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ABSTRACT 

There has been increasing interest in the theory of polynomials in different 

fields of science and engineering. Recent work has shown that enhanced numerical 

solution can be obtained via expressing polynomials in the orthogonal basis such as 

the Chebyshev, Legendre or Hermite basis. In some problems, such expression 

requires transforming resultant matrix between the monomial and the orthogonal or 

generalized basis. This dissertation concentrates on the possibility of constructing and 

implementing the Sylvester matrix in the Hermite basis as a computational tool in its 

orthogonal form. The transformation of the Sylvester resultant matrix between the 

monomial basis and the orthogonal basis is first studied. The multiplication formulas 

for some Hermite basis polynomials needed in the computation of the resultant matrix 

are first derived. Then the computation of the Sylvester resultant matrix in the Hermite 

basis and the representation of Hermite polynomials with Sylvester type determinants 

are carried out. The outcomes of this study proved that the Sylvester matrix resultant 

can be constructed and computed in the Hermite basis. In this form, the matrix can 

further be applied for working with polynomials in the Hermite basis. Thus.  ill-

conditioned conversion of polynomials from the orthogonal basis to the monomial 

basis can be avoided when the input polynomials are represented in the orthogonal 

basis, in particular the Hermite basis. 
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ABSTRAK 

Minat terhadap teori polinomial dalam pelbagai bidang sains dan kejuruteraan 

kian bertambah.  Hasil kajian terkini telah menunjukkan bahawa jawapan berangka 

yang lebih jitu dapat diperoleh dengan mewakilkan polinomial menggunakan asas 

polinomial berortogon seperti asas Chebyshev, Legendre atau Hermite.  Untuk 

masalah tertentu, perwakilan sedemikian memerlukan penjelmaan matriks hasilan 

dapat dilakukan di antara asas monomial dan asas ortogon atau asas teritlak. Disertasi 

ini ditumpukan kepada kemungkinan untuk membina dan melaksanakan  matriks 

hasilan Sylvester terhadap asas Hermite sebagai kaedah berpengiraan bagi polinomial 

yang mempunyai perwakilan asas berortogon.  Kaedah penjelmaan matriks hasilan 

Sylvester di antara asas monomial dan asas orthogon dikaji terlebih dahulu.  Rumus 

pendaraban bagi sesetengah asas polinomial Hermite yang diperlukan dalam pengiraan 

matriks hasilan tersebut perlu diperoleh terlebih dahulu.  Seterusnya pengiraan matriks 

hasilan Sylvester dalam asas Hermite dilaksanakan dan perwakilan polinomial 

Hermite dengan penentu Sylvester diperoleh. Hasil kajian ini menunjukkan bahawa 

pembinaan dan pengiraan matriks hasilan Sylvester bagi polinomial yang mempunyai 

perwakilan terhadap asas Hermite boleh dilaksanakan. Dalam perwakilan sedemikian 

matriks tersebut boleh digunakan apabila melibatkan polinomial ke atas asas Hermite. 

Dengan ini suasana tak sihat pertukaran asas polinomial daripada asas ortogon kepada 

asas monomial dapat dielakkan apabila polinomial input mempunyai perwakilan 

terhadap asas ortogon, khususnya asas Hermite. 
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CHAPTER 1 

INTRODUCTION 

Introduction 

Polynomials in the orthogonal or generalized basis arise in many applications 

such as in linear control theory, polynomial approximation, polynomial interpolation 

problems, computer-aided geometric design (CAGD) and least square problems. 

Problems that arise may be represented as polynomials in the orthogonal basis and the 

solutions are sought in the basis. To be able to solve such problem, basis preserving 

methods are sought to avoid ill-conditioned basis conversion when solving the 

problem numerically. 

For example, in many computer-aided geometric design (CAGD) problems, it 

turns out to be crucial, both for numerical stability and for efficiency, to use the 

Bernstein basis instead of the power series basis. As a result, there is a wealth of CAGD 

procedures that are formulated entirely in the Bernstein polynomial basis that never 

require that polynomials be converted to the more familiar monomial basis (Aruliah et 

al., 2015; Corless, 2004).  In solving polynomial equations stable methods do involve 

representations in the orthogonal or generalized basis (Lim, 2009). 

