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ABSTRACT

Polymer nanocomposites have attracted significant research attention 
especially in the field of high voltage insulation. The enhancement in the dielectric 
properties of polymer nanocomposites is led by the unique interphase interactions 
between nanoparticles and base polymers. However, common single metal oxide 
nanofillers, which are supposed to improve the dielectric properties of 
nanocomposites, often led to reduced electrical breakdown strength. Recently, multi­
element oxide nanofillers have been shown to possess favorable properties compared 
to single metal oxide nanofillers. Nevertheless, very few systematic studies have been 
carried out to determine the structure-dielectric property relationship of multi-element 
oxide nanofillers, especially when added to polypropylene (PP). In the current work, 
different types of multi-element oxide nanofillers, namely, untreated magnesium 
aluminate (MgAh04), untreated calcium carbonate (CaCCb), and surface-modified 
calcium carbonate (/-CaCOs), were added to PP to determine their effects on thermal, 
chemical, structural, and dielectric properties of PP, before and after aging. As such, 
thermogravimetric analysis, differential scanning calorimetry, Fourier transforms 
infrared, scanning electron microscopy, dielectric response, AC breakdown, and DC 
breakdown measurements were performed. The results demonstrated that PP 
nanocomposites containing M gAh04 possessed up to 58% lowered breakdown 
strength than unfilled PP. Adding CaCCb to PP resulted in up to 43% higher 
breakdown strength of the nanocomposites compared to PP/Mg AI2O4 nanocomposites. 
Notably, PP/z-CaCOs nanocomposites possessed the highest breakdown strength (up 
to 45%) among the nanocomposite systems considered. While unfilled PP showed 
much reduced breakdown strength (up to 27%) after aging, all the nanocomposites 
demonstrated less detrimental effects on their breakdown strength (up to only 21%) 
compared to unfilled PP, and that the breakdown strength of PP nanocomposites was 
generally more predictable after aging. The structure-property relationship governing 
these dielectric changes is subsequently discussed. This paves the way for the 
development of future power cable insulation systems based on nanostructured PP 
technology.
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ABSTRAK

Polimer nanokomposit telah menarik minat penyelidikan yang ketara 
khususnya dalam bidang penebatan voltan tinggi. Peningkatan ciri-ciri dielektrik 
polimer nanokomposit dipengaruhi oleh interaksi interfasa yang unik antara partikel 
nano dan polimer. Walau bagaimanapun, pengisi nano oksida logam tunggal biasa, 
yang sepatutnya meningkatkan sifat dielektrik nanokomposit, mengakibatkan 
pengurangan kekuatan pecah tebat. Baru-baru ini, pengisi nano oksida berbilang unsur 
telah tertunjuk mempunyai sifat yang baik berbanding pengisi nano oksida logam 
tunggal. Namun begitu, sangat sedikit kajian sistematik yang dijalankan untuk 
menentukan hubungan sifat struktur-dielektrik pengisi nano oksida berbilang unsur, 
terutamanya apabila ditambah kepada polipropilena (PP). Dalam kajian ini, pelbagai 
jenis pengisi nano oksida berbilang unsur, iaitu, magnesium aluminat (M gAb0 4 ), 
kalsium karbonat (CaCCb) tidak dirawat dan kalsium karbonat dirawat (/-CaCCb), 
telah ditambah kepada PP untuk menentukan kesannya pada sifat terma, kimia, 
struktur dan dielektrik PP, sebelum dan selepas penuaan. Oleh itu, analisis 
termogravimetrik, kalorimetri pengimbasan pembezaan, transformasi Fourier 
inframerah, mikroskop elektron pengimbasan, tindak balas dielektrik, kekuatan pecah 
tebat AC dan kekuatan pecah tebat DC telah dilakukan. Keputusan menunjukkan 
bahawa PP nanokomposit yang mengandungi M gAh04 mempunyai kekuatan pecah 
tebat yang lebih rendah sehingga 58% daripada PP tidak terisi. Penambahan CaC03 
kepada PP menghasilkan kekuatan pecah tebat sehingga 43% lebih tinggi berbanding 
PP/MgAh04 nanokomposit. Khususnya, PP/z-CaCO? nanokomposit mempunyai 
kekuatan pecah tebat tertinggi antara sistem nanokomposit yang dipertimbangkan 
(sehingga 45%). Walaupun PP tidak terisi menunjukkan kekuatan pecah tebat yang 
jauh berkurangan (sehingga 27%) selepas penuaan, semua nanokomposit 
menunjukkan kesan yang kurang memudaratkan pada kekuatan pecah tebat (sehingga 
hanya 21%) berbanding PP tidak terisi, dan bahawa kekuatan pecah tebat PP 
nanokomposit secara amnya adalah lebih mudah diramal selepas penuaan. Hubungan 
struktur-sifat yang mengawal perubahan dielektrik ini kemudiannya dibincangkan. Ini 
memberi laluan kepada pembangunan sistem penebat kabel kuasa pada masa hadapan 
berdasarkan teknologi PP berstruktur nano.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, electrical power has become an essential part of modern life. 

