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ABSTRACT 

Yttria stabilized zirconia (YSZ) thin film is of great interest as an ion-

conductor for the electrolyte-electrode sandwich in solid oxide fuel cell (SOFC) 

applications. YSZ electrolytes have several advantages, but its applicability has been 

mainly limited because of the inability to synthesize YSZ films at low temperatures 

due to its high melting point. One way to overcome such limitation is to establish the 

YSZ structure by optimizing the percentage of crystallinity and densification of the 

thin film. The current study was focused on the comparative evaluation of 

crystallization and densification of dense-thin YSZ film for electrolyte in SOFC. The 

oxygen flow rate (0-50 sccm), substrate bias voltage (0-120 V), substrate temperature 

(200-300°C), and deposition time (30-120 min) were evaluated in order to develop 

dense-thin YSZ film with high crystallinity at low substrate temperatures by radio 

frequency (RF) magnetron sputtering. The deposition parameter controlled the 

general morphology and the film thickness, whereas the annealing parameter (300-

600°C) affected the crystal orientation in thin films. The current study also 

determined the effects of the selected deposition parameters on the properties and 

structures of YSZ thin films. The produced thin films were characterized by glancing 

angle X-ray diffraction (GAXRD), field emission scanning electron microscopy 

(FESEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier-transform 

infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Based 

on the results, a dense-thin YSZ film was produced with an average thickness of 

approximately 200 nm without oxygen flow. The GAXRD pattern of YSZ thin film 

revealed the existence of a columnar structure (cubic phases) with preferred growth 

along (200) lattice orientation. YSZ thin films grown at 120 V exhibited good 

homogeneity and uniformity (100 nm thick and 10-12 nm crystallite size) 

accompanied by a large microstrain along (111) lattice orientation. The sample 

obtained at the highest substrate temperature (300°C) revealed the lowest microstrain 

(0.028%) and the highest crystallinity (43%) with a non-columnar structure. The 

main effect of the deposition time (60 min) had the strongest effect on the lattice 

microstrain and the thickness of the YSZ thin film. In conclusion, the combined 

effects of the substrate temperature (300°C) and annealing factor (400°C) were 

successful in the development of dense-thin YSZ film with high crystallinity (60%) 

for potential electrolyte use in SOFCs.  
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ABSTRAK 

Saput tipis Yttria Stabilize Zirconia (YSZ) telah menarik perhatian sebagai 

konduktor-ion dalam kepingan berapit elektrolit-elektrod untuk kegunaan sel api 

pepejal oksida. Kelebihan yang ditawarkan elektrolit YSZ selalu terbatas kerana 

sukar untuk disintesis pada suhu rendah akibat dari suhu takat didih yang tinggi. Bagi 

mengatasi kekurangan ini, YSZ ini akan disintesis dan dicirikan bagi mendapatkan 

struktur yang optimim melalui peratus kehomogen dan saput tipis yang padat. 

Penyelidikan ini fokus kepada penilaian perbandingan kehomogen dan padat saput 

tipis nanostruktur YSZ sebagai elektrolit. Memanipulasikan parameter percikan 

magnetron frekuensi radio (RF) termasuk kadar aliran oksigen (0-50 sccm), biasan 

voltan substrat (0-120 V), suhu substrat (200-300°C) dan masa pengendapan (30-120 

minit), membolehkan untuk menghasilkan saput tipis yang padat dan tinggi homogen 

pada suhu substrat yang rendah. Parameter pertumbuhan mengawal morfologi dan 

ketebalan saput tipis amnya manakala kesan penyepuhlindapan (300-600°C) 

mempengaruhi orientasi kristal saput tipis. Kajian terkini mengkaji kesan parameter 

pertumbuhan terhadap sifat morfologi dan struktur YSZ. Saput tipis yang dihasilkan 

dicirikan menggunakan peralatan pembelauan sinar X-ray (GAXRD), mikroskop 

imbasan kesan medan electron (FESEM), mikroskop daya atom (AFM), raman 

spektroskopi, spektroskopi inframerah transformasi Fourier (FTIR) dan mikroskop 

elektron penghantaran (TEM). Berdasarkan hasil kajian, sampel padat ketebalan 200 

nm diperolehi tanpa aliran oksigen. Paten sudut pembelauan X-ray saput tipis YSZ 

menunjukkan kewujudan struktur turus (fasa kubik) dengan (200) orientasi kekisi. 

