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ABSTRACT

It is necessary for organic solar cells (OSCs) to have a high and stable power 
conversion efficiency (PCE) in ambient temperature and at different environmental 
conditions before they are commercially available on the market. However, the 
efficiency and stability of OSCs are limited by the type, structure, and architectural 
design of their active layers. Therefore, the main focus of the current research is to find 
an appropriate method to improve the efficiency and stability of OSCs. In this study, 
five different approaches were used with the aim of improving the efficiency and 
stability of OSCs based on PTB7:PC71BM blend. The first one is assigned to optimize 
the PTB7:PC71BM active layer thickness of the OSC devices. The second method 
explores the impact of TiO2 nanostructures on the physical properties and electrical 
performance of OSCs based on PTB7:PC71BM bulk heterojunctions. The third 
approach is devoted to studying the rate of improvement in the overall performance of 
PTB7:PC71BM-based OSCs by using TiO2 as an electron transport layer (ETL). The 
fourth method investigates the effect of thermal annealing treatment on stability, 
reproducibility, and photovoltaic performance. The fifth approach presents the hot 
substrate coating method as a novel strategy to improve the PTB7:PC71BM-based OSC 
in terms of stability and photovoltaic performance. For the active layer thickness 
optimization, results revealed that the OSC based on PTB7:PC71BM with a 70 nm 
thickness showed the best PCE of 5.63%. After incorporating 10% TiO2 into the 
PTB7:PC71BM blend and annealing at 100 °C, an unexpectedly low efficiency of
0.08% was obtained. Alternatively, the performance improvement of the 
PTB7:PC71BM-based OSCs was achieved by using a very thin layer of titanium oxide 
(TiO) as ETL. Results showed that with the use of 5 nm TiO (ETL), the PCE was 
improved from 5.6% to 9.63%. Moreover, results demonstrated an improvement in the 
OSCs efficiency when they were annealed at 50 °C, with a reported PCE of 9.75%, 
which is considered to be the highest efficiency reported for the single junction OSC 
based on PTB7:PC71BM. The device annealed at 50 °C exhibited higher stability and 
better reproducibility than the un-annealed device. The last strategy performed in this 
research is called hot substrate-coating method. In this method, two different batches 
of OSCs were fabricated on hot substrate and room temperature (RT) substrate under 
similar environmental conditions. Results showed that OSCs fabricated via hot 
substrate-coating presented a PCE of 7.94% compared to 5.6% for the RT-coated 
device. The hot substrate-coated device retained 83% of its initial PCE after 20 days 
of operation, considered to be the highest stability achieved for the single junction 
OSC based on PTB7:PC71BM. The proposed hot substrate-coating approach could be 
utilized to improve both the efficiency and stability of OSCs.
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ABSTRAK

