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ABSTRACT

An efficient nuclear core power control is essential in providing a safe and 
reliable nuclear power generation system. It is technically challenging to ensure that 
the core power output is always stable and operating within acceptable error bands. 
The core power control in TRIGA PUSPATI Reactor (RTP) M alaysia is designed 
based on the Feedback Control Algorithm (FCA), which includes the Proportional- 
Integral controller, Control Rod Selection Algorithm (CRSA), Control Rod Velocity 
Design (CRVD), and Power Change Rate Constraint (PCRC). However, the current 
setting generally produces an unsmooth transient response and a long settling time. 
The conventional CRSA suffers during transient and fine-tuning conditions due to the 
rod selection process only considers the rod position and ignores the rod worth value. 
The conventional PCRC has a constant gain, incapable o f providing a sufficient 
amount o f penalty and sensitivity effects on control rod velocity under all operating 
conditions. Thus, a new strategy for each component in the FCA is investigated to 
further improve overall core power tracking performance. To address the current 
CRSA problems, a novel CRSA called Single Control Absorbing Rod (SCAR) is 
designed based on the rod worth value and operational condition-based activation. The 
SCAR is not only reducing the complexity o f the CRSA process but also reduces the 
time required for rod selection. In addition, a new saturation model and velocity value 
are studied for CRVD. On top o f that, a fuzzy-based PCRC is proposed to produce a 
fast-tracking power response. Finally, a hybrid controller based on the integration of 
Model Predictive Control and Proportional controller is developed to exploit the 
benefits o f both controllers via a switching control mechanism. In the present study, 
the RTP model is derived based on equations o f neutronic, thermal-hydraulic, 
reactivity, and dynamic rod position. Both analytical and system identification models 
are considered. In the proposed design strategy, all o f the safety design requirements 
based on the Final Safety Analysis Report are taken into account, ensuring that the 
outcome o f the study is practical and reliable. The proposed strategy is designed via 
simulation with MATLAB Simulink and experimentation with actual hardware at the 
RTP. A stability analysis based on Lyapunov is derived to numerically guarantee the 
stability o f the new power controller. An extensive comparison to the existing FCA is 
presented to demonstrate the compatibility and effectiveness o f the proposed strategies 
in nuclear reactor environments. Overall, the results show that the response from 
hybrid Model Predictive Control-Proportional (MPC-P) offers better results than the 
FCA, in which reduces the rise time by up to 73 %, the settling time by up to 70 %, 
and the workload by up to 42 %. The hybrid MPC-P with multiple-component 
constraints is able to solve the unsmooth transient response and a long settling time 
tracking performance at the RTP and offers improvements in terms o f fuel economic 
aspect in the long run and extending the lifetime o f the plant operation.
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ABSTRAK