Saput tipis YSZ yang ditumbuhkan pada 120 V menunjukkan kehomogenan yang 

baik dan seragam (tebal 100 nm dan saiz kristal dalam lingkungan 10-12 nm) 

disamping mikroterikan besar sepanjang (111) orietasi kekisi. Sampel pada suhu 

tertinggi substrat (300°C) menunjukkan mikroterikan paling rendah (0.028%) dan 

homogen tertinggi (43%) dengan struktur tidak turus. Kesan utama masa 

pertumbuhan (60 minit) menjadi pengaruh terkuat kepada mikroterikan kekisi dan 

ketebalan YSZ. Sebagai penutup, kesan penggabungan suhu substrat (300°C) dan 

faktor penyepuhlindapan (400°C) telah berjaya membina saput tipis YSZ dengan 

homogen tinggi (60%) dan padat berpotensi sebagai elektrolit dalam SOFC.   
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CHAPTER 1  

 

 

INTRODUCTION 

 Background of Study  1.1

The reversible reaction of the fuel cell was first reported scientifically by Sir 

William Grove in 1839 [1]. Fifty years later, in 1889, a fuel cell using coal gas as 

fuel was designed by Charles Langer and Ludwig Mond. The concept of Nernst 

Diffusion Layer was established by Nernst in 1899, which was later interpreted as 

Nernst‟s law for gas-ion transport in electrolytes [2]. The electrolyte, generally 

known as fast-ion conductors, consists of a highly dense structural material intended 

to prevent the direct mixing of fuel gas (hydrogen) and oxidising gas (oxygen) [3]. 

Nowadays, a variety of industrial resources such as coal, oil and natural gas 

have been wasted with the energy loss ratio of approximately 65% for traditional 

central power plants and 10% for fuel cells. Despite these advantages, successful 

attempts were made to assess the potential of electrochemical devices such as solid 

oxide fuel cells (SOFCs) [3,4]. Recently, considerable progress has been made in the 

commercial use of low-temperature SOFC thin-film, covering many existing and 

emerging applications. Much of the previous research on low-temperature SOFCs 

(LT-SOFCs) have described the role of the solid-oxide crystal structure in facilitating 

ion movements from one site to another at operating temperatures down to 300-500 

C [5–7]. 

In general, thin-films with micro- and nano-film electrolyte nanostructures 

have become increasingly important in the research industry; they have become 

attractive alternatives to conventional methods, such as powder sieving, compaction, 

sol-gel, chemical deposition, hydrothermal, photoelectrochemical, liquid phase and 

extrusion. These corresponding methods are usually impossible to synthesise at low 

temperatures when compared to direct current (DC) or radiofrequency (RF) 



 

2 

magnetron sputtering. The thin-films offer a number of significant advantages and 

attractions over bulk materials: (i) Thin-film structures are almost always compact, 

especially when the structure is produced in a non-columnar microstructure that 

occupies pinhole-free films [8]. (ii) Thin-film is subjected to stress/strain effect, grain 

growth, microstructure evolution and phase transformation, which influence the 

bonding between the film and substrate. This factor also leads to the formation of 

phases, surface microstructures and film thicknesses that are important for electrolyte 

applications [9]. (iii) The thin-film of a small thickness (100 nm) may have the void 

of blocking the grain boundary perpendicular to the current flow, thus reducing the 

contribution of electron conductivity [10]. (iv) Thin-film systems may be adopted by 

manipulating factors such as ionic defects, concentration, mobility, structural 

orientation, microstructure, grain boundary and heterostructure interfaces. Therefore, 

the creation of well-designed nanostructures with two or three dimensions is difficult 

to achieve in bulk materials [11,12]. (v) Thin-film nanotechnology is safe with a 

relatively low environmental impact because of its ability to deposit high melting 

point oxides at low annealing/substrate temperatures and is compact in size [13].   