Sel suria organik (OSC) perlu mempunyai kecekapan penukaran kuasa (PCE) 
yang tinggi dan stabil di suhu ambien dan pada keadaan persekitaran yang berbeza 
sebelum tersedia secara dagangan di pasaran. Walau bagaimanapun, kecekapan dan 
kestabilan OSC dibatasi oleh jenis, struktur, dan reka bentuk seni bina lapisan aktifnya. 
Oleh itu, fokus utama penyelidikan semasa adalah mencari kaedah yang sesuai untuk 
meningkatkan kecekapan dan kestabilan OSC. Dalam kajian ini, lima pendekatan 
berbeza telah digunakan dengan tujuan untuk meningkatkan kecekapan dan kestabilan 
OSC berdasarkan adunan PTB7:PC71BM. Pendekatan pertama adalah untuk 
mengoptimumkan ketebalan lapisan aktif PTB7:PC71BM pada peranti OSC. Kaedah 
kedua meneroka kesan nanostruktur TiO2 ke atas sifat fizikal dan prestasi elektrik OSC 
berasaskan PTB7:PC71BM hetero-simpang pukal. Pendekatan ketiga ditumpukan 
untuk mengkaji kadar peningkatan prestasi keseluruhan OSC berasaskan 
PTB7:PC71BM dengan menggunakan TiO2 sebagai lapisan pengangkutan elektron 
(ETL). Kaedah keempat, menyiasat kesan rawatan penyepuhlindapan terma terhadap 
kestabilan, kebolehulangan semula, dan prestasi fotovolta. Pendekatan kelima 
mengemukakan kaedah penyalutan substrat panas sebagai strategi baru untuk 
meningkatkan OSC berasaskan PTB7:PC71BM dari segi kestabilan dan prestasi 
fotovolta. Untuk pengoptimuman ketebalan lapisan aktif, dapatan menunjukkan 
bahawa OSC berasaskan PTB7:PC71BM dengan ketebalan 70 nm menunjukkan PCE 
terbaik pada 5.63%. Setelah memasukkan 10% TiO2 ke dalam adunan PTB7:PC71BM 
dan penyepuhlindapan pada suhu 100 °C, kecekapan rendah yang tidak dijangka
sebanyak 0.08% diperoleh. Sebagai alternatif, peningkatan prestasi OSC berasaskan 
PTB7:PC71BM dicapai dengan menggunakan lapisan titanium oksida (TiO) yang 
sangat tipis sebagai ETL. Dapatan kajian menunjukkan bahawa dengan penggunaan 
TiO 5 nm (ETL), PCE telah meningkat daripada 5.6% kepada 9.63%. Selain itu, 
dapatan menunjukkan pembaikan dalam kecekapan OSC apabila disepuhlindap pada 
50 °C, dengan PCE yang dilaporkan sebanyak 9.75%, yang dianggap sebagai 
kecekapan tertinggi yang dilaporkan untuk OSC simpang tunggal berdasarkan 
PTB7:PC71BM. Peranti yang disepuhlindap pada suhu 50 °C menunjukkan kestabilan 
yang lebih tinggi dan kebolehulangan semula yang lebih baik daripada peranti tanpa 
disepuhlindap. Strategi terakhir yang dilakukan dalam penyelidikan ini dipanggil 
kaedah salutan substrat panas. Dalam kaedah ini, dua kelompok OSC yang berbeza 
telah difabrikat pada substrat panas dan substrat suhu bilik (RT) di bawah keadaan 
persekitaran yang sama. Dapatan menunjukkan bahawa OSC yang difabrikat melalui 
salutan substrat panas memberikan PCE sebanyak 7.94% berbanding 5.6% untuk 
peranti bersalut RT. Peranti bersalut substrat panas mengekalkan 83% daripada PCE 
awalnya selepas 20 hari beroperasi, dianggap mencapai kestabilan tertinggi yang 
dicapai untuk OSC simpang tunggal berdasarkan PTB7:PC71BM. Pendekatan salutan 
substrat panas yang dicadangkan boleh digunakan untuk memperbaiki kecekapan dan 
kestabilan OSC.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Energy is considered an essential contributor to the economic, technological, 

and social development of every country. World energy consumption is continuously 

increasing, and the developed countries comprise a major share of this consumption 

(L.-q. Liu et al., 2010). This in turn leads to a scarcity in the main sources of energy 

such as petroleum, natural gas, and coal. However, the widespread use of fossil fuels 

in satisfying the daily human need for energy is expected to negatively impact the 

foreseeable future. This motivates the utilization of renewable energy sources such as 

solar energy to produce clean and environmentally friendly electricity by means of 

solar cells through photovoltaic (PV) technology (Hegedus & Luque, 2011). The vast 

majority of solar cells available on the market are based on inorganic semiconductors 

that are recognised as being high-cost devices due to the high energy requirement for 

purifying the materials and complex instrumentation used for fabricating the devices 

(Brabec, 2004).

The alternative candidate to inorganic solar cell for photovoltaic applications 

is its organic counterpart, which has the benefit of high productivity and solution phase 

processing, and therefore resulting in low-cost electricity production. Several 

important features offered by OSCs include solution processability, flexibility, light 

weight and low cost of cell fabrication (Abdel-Fattah et al., 2015; Lu et al., 2014; 

Sharenko et al., 2014; Vijay & Sumaria, 2014). Moreover, it can be manufactured in 

an environmentally friendly and economical process with high mechanical flexibility 

(Supasai et al., 2017). Organic semiconductors are well known for their unique 

properties, which allow them to be deployed in various electronic devices such as solar 

cells, laser diodes, light-emitting diodes and thin-film transistors (Moiz et al., 2016; 

Wu et al., 2014). In addition, there are yet room for OSCs to achieve higher efficiency

1



(Holliday et al., 2016; Wan et al., 2016), stability (Abdullah et al., 2015; Omrane et 

al., 2011), and lifetime (Espinosa et al., 2011; Wang et al., 2011), compared to 

inorganic solar cells.