Almost all work activities depend on the supply power to fulfill their demands. As a 

result, the manufacturers of power equipment are keen to develop better and more 

reliable components for the generation, transmission, and distribution of power. This 

leads to the need for more advanced electrical insulation systems, which are expected 

to have better endurance and reliability than conventional insulation systems in the 

generation, transmission, and distribution of electricity. To date, polymeric insulation 

materials have been extensively used as high voltage insulation materials due to their 

low dielectric constant and dielectric loss, excellent mechanical flexibility, ease of 

processing, and low cost. Even though the development of polymers as high voltage 

insulators is widespread due to their benefits to the industry, research on new 

polymeric materials has been ongoing and is essential to further improve the 

performance of the current insulation materials.

Currently, the most common polymeric materials used for commercial high 

voltage alternating current (HVAC) [1] and high voltage direct current (HVDC) cables 

are low-density polyethylene (LDPE), high-density polyethylene (HDPE), 

combinations of LDPE and HDPE with different compositions, and cross-linked 

polyethylene (XLPE) [2-8], Of note, XLPE has been introduced specifically to 

improve the thermo-mechanical issues of LDPE; the cross-linked macromolecular 

network characteristic of XLPE has been employed for this improvement. Besides that, 

XLPE has been developed to compensate for the poor mechanical properties exhibited 

by LDPE at high temperatures. However, XLPE is difficult to be recycled at the end 

of its lifetime due to its thermoset nature resulted from the crosslinking process. This 

is indeed not consistent with the concept of environmental protection and sustainable
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development. In addition, by-products generated during the crosslinking process could 

enhance the formation of space charge accumulation within the XLPE insulation 

which in turn deteriorated the electrical property of XLPE. Previous researches that 

were conducted by Nuriziani et al. [9] and Hirai et al. [10] showed that the cross­

linking byproducts introduced more home charges and hetero charges in the XLPE 

system. The presence of byproducts has led to deteriorated electrical properties in 

XLPE systems. A similar finding was also reported by Maeno et al. [11], In the 

research, Maeno et al. [4] concluded that the space charge formation can only be 

reduced if a proper method is developed to eliminate all the crosslinking by-products. 

Besides that, Xiaoguang et al. [12] experimentally demonstrated the thermal expansion 

drawback of XLPE insulation when operated at high temperatures. Similarly, Qi et al. 

[12] found that the typical XLPE cables expanded up to 12% due to thermal expansion 

when exposed to 120 °C of temperature. The poor thermal performance of XLPE is 

indeed due to its relatively low melting points. Another drawback of XLPE is the need 

for the degassing process, which is time-consuming and costly.

Recently, polypropylene (PP) materials have been extensively explored in high 

voltage insulation [13-20], This material has a huge potential to replace the 

conventional XLPE cable system [21-25], Previous researches show that PP is 

thermally stable and could be operated at high-temperature conditions. This is mainly 

due to PP’s characteristics such as having a high melting temperature (commonly 

above 150 °C) [26], low dielectric constant [27], high mechanical strength [28], high 

volume resistivity [29], and reduced space charge accumulation [30], Besides that, PP 

is classified as a thermoplastic material that can easily be recycled compared to the 

conventional XLPE cable system [31], Figure 1.1 demonstrates the number of patents 

that have been patented based on PP insulation in general [32], To date, the total 

number of PP patents across various fields, including electrical insulation is 253,429. 