The performance of Yttria Stabilised Zirconia (YSZ) based thin-film 

electrolyte materials are described in terms of crystallinity (purity) and density 

(compact or non-columnar). The crystallinity indicates the oxygen vacancy structure 

or the crystal rate of the desired structure, whereas the density indicates the degree of 

structure enrichment [14–16]. Furthermore, these pieces of literature have established 

different theories that describe the initial stages of the YSZ growth mechanism such 

as the challenge of depositing dense YSZ thin-film and the high melting temperature 

(2730 C) for cubic YSZ growth. 

To date, the effects of magnetron sputtering deposition have not yet been 

empirically studied on the growth of YSZ nano-thin film; therefore, the correlation 

between grain growth and stress strain evolution as an electrolyte has not been 

reported. The order of the oriented crystal structure clearly affects the mixing of 

microstructure and conductivity. Besides that, thermodynamics is one of the aspects 

of consideration. This research aims to determine whether nanocrystalline YSZ 

structure and nanofilm thickness can be produced using the RF magnetron deposition 
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technique.  The Gibbs free energy of formation (Gf), per cent crystallinity, phase 

identification, morphology and thickness of YSZ were analysed in this study. The 

findings of this research will help to develop high-performance electrolytes by 

understanding the relationship among the following factors: structural evolution 

pattern, percentage of crystallinity, morphology and physicochemical properties. 

  Problem Statement  1.2

YSZ is a ceramic material that does not have excellent conductivity at low 

temperatures. Nevertheless, they need a high-temperature operation (900-1000
 
°C) to 

maintain their ionic conduction and electrochemical performance. During this 

operation, electrodes, electrolytes, and interconnectors covering the structure of 

SOFCs are subjected to physical and chemical modifications that lead to 

deterioration. Therefore, in order to overcome this issue, SOFCs with high-resistance 

materials can be easily developed to be operated at low temperatures especially in the 

presence of thin-film technology. Indeed, YSZ thin-film, which simultaneously has a 

high value of crystallinity and ionic conductivity, would lead to a thin and dense-thin 

layer [17–19]. However, this is contrary to the findings of equiaxed and columnar 

nanostructures from previous [20,21] studies.  

Most previous studies [22–25] have considered the YSZ film to have: (1) 

dense equiaxed grains; (2) dense structure without voids/holes with cubic phases; (3) 

non-columnar structures without dual phase of YSZ thin-film showed better 

performance of gas tightness and electrochemical reactions compared to cubic phases 

with columnar structure. On the other hand, few studies [26,27] indicated that the 

YSZ film, consisting of columnar grains, can still reveal high conductivity and 

consistency of cell performance. 

Furthermore, the crystal orientation and texture coefficient observed on the 

YSZ thin-film structure may add significant differences to the overall electrolyte 

properties and cause a moderate loss in crystallinity. Sometimes, the developed 

strong (220) preferential orientation is considered to have strong texture (stable 
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microstructure) compared to (111) and (200) orientations [9]. On the other hand, it 

has been shown that the higher intensity along (111) lattice orientation could lead to 

the formation of dense, less-defective, and restrained columnar grain as studied by 

Sønderby et al.[28]. 

Generally, in YSZ thin-film, the crystallinity of the nano-thin film layer is 

slightly higher than that of the micro thin-film. However, the development of ultra-

thin film electrolytes would result in non-oriented or defective crystal structure due 

to the irregular packing of atoms and the incomplete coalescence of grain growth, 

leading to a significant degree of crystallinity. Therefore, the quality of YSZ thin-

film depends on the thickness of the entire thin-film and is also directly proportional 

to microstructure, morphology and texture coefficient [29]. In addition to several 

analyses, such as per cent crystallinity at (111) orientation, the crystallinity area of 

the YSZ structure was carried out in an attempt to study and correlate the growth 

parameter with the YSZ growth evolution. The results from glancing angle X-ray 

diffraction (GAXRD) showed four intense peaks for different growth parameters, 

which were desirable from a practical standpoint in the majority of cases. To date, 

few investigations had been conducted elucidating the relationship between the 

parameters mentioned above (i.e. oxygen flow rate, substrate bias voltage and 

substrate temperature) and the structural and morphological properties of YSZ; 

unfortunately, most of their studies have neglected interaction effects between these 

(111), (200), (220) and (311) peak correlations. 