Organic solar cells (OSC) contain conjugated polymers and small molecular 

materials that are widely used as a bulk heterojunction (BHJ) structure. Conjugated 

polymers have the advantage of being soluble in common organic solvents, allowing 

them to be deposited using simple solution processing and printing techniques. As a 

result, they can be easily fabricated at a lower cost compared to the inorganic 

semiconductor devices.

While conjugated polymers or small molecules are the most commonly 

employed donors, Perylene diimide and fullerene derivatives are the most commonly 

utilized acceptor materials. Because pristine C60 has a low solubility, it is necessary to 

find a soluble fullerene derivative for efficient OSCs. Therefore, the new synthesized 

fullerene derivatives, such as PC61BM and PC71BM, which are highly soluble in 

aromatic solvents and have a higher electron acceptor efficiency than pristine C60, pave 

the path for improved OSC performance. Due to their broad and high UV-vis 

absorption, adequate energy levels, material miscibility, and better charge transporting 

characteristics, various functionalized fullerene derivatives have been reported with 

improved efficiency (Ganesamoorthy et al., 2017).

Bulk heterojunction structure has been extensively used as a photoactive layer 

system for OSC devices. This is because BHJs increase the interfaces between the 

donor and the acceptor materials, thereby facilitating large exciton dissociation 

(Muhammad et al., 2018). This structure is built up with two different types of organic 

semiconducting materials, an electron donor (polymer) and an electron acceptor 

(fullerene). These two materials are mixed together at nanoscale and provide a bi- 

continuous interpenetrating network which in turn facilitates exciton dissociation and 

charge transport. Moreover, this structure helps in transporting the holes and electrons 

along the active layer regions and facilitating their collection at their respective 

electrodes (Supasai et al., 2017). Overall, it has been noticed in the last few years that
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using the BHJ structure showed the most significant improvements (Li et al., 2017; 

Zhang et al., 2019).

A bulk heterojunction blend of P3HT and PC61BM that form the 

interconnection of donor/acceptor components has been widely used for OSCs 

fabrication (Ameri et al., 2012; Wu et al., 2014). OSCs based on fluorinated thieno 

[3,4-b] thiophene family, the poly[(4,8-bis -(2-ethylhexyloxy)-benzo(1,2-b:4,5-b0 ) 

dithiophene)-2,6-diyl-alt-(4-(2ethylhexyl)-3fluorothieno [3,4-b]thiophene-)-2-

carboxylate-2-6-diyl)] (PTB7) as the electron donor combined with [6,6]-phenyl C71 

butyric acid methyl ester (PC71BM) as the electron acceptor have diverted attention 

away from P3HT:PCBM system due to their high performance as BHJ solar cells 

(Barreiro-Arguelles et al., 2018; Ciammaruchi et al., 2016; Sanchez et al., 2017; 

Sharma et al., 2019; Zhang et al., 2019).

1.2 Problem Statement

In OSCs, it is known that there is a limit on the selection of active layer 

thickness for optimum performance. It was revealed that a thin-film active layer has a 

limitation on the absorption of sunlight photons, while a thicker film that absorbs more 

photons could cause large bulk resistance and weaken carrier transport (Chen et al., 

2013). Moreover, a thicker active layer has a high potential for electron-hole 

recombination, while the very thin active layer exhibits fewer traps and improves 

charge-transfer properties (Zhang et al., 2019). Therefore, finding the optimum active 

layer thickness, which combines strong absorption with efficient charge carrier 

collection, is considered a challenge for thin film solar cells. Thus, before the solar cell 

devices are fabricated, the thickness of the active layer must be optimized.

