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ABSTRACT 

 

 

 

 
The presence of N-containing compounds such as nitrate (NO3

-), 

nitrite (NO2
-), and nitrophenol (NP) in industrial wastewater has aroused 

great interest due to the toxicity of these compounds. Therefore, 

determination and removal of these compounds are imperative. In this 

study, copper species modified carbon nitride composites were developed 

for detection of NO3
- and NO2

- ions and reduction of 4-NP. Bulk carbon 

nitride (BCN) was synthesized using urea as precursor via thermal 

polymerization process at 823 K for 4 hours, while mesoporous carbon 

nitride (MCN) was prepared using the same approach as the preparation of 

BCN with the addition of silica nanoparticles as a hard template. In order 

to improve the sensing and catalytic performance of the CN, copper 

acetylacetonate (Cu(acac)2) was added by impregnation method to produce 

Cu(II)acac(x)/CN composites (x = 0.1, 0.5, 4, 6, 8, 10, 12 mol%). The 

composites then underwent thermal oxidation to produce CuO(x)/CN and 

thermal hydrogenation to produce Cu(x)/CN composites. Based on the X-

ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra, the 

structure of BCN and MCN did not change after loading of copper species. 

The diffuse reflectance ultraviolet-visible (DR UV-Vis) spectra of copper 

species modified CN indicated the ligand-to-metal charge transfer (LMCT) 

bands at around 277 and 300 nm and d-d transition of Cu2+ above 400 nm. 

BCN and MCN exhibited three excitation peaks at 277, 315, and 369 nm 

owing to the presence of C=N, C=O, and C-N groups, respectively, while 

there was only one emission peak observed at 450 nm. The emission 

intensity decreased with increasing copper species loading, suggesting 

copper species were deposited on the surface of CN and interact with all 

active sites of the CN. The performances of BCN, MCN, and their 

composites as fluorometric detection of NO3
- and NO2

- were studied at 

concentration ranges of 3000-18000 mol and 5-40 mol, respectively. 

CuO(0.5)/BCN and CuO(0.1)/MCN composites exhibited the highest Ksv 

values for detection of NO3
- and the NO2

- which were 22 and 2.3 times 

higher than that of BCN. The catalytic degradation of 4-NP was carried out 

in the presence of Cu(II)acaca(x)/BCN composites as catalyst and NaBH4 

at room temperature. Cu(II)acac(10)/BCN showed the highest catalytic 

performance with 97% reduction of 4-NP after 6 minutes. This study 

demonstrated that the copper species modified CN composite is a 

promising material for fluorometric detection of NO3
- and the NO2

- ions 

and catalyst for reduction of 4-NP. 
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ABSTRAK 

 

 

 