Significantly, the number of patents increases over the years. Besides that, United 

States contributes the highest number of patents registered, followed by, the European 

countries as shown in Figure 1.1b. Meanwhile, Semiconductor Energy Lab, Canon 

KK, and Fujifilm Corp are the top companies that published the highest patents of PP 

insulation (see Figure 1.1c).
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Figure 1.1: PP patents filed across various field, including electrical insulation 
(a) number of patents published, (b) jurisdiction at the patents registered, and
(c) applicants obtained from lens.org [32]

Nevertheless, isotactic polypropylenes (iPP) have the problem of being too 

brittle for inclusion into practical cable designs [33], Hence, various researches have 

focused on modifying the elasticity of PP and one popular method is by blending PP
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with softer materials [34-41], Hosier et al. [42] and Green et al. [43] discovered that 

PP blends have improved mechanical and electrical properties compared to their 

respective standalone iPP. Green et al. [43] suggested that the blended PP could 

potentially improve the effective tie molecule density and enhance the balance of 

properties required for successful applications in power cables.

Meanwhile, nanocomposites materials have gained research interests since 

2003 especially in the field of dielectrics and electrical insulation. Polymer 

nanocomposites provide unique properties, where with only a few weight percentages, 

the mechanical, electrical, and physical properties enhancements can be achieved. 

Indeed, those improvements were not possible using conventional microscale fillers. 

Generally, there are three major features in polymer nanocomposites compared to 

conventional microcomposites. Firstly, the amount of nanofiller used in the 

nanocomposites was lesser than that of microcomposites. Secondly, the size of the 

nanofiller was less than 100 nm. Thirdly, the nanofiller has a greater specific surface 

area. These features reflect the nanocomposites’ properties. Hence, the mixture of 

polymer with nanofiller will result in significant change as compared to the unfilled 

base polymer [44-47],

Currently, single metal oxide nanofillers have been added to PP to improve the 

dielectric properties of the resulting systems. For example, Cao et al. [48] discovered 

that the addition of 1 wt% of magnesium oxide (MgO) into PP has restricted the 

electric field distortion and space charge accumulation within the PP nanocomposites. 

As a result, the DC breakdown strength of PP nanocomposites has improved. A similar 

observation on dielectric properties enhancement using single metal oxide nanofillers 

was also reported by Zhou et al. [29], In the research work, the addition of zinc oxide 

(ZnO), aluminum oxide (A I2O 3), and titanium dioxide (Ti02) to PP enhanced the DC 

breakdown strength of PP nanocomposites. Besides that, those nanoparticles have also 

enhanced the DC volume resistivity, permittivity, and space charge behavior of PP 

nanocomposites. Zha et al. [49] reported that the addition of 0.5 wt% of ZnO led to the 

improvement in dielectric properties of PP nanocomposites such as DC breakdown 

strength, reduced space charge, and mechanical properties of PP nanocomposites. 

Meanwhile, Mirjalili et al. [50] discovered the enhancement in the mechanical
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properties of PP when PP was added with 1 wt% of AI2O3 nanofiller. Of note, all of 

these reports show that the respective nanofillers have been well dispersed in PP, thus 

improving the dielectric properties of PP.

Nevertheless, agglomeration and water absorption are the main problems for 

nanocomposites containing single metal oxide nanofillers. According to previous 

researches, the agglomeration of single metal oxide nanofillers was led by the high 

surface energy possesses by the single metal oxide nanofillers. Nanofiller 

agglomeration deteriorates the electrical properties of the nanocomposites [51-53], 

Meanwhile, Lau et al. [54] discovered that the presence of water in nanocomposites is 

critical and required significant attention especially for those containing single metal 

oxide nanofillers. Generally, single metal oxide nanofillers contain surface hydroxyl 

groups which may promote water absorption [55], The water absorption phenomenon 

often leads to much reduced dielectric performances especially in the area of high 

voltage insulation [56-60], Of note, water absorption usually occurred at the interphase 

of the nanocomposites. As a result, water absorption will increase the overall electrical 

conductivity of the nanocomposites and consequently reduce the electrical breakdown 

strength of the nanocomposites.