Common organic semiconductors possess a relatively wide energy gap (Eg) of 

more than 2 eV, which is not practically useful for achieving a broad band of light 

absorption or collecting a large portion of the solar spectrum. Solar cells incorporated 

with metal or metal oxide nanoparticles can be an efficient solution to the absorption 

problem in OSCs due to the high absorption coefficient and higher photoconductivity
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of metal/metal oxides compared to those of organic semiconductors. This hybrid 

approach leads to improve photon harvesting in the OBHJ (£aldiran et al., 2017). The 

strategy behind dispersing inorganic nanoparticles (NPs) throughout organic active 

layers is therefore raised from the concept of combining the important properties of 

these two materials in one hybrid active layer, such as improved absorption and 

boosted photo-generation of charge carriers (Gunes et al., 2007). Considerable 

attention has been paid to the development of hybrid solar cells (HSCs), focusing on 

the benefits of the unique properties of organic materials including low cost, flexibility, 

and light weight, in addition to high conductivity and good thermal stability of 

inorganic nanoparticles (Wright & Uddin, 2012). The utilization of ternary active 

layers in organic solar cells is one of the attractive approaches that is usually used to 

broaden their absorption of the solar spectrum.

The third component of the ternary active layer is usually a donor material, 

which stimulates photoelectric activity, thereby enhancing the light absorption devices 

(A. Kumar et al., 2016). The inorganic nanostructures are known to have unique 

electrical and thermal properties in terms of charge transportation and stability (Chen 

et al., 2017), which can be alternatively utilized as a third component of ternary bulk 

heterojunction. For this reason, the appropriate metal oxide nanoparticles to be 

incorporated in the OSC active layer must be found, with the aim of enhancing light 

harvesting and improving OSC efficiency through the application of bulk 

heterojunctions (BHJ) concept.

Moreover, charge transport response, chemical degradation of active layer, 

oxidation of metal electrodes caused by moisture, oxygen and/or light and the phase 

separation of organic blends are considered as the most common factors that lead to 

degradation of OSCs (Foe et al., 2014). An efficient strategy used to overcome these 

obstacles and improve OSC performance is to insert an interfacial layer between the 

active layer and metal top electrode in both conventional OSCs and inverted ones 

(Abdel-Fattah et al., 2015). This strategy also acts upon improving junction 

conductivity, thereby increasing charge transportation. Consequently, there would be 

a good chance of decreasing the charge recombination rate and improving light 

absorption, which in turn increases the photocurrent of the solar cells (Gilot et al.,
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2007). Furthermore, the charge transport layer acts as an insulator between the active 

layer and the metal electrode, which has the benefit of minimizing charge leakage and 

charge recombination.

Different materials like metal oxides, conjugated polyelectrolytes (CPEs), and 

self-assembled monolayers (SAMs) can support electron transportation between the 

active layer and the cathode, consequently enhancing the photovoltaic device’s 

performance when they are utilised as interfacial materials (Zhou et al., 2013). 

Therefore, finding a proper material that can be used as an ETL and optimizing its 

thickness is important for the improvement in the performance of organic solar cells. 

Therefore, after selecting the ETL material, the thickness of the ETL needs to be 

optimized.

OSCs devices that are intended for commercial use are highly recommended 

to have high and stable PCEs under ambient conditions. To improve the efficiency and 

the stability of OSCs, various methods have been used such as rearranging the stacked 

layers, choosing highly efficient donor and acceptor materials, using different 

electrodes for charge carrier collection, and applying precise encapsulations to 

minimise the degradation of metal electrodes and organic materials (Cai et al., 2010; 

Jorgensen et al., 2012; Sanchez et al., 2017). On the other hand, several strategies have 

been used in the fabrication process to boost the performance of OSCs such as thermal 

annealing (Savikhin et al., 2018; Supasai et al., 2017; Zhong et al., 2016), solvent 

vapour annealing (Yu et al., 2017; Zheng et al., 2014), mixed solvent (Chen et al., 

2013; L. Wang et al., 2016), interface modification (Borse et al., 2017; Lu et al., 2014; 

G. Wang et al., 2014), and so on. Therefore, thermal annealing is applied on the OSC 

devices based on PTB7:PC71BM blend aiming at improving the device efficiency, 

stability and reproducibility.

