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ABSTRACT 

Pipeline network system has been the most vital infrastructure for several needs 

ranging from residential, industrial, oil and gas, aerospace, automotive and many more. 

However, such system is also vulnerable to defects at some point during its lifespan. 

Therefore, a proper structural health monitoring on the pipeline system is vital to 

ensure optimum safety of users and efficient transportation of liquid and gas. The 

objectives of this study are to investigate the natural frequency of the pipeline, 

establish a machine learning algorithm for pipeline damage detection and demonstrate 

numerically the applicability of machine learning in defect identification on a pipeline. 

A total of 4 single long pipes pinned at both ends are modelled using ABAQUS 

software whereas the K-mean algorithm is built via Google Colaboratory. The pipes 

are in the form of 2D wire with no loads applied. The pipes are categorized into 2 

natures i.e healthy and corroded and are partitioned into 4 parts. The corrosion is 

induced on 3 out of the 4 pipes specifically at one of the portioned parts prior to 

undergoing frequency analysis to acquire mode shapes with their respective natural 

frequencies. As for the algorithm, 2 clusters, 0 and 1 are determined and labelled as 

healthy and corroded respectively. Multiple mode number ranging from 0 to 11 that 

represent the range of 4 distinct natural frequency data for 4 different pipes are fed into 

the algorithm and classified based on the pre-determined clusters. Based on the results 

obtained, the presence of corrosion on the pipe influences the deformation of the pipe 

by imposing slightly higher natural frequency in the range of 1.03% to 10.4% and 2 

out of 4 pipes with damage locations at 1 and 3 provide identical natural frequency. 

The algorithm exhibits inaccurate damage detection as it manages to identify two 

damage locations at 1 and 3 when only one mode number is fed but eventually provides 

accurate damage detection for all 3 locations when more than one mode number. 

However, due to the identical natural frequency for location 1 and 3, the damage 

localization cannot be performed by the algorithm. As a conclusion, the competency 

of K-mean clustering in defect identification has achieved a satisfactory remark with 

the exception of damage localization. 
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ABSTRAK 

 Sistem rangkaian saluran paip telah menjadi infrastruktur yang paling 

penting untuk beberapa keperluan. Walau bagaimanapun, sistem seperti itu juga rentan 

terhadap cacat pada suatu waktu selama jangka hayatnya. Oleh itu, pemantauan 

struktur kesihatan yang betul pada sistem saluran paip sangat penting untuk 

memastikan keselamatan pengguna yang optimum dan pengangkutan cecair dan gas 

yang cekap. Objektif kajian ini adalah untuk menyelidiki frekuensi semula jadi saluran 

paip, membuat algoritma pembelajaran mesin untuk mengesan kerosakan saluran paip 

dan menunjukkan secara numerik penerapan pembelajaran mesin dalam 

pengenalpastian kecacatan pada saluran paip. Sebanyak 4 paip panjang tunggal yang 

disematkan di kedua hujungnya dimodelkan menggunakan perisian ABAQUS 

sedangkan algoritma K-mean dibina melalui Google Colaboratory. Paip berbentuk 

wayar 2D tanpa beban dikenakan. Paip dikategorikan kepada 2 sifat iaitu sihat dan 

berkarat dan dibahagikan kepada 4 bahagian. Hakisan disebabkan oleh 3 dari 4 paip 

yang khusus pada salah satu bahagian yang dibahagi sebelum menjalani analisis 

frekuensi untuk memperoleh bentuk mod dengan frekuensi semula jadi masing-

masing. Bagi algoritma, 2 kelompok, 0 dan 1 ditentukan dan dilabelkan sebagai sihat 

dan berkarat masing-masing. Nombor mod berganda antara 0 hingga 11 yang mewakili 

julat 4 data frekuensi semula jadi yang berbeza untuk 4 paip berbeza dimasukkan ke 

dalam algoritma dan dikelaskan berdasarkan kelompok yang ditentukan sebelumnya. 

Berdasarkan hasil yang diperoleh, kehadiran kakisan pada paip mempengaruhi ubah 

bentuk paip dengan mengenakan frekuensi semula jadi yang sedikit lebih tinggi dalam 

julat 1.03% hingga 10.4% dan 2 dari 4 paip dengan lokasi kerosakan pada 1 dan 3 

memberikan semula jadi yang sama kekerapan. Algoritma menunjukkan pengesanan 

kerosakan yang tidak tepat kerana berjaya mengenal pasti dua lokasi kerosakan pada 

1 dan 3 apabila hanya satu nombor mod yang diberi makan tetapi akhirnya 

memberikan pengesanan kerosakan yang tepat untuk ketiga-tiga lokasi apabila lebih 

dari satu nombor mod. Namun, kerana frekuensi semula jadi yang sama untuk lokasi 

1 dan 3, penyetempatan kerosakan tidak dapat dilakukan oleh algoritma. Sebagai 

kesimpulan, kecekapan pengelompokan K-mean dalam pengenalpastian kecacatan 

telah mencapai pernyataan yang memuaskan kecuali pengecualian kerosakan 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Pipeline network system has been the most vital infrastructure for several needs  

ranging from residential, industrial, oil and gas, aerospace, automotive and many more. 

However, such system is also vulnerable to defects at some point during its lifespan. 

Damage on the pipeline is almost difficult to be inspected and monitored especially 

when embedded. Defects occurred would not only disrupt the transportation of liquid 

and gas but also contribute to unwanted environmental issues. Therefore, a proper 

structural health monitoring on the pipeline system is vital to ensure optimum safety 

of users and efficient transportation of liquid and gas. Hence, necessary inspection and 

repair approaches are addressed to solve this issue.  

 

 

1.2 Problem Statement 

Initially, the inspection is conducted through conventional method typically 

human-based visual inspection which only relies on visual aid by trained and certified 

personnel. However, Li et al., (2019) justified that the accuracy of human-conducted 

damage identification is highly dependent on the mastery and experience of involved 

personnel. Another pitfall of this method is that it is less economical when it comes to 

large-scale inspection. Moreover, certain pipeline system is embedded into the ground 

thus making it more difficult to conduct. Despite another method named vibration-

based monitoring system is introduced to address the limitations of human-based 

visual inspection, the system consumes high cost mainly on installation and 

maintenance of the system’s vast sensor network (Feng and Feng, 2018). As a mean 

to address this restriction, computer-based approaches have been proposed and widely 
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studied among researchers. For instance, artificial intelligence (AI) can be defined as 

the simulation of human intelligence in machines that are programmed to behave like 

a human being and mimic their moves. It is a broad field that consists of machine 

learning, neural network and deep learning. In this study, machine learning is chosen 

for structural health monitoring on a pipeline system due to its decent simplicity. 

 

 

1.3 Objective of the Study 

The objectives of this study are: 

• To investigate natural frequency of the pipeline 

• To establish a machine learning algorithm for pipeline damage 

detection 

• To demonstrate numerically the applicability of machine learning in 

damage detection on a pipeline. 

 

 

 

1.4 Scope of the Study 

The aim of this study is to demonstrate the applicability of an established 

machine learning algorithm on defect identification within a pipeline system. The 

damage case investigated on the pipeline is limited to corrosion on a pre-determined 

location within the pipeline. The pipeline is also restricted to a single pipeline and 

numerically modelled using ABAQUS software. On the other hand, k-mean clustering 

is chosen as one of the machine learning algorithms for this study and is built using 

Google Colaboratory via Internet due to its ease-to-use with no required pre-

installations. 
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