 
Kehadiran sebatian yang mengandungi unsur N misalnya nitrat 

(NO3
-), nitrit (NO2

-), dan nitrofenol (NP) di dalam air sisa industri telah 

membangkitkan minat yang hebat kerana ketoksikan sebatian ini. Oleh itu, 

penentuan dan penyingkiran sebatian ini adalah penting. Dalam kajian ini, 

komposit karbon nitrida terubahsuai spesies kuprum telah dibangunkan 

untuk pengesanan ion NO3
- dan NO2

- dan pengurangan 4-NP. Karbon nitrida 

pukal (BCN) telah disintesis menggunakan urea sebagai bahan pemula 

melalui proses pempolimeran terma pada 823 K selama 4 jam, manakala 

karbon nitrida mesoliang (MCN) telah disediakan menggunakan pendekatan 

yang sama seperti penyediaan BCN dengan penambahan nanopartikel silika 

sebagai templat keras. Untuk meningkatkan prestasi pengesanan dan 

pemangkinan CN, kuprum asetilasetanoat (Cu(acac)2) telah ditambah 

dengan kaedah pengisitepuan untuk menghasilkan komposit 

Cu(II)acac(x)/CN (x = 0.1, 0.5, 4, 6, 8, 10, 12 mol%). Komposit tersebut 

kemudiannya menjalani pengoksidaan terma untuk menghasilkan komposit 

CuO(x)/CN dan penghidrogenan terma untuk menghasilkan komposit 

Cu(x)/CN. Berdasarkan spektra pembelauan sinar-X (XRD) dan infra-

merah transformasi Fourier (FTIR), struktur BCN dan MCN tidak berubah 

setelah diisi spesies kuprum. Spektra pantulan serakan ultralembayung-

cahaya nampak (DR UV-Vis) CN terubahsuai spesies kuprum menunjukkan 

jalur pemindahan cas ligan-ke-logam (LMCT) pada sekitar 277 dan 300 nm 

dan peralihan d-d Cu2+ di atas 400 nm. BCN dan MCN menunjukkan tiga 

puncak pengujaan pada 277, 315 dan 369 nm masing-masing disebabkan 

oleh kehadiran kumpulan C=N, C=O dan C-N, sementara terdapat hanya 

satu puncak pancaran dilihat pada 450 nm. Keamatan pancaran menurun 

dengan peningkatan pengisian spesies kuprum, menunjukkan bahawa 

spesies kuprum telah terenap pada permukaan CN dan berinteraksi dengan 

semua tapak aktif CN. Prestasi BCN, MCN dan komposit sebagai 

pengesanan fluorometri NO3
- dan NO2

- telah dikaji masing-masing pada 

julat kepekatan 3000-18000 mol dan 5-40 mol. Komposit CuO(0.5)/BCN 

dan CuO(0.1)/MCN menunjukkan nilai Ksv tertinggi bagi pengesanan  NO3
- 

dan NO2
- iaitu 22 dan 2.3 kali ganda lebih tinggi daripada BCN. Degradasi 

bermangkin 4-NP telah dilakukan dengan kehadiran Cu(II)acac(x)/BCN 

komposit sebagai mangkin dan NaBH4 pada suhu bilik. 

Cu(II)acac(10)/BCN menunjukkan prestasi pemangkinan tertinggi dengan 

pengurangan 97% 4-NP selepas 6 minit. Kajian ini menunjukkan bahawa 

komposit CN terubahsuai spesies kuprum adalah suatu bahan yang 

menjanjikan bagi pengesanan fluorometri ion NO3
- dan NO2

- dan mangkin 

bagi pengurangan 4-NP. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Carbon materials have attracted continuous interest due to its 

unique properties resulted from their tunable surface properties that 

offers great potential for many different fields of application such as 

absorption (Hu et al., 2019), catalyst (Samad et al., 2018), 

supercapacitors (Cheng et al., 2019; Liu et al., 2019) and sensor (Lee 

et al., 2018; Su & Zhang, 2017). It was reported that nitrogen 

containing carbon-based materials improve the properties of the 

carbon materials as they contain an abundance of functional groups 

which can extend their fields of application (Straten et al., 2018). In 

recent years, a lot of attentions have been paid on the CN (CN) 

because of its versatile properties such as porosity (Dong & Zhang, 

2012; Kang et al., 2018; Wang et al., 2019), surface functionalities 

(Wang et al., 2017) and physically and chemically stable (Dong et al., 

2014; Stagi et al., 2016). In addition, CN showed high 

photoluminescence (PL) intensity, high photostability, and good 

biocompatibility (Huang et al., 2014; Liang et al., 2017; Xiong et al., 

2017). Apart from that, the presence of nitrogen richness and 

incomplete condensed amino functions in CN gave Lewis basic 

properties as catalyst by supplying the abundant actives sites for the 

metal-free catalyst. (Gong et al., 2015). These characteristics make 



 
 

2 

CN an excellent material for catalysis (Gong et al., 2015), 

photocatalysis (Chai et al., 2012; Cheng et al., 2013), bioimaging, 

drug delivery and sensing (Wang et al., 2013).  

 

 

Previously, it has been reported that CN gave low sensitivity 

towards detection of NO3
-. This might be due to the low surface area 

(62 m2 g-1) of the CN and limited active site in the material for 

detection of NO3
- ion (Alim et al., 2015). Thus, these factors are 

believed might affect the efficiency of sensing performance for 

detection of NO3
- ion. In order to overcome these problems, the 

surface area and the amount of the active sites should be increased for 

better interactions between the CN and analytes. Moreover, many 

studies reported that catalytic support such as metal nanoparticle 

enhanced the catalytic activity of CN for conversion of 4-NP to 4-

AMP (Wang et al., 2017; Zhao et al., 2015d). Therefore, modification 

of the CN has to be carried out to improve the sensitivity towards the 

targeted analyte. The organic nature of CN itself offers ample choice 

to design the molecular structure in order to improve its performance. 

Thus, many strategies such as copolymerization and hybridization 

with metal atoms and non-metals have been explored to enhance the 

performance of CN. Besides, the performance of CN could also be 

improved by fabrication with hard template or soft template approach 

(Zhang et al., 2014b). 