One of the reasons for low efficiency and degradation of OSC active layer film 

coated on RT substrate is the relatively high gaps between donor and acceptor moieties 

as well as higher surface roughness and poor adhesion between the active layer film 

and the HTL surface, which negative impact the OSC performance (Yu et al., 2018). 

These obstacles could be avoided by using a method called hot substrate-coating. This
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method could provide a fast solvent evaporation and rapid nucleation, which in turn 

stimulates the active layer to be improved by forming a better surface coverage and 

remarkably improved morphology with smaller voids. Consequently, the quality of the 

deposited films and the device performance in terms of stability and reproducibility 

can be improved.

1.3 Objectives of Study

The aims of this study are summarized as follows:

i. To investigate the effect of thickness in both organic solar cell (OSC) active 

layer and electron transport layer (ETL) in terms of photovoltaic performance.

ii. To evaluate the impact of titanium dioxide (TiO2) nanostructures on the 

physical properties and performance of organic solar cells based on 

PTB7:PC71BM bulk heterojunctions under different device architectures of 

TiO2 inclusion.

iii. To determine the influence of temperature, through active layers annealing and 

hot-substrate method, on the performance, stability, and reproducibility of 

OSCs based on PTB7:PC71BM blends.

1.4 Scope of the Study

This particular project focuses on the improvement of the organic solar cells in 

terms of efficiency, stability and reproducibility. Key factors as following scopes will 

be discussed.

i. The current study focuses on the growth and broad characterization of a ternary 

active layer incorporating inorganic nanostructures of TiO2 which can be 

alternatively utilized as a third component of ternary bulk heterojunction for
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the application of solution-processed hybrid solar cells. The donor and acceptor 

components are PTB7 and PC71BM, respectively. The nanostructures of TiO2 

is incorporated to produce a solution-processable ternary active layer based on 

PTB7:PC71BM:TiO2. The weight ratio of PTB7:PC71BM will be kept constant 

(1:1.5), while the weight ratio of the dopant material of TiO2 nanostructures is 

varied to achieve different concentrations of 10%, 20% and 30%. Therefore, 

the current work is devoted to studying the impact of incorporating TiO2 

nanostructures on the photovoltaic performance and the optoelectronic 

properties of organic solar cells based on PTB7:PC71BM bulk heterojunctions. 

In addition, the effects of thermal annealing under vacuum condition on the 

optical and structural behaviours of the PTB7:PC71BM:TiO2 ternary BHJ blend 

are investigated.

ii. In the current study, (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) 

(PEDOT:PSS) is used as a hole transporting layer (HTL) deposited between 

the ITO electrode and the active layer under room temperature and ambient 

conditions.

iii. This work is devoted to further studying the rate of improvement in the overall 

performance of PTB7:PC71BM based OSCs by using TiO2 as the ETL. In this 

way, active layer and ETL thicknesses are first optimized by fabricating several 

devices with different active layer thicknesses without the inclusion of TiO2 

ETL. Then, the one with the best efficiency is chosen to be improved through 

the addition of TiO2 based ETL with different thicknesses. The deposition of 

TiO2 was performed via thermal evaporation inside a vacuum chamber through 

a shadow mask at a pressure of 10-4 Pa. TiO2 layer thickness was carefully 

controlled by using a high vacuum thermal deposition system (PVD) in order 

to obtain thicknesses of 1 nm, 5 nm and 10 nm. In this work, thermal 

evaporation is also applied to produce the top aluminium electrode of the solar 

cells.

iv. The current study was carried out to investigate the impact of thermal annealing 

on the OSC devices based on PTB7:PC71BM blend, with the inclusion of TiO2
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as a buffer layer between the active layer and the Al electrode. Different 

annealing temperatures were applied on the OSC devices with architecture 

ITO/PEDOT:PSS/PTB7:PC71BM/TiO2/Al, and electrically characterized to 

determine which annealing temperature yields the highest device efficiency, 

stability, and reproducibility. All the fabricated devices were exposed to 

different heat treatment, with temperatures ranging from 50 °C to 150 °C with 

steps of 50 °C for 20 min inside the glove box under a nitrogen atmosphere.