Recently, multi-element oxide nanofillers have shown unique characteristics 

over single metal oxide nanofillers, such as having a compact structure with excellent 

thermal, mechanical, and electrical properties compared to single-metal oxide 

nanofillers [61-63], Samad et al. [64] found that polyethylene (PE) nanocomposites 

containing magnesium aluminate (MgAh0 4 ) (multi-element oxide nanofiller) have 

greater breakdown strength than that of PE containing AI2O3 (single metal oxide 

nanofiller). Meanwhile, Virtanen et al. [61] reported that calcium carbonate (CaC03) 

with 150 nm in size and homogeneously dispersed has increased the DC breakdown 

strength of PP. Besides that, the addition of CaC03 has improved the thermal stability 

of PP [65, 66] and poly(vinylidene fluoride) (PVDF) [67], Lin et al. [26] demonstrated 

that the crystallization temperature of PP nanocomposites increased with the CaC03 

nanofiller loading level. A similar observation was reported by Fuad et al. [68], 

Generally, the improvement in thermal, mechanical, and electrical properties was led 

by a high specific surface area possessed by the CaC03 nanofiller.
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Although the use of multi-element oxide nanofillers in nanocomposites seems 

promising, the application of such nanofillers is less well explored from the 

perspective of nanocomposite dielectrics. In addition, insulations are commonly used 

for a long period. Due to prolonged exposure at service temperature, the 

physicochemical characteristics of the insulation will be compromised. Hence, their 

resistance to aging needs to be considered. To date, thermal aging of PE and XLPE 

materials has been well studied [69-73], Nevertheless, there was little literature related 

to thermal aging on PP nanocomposites. Furthermore, the effects of thermal aging on 

PP nanocomposites are still not well understood from the perspective of dielectrics. 

Specifically, the degradation mechanism under service stress (high-temperature 

exposure) was insufficiently understood for the evaluation of the life expectancy of PP 

nanocomposites, which is very important from the practical point of view.

In short, very few systematic investigations have been conducted on the 

dielectric effects of multi-element oxide nanofillers, especially when added to PP, 

albeit that the benefits of using multi-element oxide nanofillers in improving the 

breakdown strength of nanocomposites have been reported elsewhere [61], Besides 

that, available literature on the aging of PP and its nanocomposites under different 

aging temperatures and conditions (i.e., under vacuum and air circulation) is scarce. 

Therefore, in the current work, the effects of multi-element oxide nanofillers, i.e., 

MgAh04, CaCCb, and surface treated CaCCb (/-CaCOs) nanofillers, on the structure 

and dielectric properties of PP were investigated. In addition, the effects of different 

aging temperatures on the structure and dielectric properties of unfilled PP and PP 

nanocomposites containing MgAh04, CaCCb, and /-CaCOs nanofillers were also 

investigated. The aging temperatures of 110 °C and 140 °C were specifically chosen 

to be below the peak melting temperature of PP such that aging was conducted in the 

solid-state, under conditions relevant to practical cable insulation. Furthermore, the 

effects of aging under different environmental conditions, i.e., aging under vacuum 

(which considered the effect of heat in the absence of air) and aging under air 

circulation (also known as thermo-oxidative aging, which considered the effect of heat 

in the presence of air) were carried out.
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1.2 Problem Statement

The demand for electrical power supply has increased tremendously as more 

power is required for the operation of electrical and electronic apparatuses. 

Consequently, thermal and electrical stresses on electrical insulating materials also 

increase rapidly with increasing voltage, which necessitates the development of 

insulating materials with excellent dielectric properties. Nevertheless, the 

conventional XLPE material, which is widely used for HVAC and HVDC cables, 

demonstrates several limitations which complicate its development as future power 

cables. Specifically, XLPE has a low melting temperature, generates byproducts 

during cable manufacturing, is time consuming for the crosslinking process, and is 

difficulty to recycle at the end of its lifecycle. Therefore, PP material has recently been 

proposed to address the aforementioned issues of the XLPE material. Lately, single­

metal oxide nanofillers have been added to polymers, including PP, to improve the 

electrical properties of the materials. However, the addition of such nanofillers can 

also otherwise degrade the breakdown strength of the nanocomposites, if  issues 

involving agglomeration and water absorption are not properly addressed. In contrast, 

multi-element oxide nanofillers, such as MgAh04, CaCCb, and ^-CaCCb, exhibit 

different characteristics from single-metal oxide nanofillers in terms of chemical, 

thermal, and electrical properties. The promising results of using multi-element oxide 

nanofillers in improving the breakdown strength of nanocomposites can be attributed 

to good dispersion of the nanofillers in polymers and the nanofillers possessing less 

pronounced water adsorption effects. Nevertheless, the use of multi-element oxide 

nanofillers, from the perspective of dielectrics, has been less explored. Very few 

systematic investigations have been conducted on the dielectric effects of multi­

element oxide nanofillers, especially when added to PP. In addition, the effects of 

thermal aging on unfilled PP and PP nanocomposites have not been well studied from 

the perspective of dielectrics.
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1.3 Objectives of the Research

The main objectives of the research were:

1. To formulate and characterize reproducible unfilled PP and PP nanocomposites 

containing untreated magnesium aluminate (MgAh0 4 ), untreated calcium 

carbonate (CaC03), and treated calcium carbonate (/-CaCOs) nanofillers.

