oils and free-floating oils (Han 

et al., 2015; Gohari et al., 2015; Lu et al., 2015; Zhu et al., 2017). In contrast with 

free-floating oils that is the spilled oils on the deep-sea, dispersed oils are arbitrarily 

distributed in water. It has a strong propensity to amalgamate and instinctively develop 

into free-floating oils. Unlike, emulsified oils are relatively stable due to the existence 

of surfactant as in the case of asphaltenes in crude oil. Emulsified oils have small 

droplet sizes, usually not more than 10 µm (Dickhout et al., 2017; Tummons et al., 

2017; Zhang et al., 2017; Zhu et al., 2017). Conventional approaches to the treatment 

and separation of oil from oily wastewater, such as coagulation, floatation, gravity 

settling, and ultrasonic separation have been found to be ineffective mainly due to low 

separation efficiency, process separation units of equipment are complex, and high 

energy cost and secondary pollution (Das et al., 2017; Hua et al., 2007a; Cheryan & 

Rajagopalan, 1998; Du et al., 2017; Rubio et al., 2002). Still, these approaches can be 

used for treating free-floating oils and dispersed oils, majority of them are not 

appropriate for treating emulsified oils for the reason that the emulsified oils have 

small droplet sizes, low bulk difference compared to H2O (150 kg/m3) and high 

stability (Han et al., 2015; Li et al., 2017; Motin et al., 2015). For example, oily 

wastewater from industries such as palm oil mill effluent (POME) is extremely 

common pollutant worldwide as it affects the environment and aquatic life. Figure 1.1 

shows the global research trends on POME. Malaysia is currently leading with about 

61% in this regard, followed by Indonesia with 12% and closely followed by Thailand 

with 8.17% (Scopus, 2 January 2021). 
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Figure 1.1 Global POME research output. Data were obtained from Scopus and 
accessed in January 2021 

 

 The effects can be attributed to the high demand for palm oil in the current 

market, globally. As shown in  Figure 1.2, the production of palm oil increased more 

than double in the last one and half decades with an average growth of 6.8% per annum 

and accounted for 31% of the global oils and fats supply chain in 2018 (Ling, 2019). 

The effluent has a higher proportion of water (95 – 96%), with 0.6 – 0.7% oil, and the 

remaining 4.5% is total solid (Ahmad et al., 2009; Azmi & Yunos, 2014; Chen & Xu, 

2013; Kamyab et al., 2018; Wang, 2006). This has generated tremendous 

concentration of biological oxygen demand (BOD), chemical oxygen demand (COD), 

oil and grease, as well as suspended solids; the level of this organic matter is due to 

the presence of unrecovered raw palm oil and its disposal to the water bodies without 

pre-treatment, posing threat to humans and the ecosystem (Ahmad et al., 2005; Ahmad 

et al., 2006; Jumadi et al., 2021).  
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Figure 1.2  Global palm oil production with dynamic supply growth. An excerpt 
from Malaysia-China business forum, 4 March 2019, Kuala Lumpur and accessed in 

December 2020 

 

However, the current strategy of using conventional biological anaerobic and 

aerobic systems, and faulty ponds treatment rely on the application of bacteria, which 

is unsafe, uneconomical, and unsustainable (Ahmad et al., 2003), as it requires highly 

proper maintenance and assessment, and high labour and operational cost. Figure 1.3 

gives insight into how rainfall patterns significantly influence BOD and SS 

concentration and how it affects quality of water. This is because water turbidity and 

TSS can be affected due to heavy rainfall during peak periods resulted in pond banks 

attrition, thereby resulting in SS suspension instead of settling at the bottom of the  

pond (Jumadi et al., 2021). The current problems and challenges would require an 

advanced separation strategy such as microfiltration and ultrafiltration techniques to 

aid and reclaim a large proportion of water lost from palm oil production (Ahmad et 

al., 2015). However, it is pertinent to protect the environment and develop systems 

that are economically viable and sustainable. 
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Figure 1.3  Raw palm oil mill effluent monitoring studies of BOD, SS and average 
monthly. 17th International symposium on solid oxide fuel cells. Digital meeting, July 
18, 2021 

 
 

 One of the strategies that have been widely employed for oil-water separation 

with a different degree of oil concentration is the membrane separation technology. It 

is due to its efficiency and high selectivity structures. More of its merits are the high 

emulsion separation efficiency, no addition of chemicals and the ease of its operation.  