 

 

On the other hand, Cu nanoparticles have attracted a great 

interest as Cu is considered inexpensive in comparison with noble 

metals such as Au, Pt and Pd (Wang et al., 2015). It has been 

documented that CuO has high surface-to-volume ratio which makes 
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it is suitable and commonly used as gas sensitive materials and thus 

shows outstanding performance in gas sensor application (Zhang et 

al., 2015; Tiong et al., 2014; Ahmad et al., 2017; Yan et al., 2015). 

Previously, catalytic oxidation of propargylic alcohol to ynones 

showed excellent performance with 99% yield in the presence of 

copper nanoparticle as a catalyst (Han et al., 2011). In a different 

study, it was claimed that the CN modified copper nanoparticles 

catalyst showed good yield (85 %) for the oxidation of propargylic 

alcohol to ynones. In addition, the catalyst could easily be recovered 

and reused for the next reaction (Lv et al., 2015). Therefore, in this 

study, copper species including copper complex (Cu(acac)2), copper 

oxide (CuO) and copper metal (Cu) are selected to be used as 

modifiers due to their high electrical and thermal conductivities as 

they exhibited small resistance where the current can flow easily 

through copper without much loss of energy (Zheng et al., 2018), high 

fluorescence ability and wide usage in sensing and catalysis 

applications. 

 

 

In this current work, both bulk CN (BCN) and mesoporous 

CN (MCN) are investigated for potential application as fluorescence 

sensor for detection of the NO3
- and the NO2

- and as catalyst for 

reduction of 4-NP to 4-AMP. Both the BCN and the MCN were 

modified by copper(II) acetylacetonate (Cu(acac)2), copper(II) oxide, 

and copper metal. It would be very interesting to study the effect of 

different copper species modified CN as fluorescence sensor for 

detection of NO3
- and NO2

- and as catalyst for reduction of 4-NP to 

4-AMP. From the literature survey, there is no study on the use of 

such copper species modified CN composites for detection of NO3
- 
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and NO2
- by using fluorescence spectroscopy and as catalyst for 

reduction of 4-NP to 4-AMP. 

 

 

Nitrogen is a colourless inert neutral gas which exists 78% of 

earth atmosphere and appear as important element of all living things. 

Nitrogen presents in different form such as nitrogen gas, ammonia 

nitrogen, nitrates, nitrites and organic compounds in the environment 

(Michalski & Kurzyca, 2006; Moo et al., 2016). In wastewater 

management, nitrogen level is set as the measurement standards in the 

determination of water quality as it is easily dissolved in water and 

can produce miscellaneous effects on the environment (Abdel-Raouf 

et al., 2012; Moo et al., 2016). It was stated that the main contributors 

to the eutrophication are from the treated and untreated nitrogen in 

domestic wastewater (Abdel-Raouf et al., 2012; Liu & Wang, 2017). 

Usually, the source of nitrogen mainly originates from urban sewage 

and manufacturing waste (Moo et al., 2016).  

 

 

Nitrate (NO3
-) and nitrite (NO2

-) ions are naturally occurring 

inorganic compounds. These ions exist in the environment and food 

product which can cause hazards to human health. The NO3
- and NO2

- 

are mainly found as food preservatives and fertilizing agents, in which 

their wastewaters from anthropogenic activities, such as agriculture 

and industry, are causing contamination of the water resource for 

human consumption (Guadagnini & Tonelli, 2013). In human body, 

especially in stomach, the NO2
- reacts with secondary amines and 

amides to form carcinogenic N-nitrosamine in the gastrointestinal 

tract, hence causing stomach cancer (Ensafi & Amini, 2010; 

Palanisamy et al., 2014; Yang et al., 2014; Quek et al., 2015). 
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Meanwhile, the NO3
- can produce the same effect due to its reduction 

to NO2
- through bacterial or microbial reduction. The NO2

- is more 

toxic than the NO3
- because the NO2

- can interact with blood pigments 

to produce methemoglobinemia or baby blue syndrome which can 

cause blood disorder and breathing difficulties in human 

(Kazemzadeh & Daghighi, 2005; Quek et al., 2015; Zhang & 

Angelidaki, 2012). The World Health Organization (WHO) has set 

the maximum concentration level of the NO2
- and NO3

- in drinking 

water of 3 mg/L and 10 mg/L, respectively (Zhang et al., 2005). 