A similar set of basis is available for the Lagrange polynomial basis. These 

methods rely on the fact that the Lagrange polynomial interpolations can be stably (and 

efficiently) evaluated in the barycentric form (Higham, 2004). Hermite polynomials 

are used in the derivation of statistical properties of waves, wave field kinematics and 

dynamics and wave forces under different conditions. Specifically, covariance 

functions and approximate spectra are obtained for wave force on vertical cylinder 

according to Morison's formula (Yuan and Tung, 1984). Hermite basis are used for 

signal classification and for signal pre-processing. Low frequency acoustic signals are 

pre-processed using a Hermite orthogonal basis inner product approach. The Hermite 
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pre-processed signals result in feature vectors that are used as input to a parallel bank 

of radial basis function neural networks for classification (Lowrie, 2006). 

Problem statement 

Recently, the problem of mathematical handwriting recognition has been of 

particular interest. High quality mathematical handwriting recognition can be useful 

for expression entry and editing in both document processing systems and 

mathematical software, such as computer algebra systems (Kepner and Gilbert, 2011). 

Handwritten symbols can be represented as parametric curves approximated in the 

orthogonal basis. In this representation the possibility of finding all the critical points, 

loops and cusps can be used to determine features for recognition. These points can be 

computed using the companion and Sylvester resultant matrix approach. Since the 

curves are represented in the orthogonal basis, it is preferable to work on the critical 

points based on the resultant in the orthogonal basis rather than performing ill-

conditioned conversions from the orthogonal basis to the power basis. 

In relation to this, Alsobhe (2015) had worked on the method of constructing 

the Sylvester resultant matrix in the Chebyshev polynomial basis. The matrix is then 

applied to implicitize the parametric curves and also to determine the critical point of 

the curves.  If the resultant matrix of orthogonal polynomials can be determined, the 

implicit form of the curves and its critical points in the problem of handwriting 

recognition and other problems can be solved without having to convert the problem 

to the monomial basis.  Besides the Chebyshev polynomial basis, the resultant matrix 

of other commonly used basis such as the Legendre and Hermite bases can also be 

determined provided some necessary multiplication operations of polynomials in these 

bases can be formulated and computed. Since no recent work on resultant matrix of 

Hermite polynomials can be found, this research aims at determining and computing 

the Sylvester resultant matrix of polynomials in the Hermite basis. To do this the 

conversion matrix between the Hermite and monomial basis needs to be constructed 

and the multiplication formulas related to Hermite polynomials reviewed and 

formulated. 
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Research Objectives 

In order to derive and construct the Sylvester matrix for polynomials in the 

Hermite basis, the following objectives are required: 

(i) To determine the conversion matrix from the power series to the Hermite 

polynomial basis. 

(ii) To derive the multiplication formulas for the Hermite polynomials. 

(iii) To apply the results of Objective (i) and Objective (ii) to construct and 

implement the Sylvester matrix in the Hermite basis. 

 Scope of the Research 

This study focuses on the determination and construction of Sylvester resultant 

matrix for polynomials in the Hermite basis. The methods of derivation and 

construction refer to the appropriate approaches that have been obtained for the 

Chebyshev or the Legendre basis in existing research works. 

Significant of the Study 

Resultants are computational tools for determining whether or not a system of 

polynomials has a common root without actually solving for the roots of these 

equations. The resultant matrix can be used in solving implicitization problem, finding 

the GCD, critical points of implicit curves and solving common roots of polynomial 

systems even though the latter is more suitable for multivariate polynomials with few 

variables only.  In general, the resultant methods can save the computational cost and 

time in computing the solutions of polynomial theory which are used in different 

applications of science and engineering. This research gives the avenue of computing 

the resultant matrix for orthogonal basis polynomials to eliminate the variables set in 
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the polynomial without using power series, unlike the other methods. Hence, the 

results rely on using an appropriate resultant and companion matrix thereby giving 

new methods and provide a link with existing work in the theoretical framework of 

orthogonal basis polynomials. 