v. The hot substrate coating method was carried out in this study as a novel 

strategy aiming to improve the efficiency, stability and reproducibility of 

organic solar cells based on PTB7:PC71BM blend. In this method, the ITO 

substrates temperature were kept at 150 °C during the deposition of the active 

layer by using spin coater.

vi. The deposition of all active layers is made from solution using a spin coater at 

room temperature inside a glove box. The nanostructures obtained will be 

characterized by various techniques, such as UV-Vis spectroscopy, PL 

spectroscopy, X-ray diffraction (XRD) technique, Atomic Force Microscopy 

(AFM), and surface profilometer, to reveal their optical, structural and 

morphological properties. The main parameters that are used to characterize 

the performance of the solar cell include the open-circuit voltage (Voc), the 

short-circuit current density (Jsc), the fill factor (FF) and the power conversion 

efficiency (rj).

1.5 Significance of Study

The active layer is considered as the major efficient layer in OSCs, as it absorbs 

the light photons and produces excitons, so its thickness significantly dictates the cell’s 

performance. Therefore, this study presents the importance of selecting the optimum 

active layer thickness for obtaining higher photovoltaic performance from the 

PTB7:PC71BM blend. Moreover, light harvesting in the organic active layer could be 

enhanced by incorporating metal oxide nanoparticles into the active layer blend,
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forming a bulk heterojunction structure. This improvement in photon absorption is due 

to the high absorption coefficients and higher photoconductivity of metal/metal oxides 

compared to those of organic semiconductors. The inorganic nanostructures are known 

to have unique electrical and thermal properties in terms of charge transportation and 

stability (Chen et al., 2017), which can be alternatively utilized as the third component 

of a ternary bulk heterojunction. Special attention has been paid to titanium dioxide 

(TiO2) due to its attractive photocatalytic properties and excellent chemical, optical 

and electrical properties (Bedikyan et al., 2013). Therefore, this study presents 

knowledge on the effect of the incorporation of TiO2 into the organic active layer 

forming hybrid structures based on PTB7:PC71BM:TiO2 for enhancing and broadening 

the light absorption in OSCs.

Thermal annealing can show great potential in enhancing the optoelectronic 

properties of the polymer blend (Vijay & Sumaria, 2014). This enhancement occurs 

due to better nanoscale morphology and crystallization of the polymers, which in turn 

can increase charge carrier mobility and reduce recombination (Mola et al., 2016). 

Thus, the current study presents an investigation on the impact of thermal annealing 

on OSC devices with the architecture ITO/PEDOT:PSS/PTB7:PC71BM/TiO2/Al, to 

determine which annealing temperature would yield the highest device efficiency, 

stability and reproducibility.

Several materials like metal oxides, CPEs, and SAMs can facilitate electron 

transfer between the active layer and the cathode, thereby increasing the performance 

of photovoltaic devices when used as interface materials (Zhou et al., 2013). TiO2 was 

successfully used as ETL due to its high absorption coefficient (Yun & Sulaiman,

2011), high electron mobility, environmentally friendliness with a comparatively low 

price and excellent chemical and physical stability (Huang et al., 2011). Hence, one of 

the importance of the current study is contributing to the enhancement of OSCs in 

terms of photovoltaic performance, stability and reproducibility.
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1.6 Thesis Outline

The current thesis consists of 5 main chapters organized as follows. Chapter 1 

describes the research outline, which includes a brief introduction revealing the need 

for an alternative candidate to inorganic solar cell for photovoltaic applications 

followed by the problem statement and objectives of the current work. Later on, the 

scope and the significance of the research is given. Chapter 2 includes an introduction 

that presents the reasons behind utilizing organic solar cells in brief, then moves to a 

brief history of solar cell types with the highest reported power conversion efficiencies 

(PCE). Moreover, it discusses the most important parameters which define the 

performance of the solar cells. Finally, it reviews the organic and inorganic materials 

used in this study. Chapter 3 describes experimental setup and procedures, including 

substrate preparation, solutions preparation, thin-film coating, thin-film 

characterization, device fabrication, and device characterization. Chapter 4 describes 

the most important results that were obtained from the experimental works. Finally, 

chapter 5 reports the main conclusions that were drawn from the results and 

recommendations for future research.
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