Inorganic (ceramic) membranes have been taken into consideration for presenting 

more advantages in terms of excellent solvent resistance, long lifetime, high thermal 

stability and exhibiting chemical inertness in the area of MF and UF processes (Xing, 

2017). Other types of membranes from materials such as metal meshes, cotton, foams 

and nanofibers can be applied preferably as pre-treatment of oily wastewater (Du et 

al., 2017; Han et al., 2017; Li et al., 2015; Obaid et al., 2015; Wu et al., 2017; Zhang 

et al., 2015; Zhang et al., 2017; Zhu & Chen, 2017).  

Several articles have reported various strategies of oil and water separation, 

especially the use of ceramic membranes: alumina (Dong et al., 2020), αAl2O3 (Abadi 

et al.,  2011), kaolin (Hubadillah et al., 2018), sugarcane bagasse waste (Jamalludin et 

al., 2019), kaolin/fly ash (Zou et al., 2020), fly ash (Tai et al., 2019), and ball clay 

(Abd Aziz et al., 2019). Hence, a more robust, environmentally friendly and efficient 
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oil and water separation system made from reusable and durable material is proposed. 

The oil and water separation systems that can treat and provide a volume of water in 

oily wastewater, with high effectiveness in the flux rates, also address the impediment 

and challenge of fouling in membranes should have the abovementioned 

characteristics. According to the report from Scopus 2nd January 2021 (Figure1.4) over 

the last ten years (2010 -2020), the studies showed an increase in the researches related 

to oil and water separation technologies, and further studies revealed that the 

development of surface wettability remains the focus and of interest to the researchers 

as it involves the ability of a liquid to maintain contact with solid surface  (Gupta et 

al., 2017; Tuteja et al., 2007; Yong et al., 2017). Figure 1.4 reveals the country-wise 

distribution of oil-water separation researchers as obtained from Scopus. The chart 

demonstrated that the attraction in oil-water separation research is growing world 

recognition with the increase in the number of researchers across the globe. 

 

Figure 1.4  Research outlook on oil-water separation since 2010; output based on 
countries. Inset research publication on oil-water separation. Data were obtained 
from Scopus and accessed in February 2021 
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The application of ceramic membrane for oily water separation gives impetus 

to the physical structure and surface energy of membrane; in other words, it gave 

importance to the substrate with high surface roughness and suitable wettability  (Gupta 

et al., 2017). Both influence the concept of surface wettability behaviour, which 

usually expresses the ability of a material to get wetted when liquid encounters it. 

Super-wettability, such as for superhydrophilicity, has properties of water recovery 

from oily wastewater (Li et al., 2011; Xue et al., 2011; Jamaly et al., 2015), whereas, 

superoleophobicity membrane material is still quite challenging to develop as oils with 

low surface tension tend to wet and spread across the membrane surfaces, and this 

leads to foulant generation, consequentially reduces flux rates, and ultimately leading 

to a decline in the operation and the performance of membrane (Liu et al., 2014; Li et 

al., 2011; Pan et al., 2013; Tuteja et al., 2007; Zhang et al., 2011).  However, surface 

functionalization of membrane enables alteration of the membrane surface's wetting 

properties for proper oil and water separation. One of such functionalization materials 

is an inorganic material, which is the most common because of its unique capability to 

exhibit surface roughness and efficiently make membrane function for oil and water 

separation (Wang & Guo et al., 2013a,b). 