 Motivation 

The researchers usually build models to solve computational problems using 

polynomial systems. Even if a model is not a polynomial system often it may be 

reduced to a polynomial system or approximated with a polynomial system. For 

example, when a system involves the transcendental functions sine or cosine, we may 

not be able to solve the system directly. Instead we try to replace these trigonometry 

functions with rational functions or approximate them with polynomials, say with 

finite Taylor expansions. A well-known technique finite element method is useless 

without using the approximation of polynomials (Brezzi and Fortin, 2012; Szabó et 

al., 1991). The reason for these reductions and approximations is that a lot is known 

about working with polynomial systems. Research on polynomial systems has a wide 

range of applications in such diverse areas as algebraic geometry, automated geometric 

design, computer graphics, computer vision, computer algebra, solid modelling, 

robotics and virtual reality (Agoston and Agoston, 2005; Garcia and Li, 1980). For 

example, in robotics, when a robot moves, it needs to detect whether it will collide 

with an obstacle. Both the robot and the obstacles may be represented as polynomials 

systems. Collision detection is then reduced to solving a polynomial system. To 

analyse and solve various polynomial systems, mathematicians have developed many 

effective tools. Resultants are one of the most powerful of these computational 

techniques. 

 Dissertation Organization 

This dissertation contains six chapters. These are organized as follows:  
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Chapter 1 highlights the introduction, summary of the background, research 

problem, objectives, scope of the study, significance of study, and at the end structural 

organization of dissertation.  

Chapter 2 provides the literature review on resultant and resultant matrices of 

univariate polynomials, the basic properties of the resultant, the Sylvester and Bezout 

matrices. A variety of mathematical connections between the Sylvester resultant 

matrices and the Bezout resultant matrices are explored and a simple block structured 

matrix that transforms the Sylvester matrix into Bezout matrix is derived. This matrix 

transformation captures the essence of the mathematical relationships between these 

two resultant matrices. Basic properties of resultant and power basis transformation of 

classical polynomials are also explored in this chapter.  

Chapter 3 focuses on the methodology that will be applied in this research, 

details the orthogonal bases representation of classical polynomials and in particular 

the Chebyshev, the Legendre polynomials and the Hermite polynomials. The 

theoretical basis of these polynomials, its orthogonality properties, recurrence relations 

and their generating functions have been discussed. The basis of construction of the 

Sylvester matrix for the Chebyshev polynomials is reviewed and presented by giving 

an outline of the method. 

Chapter 4 is the main contribution of the research. In this chapter the Hermite 

basis transformations are investigated with the help of examples. The coefficients 

conversion algorithm from polynomial in power basis to polynomial in Hermite basis 

is also presented in this chapter. The multiplication formula for the Hermite 

polynomials is derived. The implementation of multiplication formula will be applied 

in the construction of the Sylvester resultant matrix for the Hermite polynomials. 

Chapter 5 presents the construction of the Sylvester resultant matrix in Hermite 

basis. The resultant of two polynomials is discussed in this chapter. The computation 

of resultant matrix in the Hermite basis that enables the transformation of the 

polynomials to the power basis is also investigated. The computation of Sylvester 

matrix in the power basis and their conversion to the Hermite basis is discussed. The 
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transformation of the Sylvester resultant matrix between the power and orthogonal 

bases is emphasized in this chapter. 

Chapter 6 states the conclusion drawn from the current work and suggests 

possible directions for the future work. 

Conclusion 

This chapter presents the background of the research problem, basis preserving 

polynomial operations, especially the Sylvester resultants in the Hermite basis. 

Problem formulation identifying research gaps and future calls of previous studies is 

discussed. The objectives of research based on problem statement are identified to fill 

theoretical gaps and achieve the research aim in the problem statement. Significance, 

scope of the study, motivation and organization of dissertation are also enclosed in this 

chapter. 
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