2. To determine the dielectric response and breakdown characteristics of unfilled 

PP and PP nanocomposites containing MgAh04, CaC03, and /-CaCOs 

nanofillers.

3. To investigate the effects of thermal aging on the structure and dielectric 

properties of unfilled PP and PP nanocomposites containing MgAh04, CaC03, 

and /-CaCOs nanofillers.

1.4 Scope of the Study

The scope of this research was as follows:

1. This study is conducted to formulate and characterize reproducible unfilled PP 

and PP nanocomposites for future HVAC and HVDC power cable insulation 

systems. Hence, the base polymer used in this research was a PP blend 

composed of 50% PP homopolymer (PPh) and 50% PP impact copolymer 

(PPi). Of note, PPh has a high flexural modulus of 17000 kg cm"2 which is 

considered brittle. Meanwhile, PPi has a lower flexural modulus 

(13500 kg cm"2) than that of PPh, which is desirable to improve the mechanical 

flexibility and toughness characteristics of the final PP material. Nevertheless, 

the mechanical tests were not considered in this research.
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2. Three different types of multi-element oxide nanofillers were chosen, i.e., 

MgAh04, CaCCb, and /-CaCCb. The amounts of the nanofillers were chosen 

as 1 wt%, 2 wt%, and 5 wt%. Such amounts of nanofillers were chosen to avoid 

severe agglomeration issues. According to literature, if  the nanofiller amounts 

added in the polymer were greater than 5 wt%, the tendency of nanofiller to 

agglomerate was high and this could jeopardize the dielectric properties.

3. Aging of samples was carried out under two different conditions, namely, 

vacuum and air circulation. Specifically, under vacuum, the samples were aged 

at 110 °C and 140 °C for 360 h under atmospheric pressure of 133 Pa. This led 

to three sample types for comparative assessments. They were unaged samples 

(20 °C), samples aged at 110 °C, and samples aged at 140 °C. The aging 

temperatures were chosen to be below the peak melting temperature of PP such 

that aging was conducted in the solid-state, under conditions relevant to 

practical cable insulation. Meanwhile, under air circulation, another batch of 

samples was aged at 110 °C for 360 h with 40% of the air circulated in the oven 

to consider the effect of aging in the presence of air.

4. The samples were characterized using laboratory analytical techniques. For 

instance, the thermal behavior of the materials was measured using differential 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The 

temperatures for DSC measurements ranged from 60 °C to 180 °C. Meanwhile, 

TGA data were collected in the temperatures range from 30 °C to 900 °C. The 

chemical content of the material was obtained using Fourier transform infrared 

spectroscopy (FTIR) and the spectral data were collected from 500 cm"1 to 4000 

cm'1. Meanwhile, the structure and morphology of the samples were 

characterized using scanning electron microscopy (SEM).

5. The dielectric response of the samples was examined based on the guidelines 

in the American Society for Testing and Materials (ASTM) D150 standard, 

namely, Standard Test Methods for AC Loss Characteristics and Permittivity 

(Dielectric Constant) of Solid Electrical Insulation. The frequency range of the 

measured dielectric permittivity was from 100 Hz to 100 kHz. Below 100 Hz,
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the measured frequency values were unstable and therefore the measurement 

was not pursued. Besides that, the imaginary permittivity of the materials was 

not discussed in the thesis as the measured imaginary permittivity of the 

material was very low due to the limitation of the instrument.

6. Electrical breakdown tests (AC and DC) were conducted based on the

guidelines in the ASTM D149 [74] and D3755 standards [75], The rated AC 

voltage for the breakdown equipment was 80 kV while the rated DC voltage 

for the breakdown equipment was 110 kV [76], Two-parameter Weibull 

distribution was used for analyzing the breakdown data. The AC and DC 

breakdown strength of the material was correlated with the thermal, structure, 

chemical, and dielectric permittivity.