 

1.2 Problem Statement 

Ceramic materials are very central to the numerous industrial applications 

involving severe conditions due to their unique properties such as thermal stability, 

chemical resistance, high mechanical strength and low surface area per unit volume, 

high permselectivity (Dai et al., 2018; Tan et al., 2001). Studies on inorganic 

membranes showed that hollow fibre membranes from such materials are 

comparatively scarce and too expensive as compared to ceramic materials (Liu et al., 

2001; Tan et al., 2001). Hitherto, the intrinsic brittleness and fouling are the 

forestanding drawbacks of ceramic membranes importantly in the oil and water 

separation. Firstly, membrane fabricated from ceramic materials is susceptible to 

breakable and rupture during permeation process due to innate inflexible ionic and 

covalent bonding (Basu & Balani, 2011), and in addition to the inappropriate ratio of 
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ratio ceramic material to a binder and small diameter of the hollow fibre during dope 

suspension preparation and fabrication process, respectively.  This has many 

significant effects on the mechanical strength of ceramic membranes. Thus, high 

mechanical strength of ceramic membrane is very critical to membrane longevity (Xu 

et al., 2014). For the stability and high efficiency of the membrane, 100 MPa is 

preferable (Abdulhameed et al., 2017). However, most of the studies on the use of 

kaolin ceramic materials have not exceeded 100 MPa (Abdulhameed et al., 2017; 

Hubadillah et al., 2017, 2018; Mohtor et al., 2017; Nandi et al., 2008). But different 

studies suggested that varying the fabricating parameters will significantly improve 

the mechanical strength.  Parameters such as ceramic material to the binder ratio (Liu 

et al., 2001; Tan et al., 2001), bore fluid flow rate (Adam et al., 2019; Alobaidy et al., 

2017; Jamalludin et al., 2018; Makhtar et al., 2017a; Tai et al., 2021), material content 

loading (Emani et al., 2013; L.-F. Han et al., 2011; Hubadillah, Harun, et al., 2016), 

sintering temperature (Alves et al., 2016; Chihi et al., 2019b; Makhtar et al., 2017b)  

are vital to the membrane structure and performance. 

Secondly, ceramic membrane contains mineral oxides; its high surface energy 

(represents the equivalent attractive force between the liquid at the surface of a solid 

surface), makes it easily fouled by oil and other organic matter, which are quite 

challenging to remove, ruin membrane surfaces and block the membrane pores (Gao 

et al., 2016).  With such fouling, such surface hinders the smooth practical application 

of hydrophilic surface for oleophobicity. To address the challenges of the porogenic 

nature of ceramic membrane with respect to integrity with less resistance to fluid flow; 

by controlling the surface topology. Hence, this would require improving the surface 

structure and controlling the surface energy of ceramic membranes through surface 

modification of membranes’ topology.  The stimuli-responsive surface is 

accomplished by the simultaneous display of interaction between water as a polar 

phase and oil as a non-polar phase. In other words, water molecules would be able to 

penetrate the surface as a result of water-induced molecular rearrangement with the 

hydroxyl group of ceramic membrane attached to the interface. 
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 On the other hand, oil at the interface of perfluoroalkyl group of the 

nanocomposite would experience low surface energy with oleophobicity because PFO 

has the tendencies to transforming the Al2O3 surface by lowering its surface energy. 

The PDADMAC prevents agglomeration of alumina nanoparticles , and surface 

cracking of membrane surface, thereby improving the oleophobicity of the coating.  

To the best of my knowledge, superoleophobic and superhydrophilic stimuli-

response surfaces from kaolin-based ceramic membrane coated with fumed alumina 

nanocomposite have not been reported and used in the literature for the fabrication of 

hollow fiber ceramic membrane for the oil-water separation. Therefore, the current 

study aimed at creating superoleophobic and superhydrophilic hollow fiber ceramic 

membrane for the separation of synthesized oily wastewater. Firstly, the fabrication of 

the bare membrane would be carried out using spinning process and sintering 

technique from commercial kaolin as a starting material. Bare membrane fabrication 

is carried out at different bore fluid flow rate, kaolin content loading and sintering 

temperature to improve the mechanical strength of the membrane. Secondly, the 

surface modification of the bare membrane is functionalized using different 

composites such as PDADMAC-PFO (PP) and PDADMAC-Al2O3/PFO (PAP) 

prepared by the sol-gel method using a simple dip-coating technique to address the 

prevailing fouling of ceramic membrane.  The research problem is expected to solve 

by adhering to the research objectives outlined in Section 1.3. The development of 

ceramic membrane would be more rewarding and beneficial if the membrane obtained 

from the ceramic material fabrication is matched with the desired application to 

achieve excellent and efficient membrane performance. Hence, the research 

contributes to the field of knowledge and partly addresses the threats posed by oily 

wastewater to the environment. 
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1.3 Objectives of the Study 