Moreover, it has been reported that the NO2
- and the NO3

- in urine of 

healthy adults should range 0.5 to 4 µM and 300 to 1800 µM, 

respectively. Therefore, removal and determination of NO2
- and NO3

- 

are significant from the health and environmental point of view.   

 

 

4-nitrophenol (4-NP) is one of the nitrogen-containing 

pollutants listed as the most priority pollutants in the U.S.A 

Environmental Protection Agency (EPA) due to its persistence and 

toxicity (Li et al., 2012; Luo et al., 2015). The 4-NP is deliberated as 

organic wastewater produced from the production of pesticides, 

pharmaceuticals, dyes, explosives and petrochemicals and it is 

harmful to the water environment and human health even at low 

concentrations in natural environment (Chen et al., 2017; Lin et al., 

2017; Wiench et al., 2017). The nitro and phenol functionalities in 4-

NP can cause strong intense stimulation on the skin and eyes (Qu et 

al., 2017). Besides, EPA has also reported that 4-NP has major 

adverse effects on the blood, liver, central nervous system and 

hypoxia which are very harmful to wildlife and humans (Revathy et 
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al., 2018). To keep the ecosystem safe, therefore, there is urgent need 

for efficient techniques to remove 4-NP from aqueous systems.  

 

 

The determination of NO3
- and NO2

- has been a great 

challenge in the field of analytical chemistry. Numerous approaches 

have been explored for the determination of NO3
- and NO2

-, such as 

spectroscopic (Gajaraj et al., 2013), electrochemical (Manea et al., 

2010; Yilong et al., 2015) and chromatographic (Zhao et al., 2015a) 

methods. However, all of the methods aforementioned have tedious 

experimental procedures and are usually time consuming. The NO2
- 

is also recognized to be chemically unstable, thus, a fast detection 

process is preferable particularly for on-site analysis (Kumar & 

Anthony, 2014). The spectroscopic method for the NO3
- and the NO2

- 

detection is commonly originated from the classic Griess reaction. 

Typically, griess reaction is the reaction between NO2
-, sulfanilamide 

and N-(1-naphtyl)ethylenediamine  to form colored azo dye (Ridnour 

et al., 2000; Bhakta et al., 2014; Kumar & Anthony, 2014). The 

diazoniation of nitrous acid and aromatic amines produced a highly 

colored azo dye (Correa-Duarte et al., 2015). However, it has several 

disadvantages including usage of high concentration of hazardous 

reagents and its inability to detect NO3
- (Miranda et al., 2001). 

Moreover, due to the formation of coloured azo dye after reaction, the 

method is difficult to be reused. Therefore, development of a reusable 

and sensitive sensor for detection of NO3
- and NO2

- is highly required.  

 

 

The conventional methods like chemical oxidation and 

biodegradation are usually used for the treatment of 4-NP but they not 

efficient and time consuming. From the literature, it was noted that 
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the chemical treatments such as advanced oxidation, membrane 

filtration, and electrochemical methods are highly efficient but 

expensive (Dhorabe et al., 2016). Various techniques such as 

membrane filtration (Ivančev-Tumbas et al., 2008), photo-

degradation (Sun et al., 2011; Umabala, 2015), adsorption (Mehrizad 

et al., 2012; Ahmed & Theydan, 2014) and chemical reduction have 

been reported (Gangula et al., 2011; Chi et al., 2014) to remove 

nitrophenol from contaminated water consequently. To date, among 

many other methods, catalytic conversion of 4-NP to 4-aminophenol 

(4-AMP) using excess sodium borohydrate (NaBH4) reductant has 

been considered as an efficient and environmentally friendly way 

(Wang et al., 2017, Zhang et al., 2011). 4-AMP as a potent 

intermediate has been applied to manufacturing of many analgesic 

and antipyretic drugs, such as paracetamol and phenacetin (Som et 

al., 2000; Zhang et al., 2011).  

 

 

The objective of this research is to investigate a dual function 

material which can be used as fluorescence sensor for NO3
- and NO2

- 

determination and as catalyst for reduction of 4-NP to 4-AMP. For 

this purpose, CN is proposed as a potential material to be 

implemented as fluorescence sensor for detection of NO3
- and the 

NO2
- and reduction of 4-NP to 4-AMP. Herein, this study focuses on 

the synthesis of BCN, MCN, and their modified composites with 

Cu(acac)2 (metal complex), CuO (metal oxide) and Cu (metal). All 

the synthesized materials were characterized by X-ray diffractometer 

(XRD), Fourier transform infrared (FTIR) spectroscopy, N2 

adsorption-desorption analysis, diffuse reflectance UV-Visible (DR 

UV-Vis) spectroscopy, and fluorescence spectroscopy and 
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inductively coupled plasma optical emission spectroscopy (ICP-OES) 

analysis. In addition, the chemical interaction between the copper 

species and the CN were confirmed by using computational study 

calculated via Avogadro Software. Lastly, all the synthesized 

materials were applied as fluorescence sensor for detection of NO3
- 

and the NO2
- ions and catalyst for reduction of 4-NP and 4-AMP. 