Kawalan kuasa nuklear yang cekap sangat penting dalam menyediakan sistem 
penjanaan tenaga nuklear yang selamat dan boleh dipercayai. Secara teknikalnya, ia 
sangat mencabar untuk memastikan bahawa output kuasa teras sentiasa stabil dan 
beroperasi dalam jalur ralat yang boleh diterima. Kawalan kuasa teras di Reaktor 
TRIGA PUSPATI (RTP) Malaysia direka berdasarkan Algoritma Kawalan M aklum 
Balas (FCA), yang merangkumi pengawal Proportional-Integral, algoritma pemilihan 
rod kawalan (CRSA), reka bentuk kelajuan rod kawalan (CRVD), dan kekangan kadar 
perubahan kuasa (PCRC). Namun, secara umum, pengaturan semasa menghasilkan 
tindak balas sementara yang tindak lancar dan masa penyelesaian yang lama. CRSA 
konvensional terkesan semasa dalam keadaan sementara dan penalaan halus kerana 
proses pemilihan rod hanya mempertimbangkan kedudukan rod dan mengabaikan nilai 
rod bernilai. PCRC konvensional mempunyai pemalar tetap, tidak dapat memberikan 
kesan penalti dengan kepekaan yang mencukupi pada halaju rod kawalan dalam semua 
keadaan operasi. Oleh itu, strategi baru untuk setiap komponen dalam FCA dikaji 
untuk meningkatkan pengesanan kuasa teras secara keseluruhan. Untuk mengatasi 
masalah CRSA semasa, sebuah CRSA novel yang disebut Single Control Absorbing 
R od  (SCAR) dirancang berdasarkan nilai rod bernilai dan pengaktifan berdasarkan 
keadaan operasi. SCAR bukan sahaja mengurangkan kerumitan proses CRSA tetapi 
juga mengurangkan masa yang diperlukan untuk pemilihan rod. Di samping itu, model 
ketepuan baru dan nilai halaju dikaji untuk CRVD. Di samping itu, PCRC berasaskan 
fuzzy  dicadangkan untuk menghasilkan tindak balas kuasa yang cepat. Akhirnya, 
pengawal hibrid berdasarkan integrasi M odel Predictive Control dan pengawal 
Proportional dikembangkan untuk memanfaatkan kedua-dua pengawal melalui 
mekanisme kawalan pensuisan. Dalam kajian ini, model RTP dihasilkan berdasarkan 
persamaan neutronik, termal-hidraulik, kereaktifan, dan kedudukan rod dinamik. 
Kedua-dua model analisis dan pengenalan sistem dipertimbangkan. Dalam strategi 
reka bentuk yang dicadangkan, semua keperluan reka bentuk keselamatan berdasarkan 
Laporan Analisis Keselamatan Akhir dipertimbangkan, bagi memastikan hasil kajian 
adalah praktikal dan dapat dipercayai. Strategi yang dicadangkan dirancang melalui 
simulasi dengan MATLAB Simulink dan eksperimen dengan perkakasan sebenar di 
RTP. Analisis kestabilan berdasarkan Lyapunov dibuat untuk menjamin secara 
berangka kestabilan pengawalan kuasa baru. Perbandingan secara meluas dengan FCA 
yang sedia ada dibentangkan untuk menunjukan keserasian dan keberkesanan strategi 
yang dicadangkan dalam persekitaran reaktor nuklear. Secara keseluruhan, keputusan 
menunjukkan bahawa tindak balas daripada M odel Predictive Control-Proportional 
(MPC-P) hibrid menawarkan hasil yang lebih baik daripada FCA, yang mana 
mengurangkan masa naik sehingga 73 %, masa penyelesaian sehingga 70 %, dan 
beban kerja sehingga 42 %. MPC-P hibrid dengan kekangan berbilang komponen 
mampu menyelesaikan tindak balas sementara yang tidak lancar dan prestasi 
penjejakan masa penyelesaian yang lama di RTP dan dipertingkatkan dari segi aspek 
ekonomi bahan api dalam jangka panjang serta memanjangkan hayat operasi loji.
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CHAPTER 1

INTRODUCTION

I.1 Introduction

A nuclear reactor is designed to maintain the chain reaction generated by the 

fission process. There are many types o f nuclear reactors with different purposes that 

exist in the world. The application o f a nuclear reactor can be separated into two; 

nuclear power reactor and nuclear research reactor. The power reactor is used to 

generate electricity by using the steam turbine, and usually, it can be found in nuclear 

power plants. Meanwhile, the research reactor generates neutrons for various research 

purposes such as medical, material study, and industrial applications.

According to Research Reactor Database from International Atomic Energy 

Agency (IAEA), in 2021 [1], about 223 research reactors are in operation worldwide. 

O f the total number, only 17 are the Training, Research, Isotopes, General Atomics 

(TRIGA) type o f reactor that are still in operation, with three are under 

decommissioning and 13 have been decommissioned. According to General Atomics 

(GA) [2], the manufacturer o f the TRIGA reactor, initially, 66 TRIGA reactors have 

been installed at universities, government and industrial laboratories, and medical 

centers in 24 countries. The TRIGA reactors are utilised in a w ide range of 

applications, including the production o f radioisotopes for medicine and industry, 

tumour therapy, non-destructive testing, fundamental research on matter properties, 

and education and training [3]. There are three types o f TRIGA reactors; Mark I, Mark

II, and M ark III. The Mark I is the underground reactor equipped with multiple 

facilities for irradiation. The configuration o f TRIGA Mark II is identical to M ark I, 

except the core is located at the surface o f the reactor hall. TRIGA M ark III is designed 

with a mobile reactor core for experimental purposes [4].
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According to the Institute o f Engineering and Technology [5], nuclear plants 

use uranium fuel to produce energy through the fission process. The TRIGA reactor 

uses 19.9% enrichment o f fuel element [6]. This process w ill split a large nucleus 

(uranium atoms) into two smaller ones and produce heat energy in the reactor core. 

The control rods made with neutron-absorbing material such as cadmium or boron are 

used in nuclear reactors to control the fission or the reactivity insertion rate [4], [7]. 