Based on the problem statement, the main objective of this thesis is to fabricate 

a superoleophobic and superhydrophilic hollow fiber ceramic membrane-based 

nanocomposite for treatment of oily wastewater. However, the specific objectives are: 

 

(a) To correlate the effect of bore fluid flow rates, kaolin loadings, and sintering 

temperatures to achieve an improved mechanical strength hollow fiber ceramic 

membrane via extrusion and sintering techniques. 

(b) To examine the superoleophobicity and superhydrophilicity of the bare 

membrane and Al2O3 incorporation on the PDADMAC-PFO based layer by 

simple dip-coating method at different coating cycles, heat treatment and 

chemical resistance treatment. 

(c) To optimize the performance of the superoleophobic and superhydrophilic 

membranes through a cross-flow permeation with three independent 

parameters (feed concentration, pressure and pH) and two dependents 

parameters (oil rejection and water flux) using response surface methodology 

(RSM). 

1.4 Scope of the Study 

The following research activities have been selected as the scope of study to 

achieve the aforementioned specific objectives: 

 

1. To correlate the effect of bore fluid flow rates, kaolin loadings, and sintering 

temperatures to achieve high mechanical strength hollow fiber ceramic membrane 

via extrusion and sintering techniques, the characterization of kaolin powder using 

PSA, XRD and FTIR, formulation of kaolin powder (KP) dope suspensions with 

the percentage by weight of KP1: 38 wt.%, KP2: 40 wt.%, KP3: 42 wt.% and the 

viscosity tests on the kaolin dope suspension loadings were conducted. 

Subsequently, the fabrication of bare membrane precursor via orifice spinneret 

using extrusion and a phase inversion technique with an air gap at 5 cm and 
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extrusion rates of 12 mL/min at different bore fluid flowrates: 12 mL/min, 13.5 

mL/min, and 15 mL/min and the sintering process at different temperatures: 1300 

oC, 1350 oC, 1400 oC to obtain the final bare membrane were investigated. In 

addition, the morphological studies and surface properties analyses: FESEM 

analysis for the surface area and cross-sectional area and pore size distribution and 

porosity test analysis of the bare membranes were examined. The Contact angle 

test for bare membranes 1300 oC, 1350 oC and 1400 oC was also conducted. The 

physical properties such as the mechanical strength analysis using three-point 

bending test analysis of the bare membranes was carried out and the permeability 

test to check for water flux capability was also investigated. The chemical 

properties such as FTIR analysis and XRD pattern of sintered bare membranes 

were examined. 

 

2. To investigate the effect of coating cycle and Al2O3 incorporation on the 

PDADMAC-PFO based layer by simple dip-coating method, the synthesis of 

PDADMAC-Al2O3/PFO complex polymer nanocomposites and the investigation 

on the effect of surface wettability at 5 cycles of dip coating on the surface of bare 

membranes were carried out. While the morphologies and topologies were 

investigated via FESEM, SEM-EDX, and AFM analyses for membranes cross-

sectional and surface area. The modified bare membranes were investigated and 

analysed for the porosity and pore size distribution using mercury intrusion 

porosimetry and as well XRD, FTIR, and XPS. Subsequently, the wettability test 

via water and oil contact angle on the membranes was conducted. Then, the 

investigation on the effect of chemical resistance and thermal treatment on the 

coated bare membrane was examined. 