Hence, this study contributes to our knowledge by addressing three important 

issues that play a key role in determining the crystallinity of YSZ thin-film. First, the 

fragile thin-film must properly adhere to the substrate as reported by Jiang and Hertz 

[26]. Second, the crystal orientation, which had an adverse effect on YSZ grain 

growth, studied by Hill et al. [24] and Sochugov et al. [30]. Third, the growth rate 

with optimum thickness resulting from different interdiffusion adhesion, grain 

growth and texture evolution [31]. Despite the importance of YSZ as ionic transport 

in a low-temperature solid oxide system, there is still a lack of systematic 

understanding of how YSZ thin-film grows at low temperatures through the use of 
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RF magnetron sputtering that contributes to phase transformation, microstructure 

transformation and structural formation of YSZ. 

Moreover, many researchers used the liquid vapour method for the 

preparation of deposition, such as pulse laser deposition (PLD) and atomic layer 

deposition (ALD), to produce YSZ nano-thin film as an electrolyte. There is an 

interesting finding of the successful deposition of RF magnetron sputtering due to its 

ability to deposit high melting point oxides at relatively low substrate temperatures. 

So far, the deposition rate using RF magnetron sputtering is very low, and therefore 

difficult to produce a completed dense-thin film. In this study, RF magnetron 

sputtering is hypothesised to produce an innovative modification because the 

vacuum-assisted deposition process technique for depositing a thin-film material 

atom-by-atom or molecule-by-molecule onto a solid structure can be conducted in a 

chamber. As a result, the outcome of this research should lead to an understanding of 

the growth of YSZ phases and the morphological structure of thin-film for electrolyte 

characterisation.  

 Objectives  1.3

1. To prepare YSZ thin-film using various growth parameters such as oxygen 

flow rate, substrate temperature, substrate bias voltage, deposition time and 

annealing temperature. 

2. To analyse the structural and morphological parameters of the prepared YSZ 

thin-film as a function of the growth parameter.  

3. To determine the effects of the growth parameter on improving the 

crystallinity and density of YSZ thin-film for optimisation.  
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 Scope of the Study  1.4

Based on the background of this study, the scope of this study includes: 

1. RF magnetron sputtering under various growth parameters, such as oxygen 

flow rate, substrate bias voltage, substrate temperature and deposition time, 

was used for YSZ thin-film growth. The post-treatment process (annealing 

temperature) was carried out between 380 and 600 °C.  

2. Fine structural details such as percentage of crystallinity, texture coefficient, 

micro strain, crystallite size, molecule vibration and chemical bonding of 

YSZ thin-film were determined using GAXRD, Raman spectroscopy and 

FTIR. This was followed by the determination of the morphological 

properties of YSZ thin-film such as thickness, grain size, surface roughness, 

element distribution and lattice structure using FESEM, AFM and TEM.  

3. Optimising the resulting YSZ thin-film by comparing different properties 

using the percentage of crystallinity and dense structure.  

 

 Significance of Research 1.5

The role of phases and structure of YSZ as an electrolyte has been 

extensively studied. Furthermore, YSZ materials are particularly useful in an 

environment requiring a high level of solid oxide (O
2-

) conductor that is strongly 

affected by the temperature. This could be explained by the ionic conduction that is 

easier at higher temperatures as ions vibrate more vigorously and the defect 

concentrations are higher. Nevertheless, the ability of SOFC to operate at low 

temperatures has increased the interest among researchers to extend its application to 

operating temperatures down to 300-500 °C. Thin-film nanostructures have been 

developed in an attempt to optimise the ion conductivity compared to the bulk and 

membrane structure. Moreover, the results from this research will contribute to the 

enhanced deposition of YSZ thin-film by identifying the suitable growth parameter 
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and fabrication parameters for improved electrolyte-electrode performance and will 

also contribute to the development of SOFC that can operate at low temperatures. 

 Thesis Organisation 1.6

The research outline of this study consists of five chapters. Chapter 1 presents 

the introduction of the study, the problem statement, the specific objectives, scopes, 

the significance of the study and the research outline. Chapter 2 summarises the 

available literature on SOFC, electrolyte, YSZ properties and thin-film growth 

deposition. Chapter 3 summarises the experiments and the characterisation of the 

thin-film produced in this study. Chapter 4 presents the results and discussions of the 

experiments performed. Chapter 5 summarises the conclusions of the work presented 

in this thesis and the suggestions for future work. 
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