The neutron power will decrease when the control rods are inserted into the core due 

to the decrease in the number o f neutrons produced by the fission process. On the other 

hand, the power generation w ill increase when the rods are withdrawn from the core. 

The neutron power production o f the reactor is proportional to the fission chamber or 

neutron detector signal at a constant configuration. The full power reactor 

configuration can be described through the temperature distribution in the reactor core, 

known as thermal power. The generation o f thermal power or core power is varied 

based on the movement o f the control rods and can be regulated by the core power 

control system.

The automatic core power control is a part o f the Instrumentation and Control 

(I&C) system which is designed to provide automatic control o f the control rods in 

response to power level change pre-set by the operator and to maintain any pre-set 

power level. The system is responsible for responding to any failures or anomalies to 

ensure efficient and safe power production [8]. To control the movement o f the rods, 

the TRIGA core power control uses either an old analogue tachometer feedback system 

or a digital Proportional-Integrated-Derivative (PID) controller. The TRIGA 

PUSPATI Reactor (RTP), TRIGA Mark II is the only research reactor available in 

Malaysia which uses a digital Feedback Control Algorithm (FCA) with Proportional- 

Integrated (PI) controller for its core power control system. At present, the tracking 

performance o f the power control system at the RTP is deemed unsatisfactory due to 

slow tracking, unsmooth transient response, and a long settling time. As a result, 

continuous improvement is still required for developing a stable and safe core power 

control system.
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1.2 Significance of Study

The present study investigates a multi-pronged core power control strategy to 

handle several design constraints simultaneously, including minimizing the settling 

time and overshoot, chattering error, maximizing the control rod velocity, and 

determining the appropriate value o f power change rate constraint to control the reactor 

core power effectively.

The developed power control system is highly practical and expected to bring 

many benefits to the RTP, such as reducing the operational costs, improving 

efficiency, increasing operation speed by reducing settling time, improving product 

quality o f irradiation samples and radioisotope production by enhancing tracking 

response, minimizing the chattering error and improving safety. Besides, by 

optimizing the energy released from the core, fuel economy is improved in the long 

run by extending the lifetime o f the plant operation. M ost importantly, the developed 

solution in this work can benefit research and power reactor o f any capacity or design.

This study's contribution o f knowledge can benefit both research reactors and 

power reactors with the large number o f the plant still in operation status. In 2021, 

nuclear power plants still in operation are 444 for energy demand, and 51 are under 

construction with a total o f 495 units. The economic growth o f the country relies 

heavily on the energy sector. The demand from sectors such as medical, industry, 

research institutes, and universities requiring products and services from nuclear 

research reactors are about 223 still in operations, 11 are under construction, and 16 

are planned with a total o f 250 units.

Furthermore, it is envisaged that the developed control strategies w ill serve as 

a foundation for the future development o f a robust power control system that can be 

used in a variety o f complex environments.
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1.3 Problem Statement

The efficient and safe operation o f a nuclear reactor relies heavily on a reliable 

and robust power controller. The ideal controller should be capable o f efficiently 

managing the nuclear core power output, which is time-varying and highly sensitive 

to load changes. Most importantly, the International Atomic Energy Agency (IAEA) 

requires this controller basic design to fulfil fundamental safety functions for nuclear 

reactors; to control reactivity using control rods and to allow power level increase in a 

safe manner. However, there are no firm international best operational practises or 

recommendations to control nuclear reactors in safe operation, and it is necessary to 

sacrifice its tracking control performance or higher operating costs in terms of 

economy. Besides that, it is technically challenging to operate a nuclear reactor within 

tight multiple parameter constraints while maintaining stable power output. Thus, an 

investigation study to improve the effectiveness o f nuclear reactor control without 

compromising system security and reliability is required. To date, reactor power 

control at TRIGA PUSPATI Reactor (RTP) using Feedback Control Algorithm (FCA) 

has a 2% of full power chattering error with relatively three-minute settling time when 

the reactor power is increased over a w ide range. The conventional control rod 

selection algorithm (cCRSA) based on the balancing position o f control rod method 

suffers during fine-tuning in a steady-state to regulate reactor power due to different 

control rod worth values for each control rod at RTP. Besides chattering error and 

longer settling time, the performance o f reactor power control at RTP has a non­

smooth control surface due to strong negative temperature feedback from the reactor 

core. This tracking power control performance scenario w ill have a significant impact 

on the product quality o f irradiation samples and radioisotope production for the 

TRIGA reactor. Furthermore, the complex interrelationship between multiple 

components in the FCA with different control rod selection algorithms (CRSA), types 

o f saturation model and control rod velocity in the CRVD, penalizing value on the 

control rod velocity signal in the PCRC, and types o f the controller has not yet been 

systematically studied in the context o f the TRIGA reactor, hence hindering further 

optimization o f the core power control system. The prediction ability and handling 

constraints provided by the MPC are still useful to be implemented in a nuclear reactor. 