 

3. Lastly, to evaluate the performance of the superoleophobic and superhydrophilic 

kaolin-based hollow fiber membranes through a cross-flow permeation system, 

first and foremost, the preliminary evaluation on the uncoated and coated 

membranes were investigated for oil rejection and water flux. Secondly, the 

antifouling tests were performed on the membranes. Then lastly, for this objective, 

the design of experiment was performed based on a statistical software Design-

Expert 7.0.0 (Stat-Ease, 2005) with respect to the following factors and percentage 
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of oil rejection and water flux were considered as the responses: (a) concentration 

of lower (10 ppm) and upper (10000 ppm) limit, (b) operating pressure at lower (0 

bar) and upper (3.0 bar) limit, (c) pH at lower (4) and upper (10) limit, (d) ANOVA 

test, and (e) Optimization test. In addition, cost analysis for membrane materials 

and energy was estimated. 

 

1.5 Significance of the Study 

This study entails the process fabrication of superoleophobic and 

superhydrophilic hollow fiber ceramic membranes for oily wastewater treatment. One 

of the significances of this study is the use of local material that is readily available to 

produce ceramic membranes via spinning process and sintering technique. Another 

implication of this research is to overcome the limitation of conventional (biological 

and ponding) oily wastewater treatment with the use of hollow fiber ceramic 

ultrafiltration technology; water reclamation which would translate into a reduction in 

the use of chemical additives, lower operating cost and maintenance, and increase 

productivity. Outside these technical benefits, this study also promotes SDG 6 target 

6.3 (2030), thereby improving water quality by reducing environmental pollution, 

eliminating dumping and minimizing release of hazardous chemicals and materials, 

halving the proportion of untreated wastewater and substantially increasing 

recyclability and safe reusability globally. Lastly, the outcome of this study would 

contribute significantly towards knowledge-driven research and contribute to the 

environmental sustainability of current oily wastewater. 

1.6 Organization of the Thesis 

This thesis is divided into seven chapters including the preparation and 

characterization of high mechanical strength hollow fiber ceramic membranes via the 

spinning process and sintering technique at a high loading of kaolin and different 

sintering temperatures, the examination of the physicochemical characterization of 
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fabricated hollow fiber ceramic membrane, the modification of bare membrane for the 

superoleophobicity and superhydrophilicity property by dip-coating using 

PDADMAC-Al2O3 /PFO nanocomposite, and lastly, the performance evaluation of 

modified membrane using synthesized oily-wastewater through a cross-flow 

permeation system. 

Chapter 1 presents a brief background introduction on oily wastewater 

treatment using membrane technology. The statement of the problem, objectives, 

research scopes and significance of the study are highlighted.  

 

Chapter 2 explicitly provides elaborated literature reviews of the research 

topics. This includes background literature on oily wastewater, treatment technologies, 

membrane materials, fabrication techniques and application, membrane fouling and 

control, process optimization and also the research gap. 

 

Chapter 3 elaborates on the materials, techniques and working principles, 

characterization approaches and experimental step-up for the oily wastewater 

treatment.  

 

Chapter 4 formulates and describes the detailed fabrication of kaolin-based 

hollow fiber ceramic membrane via phase inversion and sintering technique. The effect 

of kaolin content loading and sintering temperatures are examined and carefully 

characterized and discussed. It also describes the physicochemical characterization of 

the fabricated membrane to include mechanical strength, porosity test, water 

permeation test, and as well as determining the functional elements and groups. 

 

 Chapter 5 prepares and intercalates alumina-based NPs for the surface 

functionalization of kaolin-based membrane. Superoleophobic membrane obtained is 

characterized by contact angle, permeability test, and porosity test. Besides, surface 

morphologies and membrane antifouling processes are also studied.  
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Chapter 6 evaluates the performance of the modified membrane through a 

cross-flow filtration system for oil rejection and water flux. The antifouling properties 

of the membranes were also investigated.  The effect of oil concentrations, the effect 

of pH and operating pressure based on the design of experiment using RSM are also 

elaborated.  

 

Chapter 7 concludes each of the chapters contained in the thesis. The 

suggestions and recommendations for future work are also provided. 
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