1.5 Contributions of Research

The present study has successfully formulated and characterized unfilled PP 

and PP nanocomposites containing MgAh04, CaCCb, and /-CaCOs. The selection of 

PP-based materials was generally inspired to replace conventional XLPE materials for 

HVAC and HVDC cable insulation. The thermal melting behavior of unfilled PP and 

PP nanocomposites demonstrated a high melting temperature of approximately 162 

°C, which was greater than that of XLPE (105 °C). Practically, XLPE possesses 

thermal expansion when operated under high-temperature conditions. As such, having 

a high melting temperature exhibited by unfilled PP and PP nanocomposites as shown 

in the current work can prevent thermal expansion issues and minimize the cost of 

operation and cable replacement.

The addition of MgAb04, CaCCb, and /-CaCCb to PP affected the breakdown 

strength of the resulting PP nanocomposites. Specifically, PP//-CaCCh 

nanocomposites with better interfacial effects demonstrated an improved breakdown 

strength. This was attributed to the consequence of electrical conduction effects 

becoming less dominant over the favorable nanofiller/polymer interactions at large 

separations between nanoparticles. Meanwhile, PP/MgAb04 had lowered breakdown
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strength due to an increase in the local electric field as a consequence of permittivity 

mismatches between the PP and MgAh04, which was exacerbated by nanofiller 

agglomeration. Overall, the use of different multi-element oxide nanofillers 

(MgAh04, CaCCb, and /-CaCOs) in the current PP system demonstrates the 

importance of engineering the local interactions between nanoparticles and polymer to 

achieve desirable dielectric properties.

The findings on the effects of aging on the materials under vacuum and air 

circulation conditions revealed a different degree of effects. For instance, aging the 

materials under vacuum conditions caused the samples to experience structural 

changes with unchanged chemical properties. Meanwhile, aging the materials under 

air circulation conditions caused the materials to experience both structural changes 

and chemical degradation, where new absorption bands at 1752 cm"1 were produced, 

indicating the carbonyl bands. Significantly, the intensity of carbonyl bands reduced 

with increasing MgAhCU, CaCC>3, and /-CaCOs amounts. These results showed that 

the addition of high amounts of MgAh04, CaCC>3, and /-CaCOs in PP helped to delay 

the appearance of thermo-oxidative reactions after aging under air circulation.

Besides that, aging unfilled PP and PP nanocomposites under vacuum and air 

circulation conditions reduced their DC breakdown strength. Specifically, unfilled PP 

experienced much reduction in the DC breakdown strength as compared to PP 

nanocomposites at the same elevated temperatures and conditions. A contributory 

factor to the huge reduction in the DC breakdown strength of unfilled PP was the 

significant increase in the real relative permittivity experienced by unfilled PP after 

aging. In contrast, PP nanocomposites’ lesser variations in the real relative permittivity 

after aging suggested that the addition of MgAh04, CaCCb, and /-CaCOs to PP 

changed the polymer network through interactions between M gAh04 to PP. As such, 

the DC breakdown performance of PP nanocomposites was less susceptible to aging 

compared to unfilled PP, and that the DC breakdown properties of PP nanocomposites 

were generally more predictable after aging. These findings show that PP 

nanocomposites are more practical for use in power cable insulation when considering 

for the long-term operation. Overall, the current study of structure-dielectric property 

relationships of unfilled PP and PP nanocomposites before and after aging paves the
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way for the development of future HVAC and HVDC cable insulation systems based 

on nanostructured PP technology.

1.6 Thesis Organisation

The thesis is organized as follows:

Chapter 2 discusses the theory and fundamental concepts related to polymers 

and nanocomposites. These include the structure and characteristics of the materials. 

Research related to the development of polymeric insulation materials is reviewed in 

this chapter too. Besides that, an overview of aging effects on the dielectric properties, 

chemical content, structure, and morphology of polymeric insulation materials is 

presented.

Chapter 3 presents a detailed description of the methodology of the research. 

The sample preparation method used in the current study is presented. The 

characterization and testing methods used, i.e., DSC, TGA, FTIR, SEM, dielectric 

response, and electrical breakdown tests are discussed. The methods for the thermal 

aging process are also presented.

Chapter 4 focuses on the experimental results and discussion. Specifically, the 

findings from DSC, TGA, FTIR, SEM, dielectric response and electrical breakdown 

tests of the evaluated samples are presented and discussed.

Finally, Chapter 5 concludes the findings of the current work. 

Recommendations for future work are also included.
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