However, the MPC relies heavily on an accurate plant model to ensure good 

performance and stability. To date, the main challenge o f linear MPC in core power
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control has been to solve the global control issues for nonlinear nuclear plants over 

larger ranges or under transient load change working conditions without increasing the 

computational burden on the MPC. The combination o f two or more controllers can 

overcome the limitation imposed by a single linear MPC, but it w ill increase design 

complexity. Thus, rather than combining controllers, integration o f controllers to 

perform hybrid control is preferable. In this study, a new hybrid core power controller 

based on the integration o f MPC and Proportional (P) controller is studied with multi - 

component constraints in order to enhance the current power control performance and 

address the aforementioned issues.

1.4 Objectives

The obj ectives o f the research are :

(a) To formulate a new control rod selection algorithm (CRSA) for the RTP that 

can significantly offer a fast response with less complexity compared to the 

existing CRSA;

(b) To formulate a new model o f power change rate constraint (PCRC) for the RTP 

that can optimize the power tracking performance using fuzzy logic;

(c) To design a new hybrid controller based on the integration o f Model Predictive 

Control (MPC) and Proportional (P) controllers for the RTP that can provide 

better performance in terms o f settling time and control effort;

(d) To validate new formulations o f CRSA, PCRC, and MPC-P controller in an 

RTP reactor environment.
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1.5 Research Scopes

(a) The system is represented by the RTP at Malaysian Nuclear Agency (MNA).

(b) The modelling o f the RTP in a wide-range power level from a low power which 

is 10% of Full Power (FP) to a nominal power operation o f 75% FP. This is 

due to the limitation o f the neutron measurement system (NMS) and detector 

output characteristics. The plant modelling for RTP covers neutonics, thermal - 

hydraulic, reactivity equations, and the control rod drive actuator model. The 

simulation result for the output plant modelling, such as core power and 

velocity o f the control rod, does not include white noise signal. The noise 

measurement only covers the actual output plant from the experimental data.

(c) The improvement in the core power system at the RTP w ill only involve the 

power controller, the control rod selection algorithm (CRSA), control rod 

velocity design (CRVD), and power change rate constraint (PCRC).

(d) Due to safety concerns, the maximum control rod velocity is limited to up to 3 

mm/s, and the maximum power change rate constraint is 12.5%/s.

(e) The simulation works are performed using Matlab Simulink and ordinary 

differential equations solver (ode15s).

(f) Due to highly sensitive equipment and restriction imposed by the safety 

operating procedure, the experimental works are conducted only for the FCA 

with PI controller. For others, only the simulation works are considered.

(g) The experimental data is obtained by using the real console instrumentation 

and control at the RTP. To verify the results o f simulation using Matlab 

Simulink, the CRSA, CRVD, and PCRC codes are converted to NetArrays 

code to be implemented on real Distributed Control System (DCS) hardware 

at RTP. The details o f hardware specification implementation at RTP are; using 

HP Z440 Workstation, Intel Xeon E5-1620v3, Distribution Control System 

(DCS) model RTP3000, and software implementation using NetArrays v8.4 

and graphical user interface using W onderware Intouch 2014.
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(h) All the technical data and specifications are obtained from the maintenance 

report provided by the MNA from the year 2016 to 2021.

1.6 Organization of the Thesis

This thesis is written in six chapters; Chapter 1 introduces the thesis structure 

overview, including motivation, problem statement, research objectives, and scopes. 

Chapter 2 presents the literature survey covering an overview o f TRIGA PUSPATI 

Reactor (RTP), the existing core power control strategies, reactor modelling approach, 

and stability analysis. Chapter 3 presents the reactor modelling o f the RTP and explains 

the research methodology for designing core power control with a multi-component 

constraints strategy. Chapter 4 presents the results and discussion on RTP model 

validation. Chapter 5 presents the results and analysis o f core power control 

performance with multi-component constraints at RTP application, while Chapter 6 

presents the conclusion o f thesis and future work.
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