 

 

 

 

1.2 Problem Statement 

 

 

In medical purposes, Griess reagent has been widely used for 

the determination of NO3
- and NO2

- in human fluid such as urine and 

blood. This method requires reduction of NO3
- to NO2

- and followed 

by detection of NO2
- by using Griess reaction. Briefly, NO2

- reacted 

with sulfanilamide to produce diazonium ion. Next, N-(1-

napthyl)ethylenediamine was added into the mixture which resulted 

an azo dye with an absorption at 540 nm (Bryan & Grisham, 2007; 

Flower et al., 2006; Hetrick & Schoenfisch, 2009). Even though, the 

Griess reaction offers a fast and simple procedure step, its utility 

showed indirect estimation of NO3
- via the measurement of NO2

- 

(Ridnour et al., 2000). In addition, this conventional method is a 

single used technique as the azo dye product formed from the Griess 

reaction cannot be reused in the next reaction. Therefore, it is 

important to develop a reusable sensor for detection of NO3
- and NO2

- 

in order to sustain the environment stability. Recently, carbon nitride 

has been reported to exhibit sensing capability for detection of 

nitrogen containing compounds such as N-nitrosopyrrolidine (NPYR) 
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(Sam et al., 2014), cyanide (Lee et al., 2012) and NO3
- (Alim et al., 

2015). Unfortunately, bare carbon nitride still gave low sensitivity 

towards the detection of NO3
- (Alim et al., 2015). Thus, modification 

of carbon nitride for high detection of NO3
- and NO2

- is still highly 

required.  

 

 

Apart from its sensing capabilities, CN has also been applied 

in many catalytic areas. Several studies have been carried out for the 

reduction of 4-NP to 4-AMP includes metal/acid reduction, 

electrocatalytic reduction and catalytic hydrogenation. Among all 

previous mentioned methods, catalytic hydrogenation of 4-NP is 

considered an environmentally friendly and most efficient method as 

it could achieve high reduction of 4-NP without producing acid 

effluent (Sun et al., 2014). In addition, the formation of 4-AMP is 

very useful in pharmaceutical application as an intermediate for the 

manufacture of analgesic antipyretic drug (Abhilash & Singh, 2009). 

Besides, 4-AMP exhibited strong reducing agent for photographic 

developers (Lunar et al., 2000). This compound was also used as 

corrosion inhibitor in paints and anticorrosion-lubricant agent in fuels 

(Vaidya et al., 2003; Meng et al., 2015; Lang and Yu, 2017). Many 

previous studies have reported on the use of metal-based catalyst such 

as Pd (Park et al., 2017; Zhao et al., 2015d), Au (Corma et al., 2007; 

Gangula et al., 2011), Ag (Geng & Du, 2014; Kastner & Thunemann, 

2016), Pt (Pandey & Mishra, 2014; Chang et al., 2012) for the 

reduction of 4-NP to 4-AMP. However, these metal-based catalysts 

were expensive for industrial application. To overcome this problem, 

many researchers turn to discover the usage of low-cost material as 

alternative catalyst.  
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1.3 Objectives 

 

 

In this study, several objectives have been underlined in order to 

explored the dual functions of CN based materials as fluorescence 

sensor for the detection of NO3
- and NO2

- as well as catalyst for 

reduction of 4-NP to 4-AMP. The objectives of this study are listed 

as below: 

 

 

1) To synthesize BCN, MCN, copper species modified BCN, and 

copper species modified MCN. 

2) To investigate the properties of BCN, MCN, copper species 

modified BCN, and copper species modified MCN. 

3) To evaluate the performance of BCN, MCN, copper species 

modified BCN, and copper species modified MCN as 

fluorescence sensors for the detection of NO3
- and NO2

-. 

4) To determine the catalytic performance of BCN, MCN, 

copper species modified BCN, and copper species modified 

MCN for reduction of 4-NP to 4-AMP. 

 

 

 

 

1.4 Scope of Study 

 

 

This study was divided into four parts, which involved 

synthesis of BCN, MCN and copper species modified CN, 

characterization of the synthesized materials, application as 

fluorescence sensor for the determination of NO3
- and NO2

-, and lastly 
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investigation on the catalytic performance of the composites for the 

reduction of 4-NP to 4-AMP. 

 

 

For the synthesis part, urea was used as precursor for the 

preparation of BCN through thermal polymerization approach. While 

for the preparation of the MCN, silica was introduced as a hard 

template using the same approach for the preparation of the BCN. In 

order to improve the performance of the CNs, the BCN and the MCN 

were modified with different mole loadings of metal complex, which 

was copper-acetylacetonate (Cu(acac)2) via an impregnation method 

with certain amount of Cu(acac)2 in mol% loading to produce 

Cu(II)acac(x)/BCN and Cu(II)acac (x)/MCN composites. The 

Cu(II)acac (x)/BCN and the Cu(II)acac (x)/MCN composites were 

oxidized via thermal oxidation approach to produce CuO(x)/BCN and 

CuO(x)/MCN composites. Lastly, Cu(II)acac (x)/BCN and the 

Cu(II)acac (x)/MCN composites were reduced using hydrogenation 

method to produce Cu(x)/BCN and the Cu(x)/MCN composites.  

 

 

The properties of the synthesized materials were characterized 

using X-ray diffractometer (XRD), Fourier transform infrared (FTIR) 

spectroscopy, N2 adsorption-desorption analysis, diffuse reflectance 

UV-Visible (DR UV-Vis) spectroscopy, fluorescence spectroscopy 

and inductively coupled plasma optical emission spectroscopy (ICP-

OES) analysis. The chemical interaction between the copper species 

and CN was evaluated by using Avogadro Software. 
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The dual function of the copper species modified CN was 

investigated as fluorescence sensors for the detection of NO3
- and 

NO2
- and as catalyst for the reduction of 4-NP to 4-AMP. For 

fluorescence sensor, the prepared materials were introduced with the 

NO3
- and the NO2

- ions by using quenching test in the range of 3×103 

to 18×103 mol and 5 to 40 mol, respectively, using fluorescence 

spectroscopy. The best sensor was further investigated for its 

reproducibility, stability and selectivity as sensor. Meanwhile, the 

synthesized materials were also tested as catalyst for the conversion 

of 4-NP to 4-AMP with the addition of sodium borohydrate (NaBH4) 

as reducing agent. The optimization of the catalytic reaction by 

investigating the effect of 4-NP concentration, molar ratio of NaBH4 

and the amount of catalyst was carried out.  

 

 

 

 

1.5 Significance of Study 

 

 

Many studies have been carried out in order to find the suitable 

material and method for the determination and removal or reduction 

of hazardous compounds to less hazardous compound. In this study, 

BCN and MCN were tested as bifunctional material for detection of 

NO3
- and NO2

- ions and as catalyst for reduction of 4-NP to 4-AMP. 

Both BCN and MCN were novel materials for such applications. CN 

exhibited strong fluorescence property and high surface area which 

were the ideal characteristics to be utilized as fluorescence sensor and 

catalyst for sensing and reduction of nitrogen-containing pollutants. 

Rather than using different material for different application, this 

work explores the bifunctionalities of CN as fluorescence sensor for 
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detection of NO3
- and NO2

- and as catalyst for reduction of 4-NP to 

4-AMP. 

 

 

The modification of copper species toward CN such as copper 

complex, copper oxide and copper species modified CN were 

successfully synthesized via simple approach. Copper species 

modified CN composites would result in a novel series of materials 

and it is very important in the development of material science. 

Besides, the functionalization of CN by copper species enhanced the 

quenching rate of NO3
- and NO2

- and improved the catalytic 

performance for the reduction of 4-NP to 4-AMP. This research 

finding would contribute to the knowledge in fluorescence sensor 

science and catalysis. Other than that, this work can also be the 

stepping stone for other researchers to explore the use of copper 

species modified CN composites for different applications. 

 

 

In addition, the early detection of nitrogen-containing 

pollutants as well as reduction of the pollutants to the less harmful 

compounds is significant in protecting our ecosystem and also human 

health. By applying the copper species modified CN composites for 

detection and reduction of nitrogen-containing pollutants it would be 

great advantage to be applied in the environmental management. The 

reduction of 4-NP to 4-AMP is very beneficial in pharmaceutical 

industry, thus minimizing the harmful effects towards human being. 
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