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ABSTRACT 

The primary issues among the discussions on two-phase flow in small 

channels are the uncertainties about the contributions of nucleate boiling and forced 

convective towards the total two-phase heat transfer coefficient, the accuracy of the 

predicted two-phase heat transfer coefficient which remains unsatisfactory, measured 

by the mean absolute error (MAE) between the correlation and experimental data, 

particularly that can accommodate pre-and post-dryout regions, and  the limited 

experimental work for alternative refrigerants for the establishment of related 

correlations for a specific refrigerant. This thesis presents the results obtained using 

an optimization approach, Multi-objective Genetic Algorithm (MOGA) to show the 

conflicting effect of nucleate boiling and forced convective during two-phase flow of 

the natural refrigerant R290 in a small channel at the saturation temperature of 10˚C 

under optimized conditions of mass flux, heat flux, channel diameter, and vapor 

quality. Subsequently, Single Objective Genetic Algorithm (SOGA) was utilized to 

improve a selected superposition two-phase heat transfer correlation for R290. 

Experimental data points of R290 from reported experiments in 1.0 to 6.0 mm 

circular diameters were used to minimize the MAE while searching for the optimum 

constants and coefficients in the suppression factor (𝑆), and convective factor (𝐹), for 

the pre-and the post-dryout regions. The newly optimized correlation for R290 has 

MAE between 17 and 34% for all case studies which involves 40% improvement 

from the original correlation. Validation was done against a new data set to see the 

applicability and limitation of the developed correlations. The proposed method is 

capable of obtaining a precise empirical prediction that fits well with experimental 

data, as an approach to further improve any existing correlations which can reduce 

the number of experiments and consequently minimizes associated cost involved. 

The improved correlation obtained in the present study provides an improved 

prediction of heat transfer coefficient that in turn leads to accurate design and 

consequently saves material, refrigerant, and cost for compact heat exchanging 

devices.  
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ABSTRAK 

Antara isu utama yang dibincangkan bagi aliran dua fasa di dalam salur yang 

kecil adalah ketidakpastian masih wujud tentang bagaimana pendidihan nukleus dan 

olakan haba paksa menyumbang kepada jumlah pekali pemindahan haba dua fasa, 

kejituan ramalan pekali pemindahan haba yang diperolehi masih tidak memuaskan, 

yang diukur menggunakan Min Ralat Mutlak (MAE) antara kolerasi dan data ujikaji, 

terutamanya yang dapat memenuhi rantau pra- dan pasca-kering dan kerja ujikaji 

yang terhad terutama daripada bahan penyejuk alternatif telah menghadkan 

pembentukan kolerasi pekali pemindahan haba bagi bahan penyejuk tertentu. Tesis 

ini membentangkan dapatan yang diperolehi daripada kaedah pengoptimuman, 

Genetik Algoritma pelbagai objektif (MOGA) untuk memperlihatkan kesan 

berlawanan di antara pendidihan nukleus dan olakan haba paksa terhadap aliran dua 

fasa bagi bahan penyejuk semulajadi, R290 di dalam salur yang kecil pada suhu 

tepuan 10˚C di dalam keadaan optimum terhadap fluks jisim, fluks haba, diameter 

salur dan kualiti wap. Seterusnya, kaedah pengoptimuman menggunakan Genetik 

Algoritma satu objektif (SOGA) digunakan sebagai kaedah untuk memperbaiki satu 

korelasi superposisi dua fasa yang terpilih untuk R290. Data ujikaji untuk R290 

diperolehi daripada hasil kajian terdahulu berjulat diameter dari 1.0 hingga 6.0 mm 

yang digunakan untuk meminimakan nilai MAE dalam mencari keadaan optimum 

bagi pemalar dan pekali faktor penekanan (𝑆) dan faktor perolakan (𝐹), dengan dan 

tanpa keadaan kering. Kolerasi teroptimum yang baharu bagi R290 mempunyai  

MAE antara 17% dan 34% untuk kes-kes yang dikaji yang melibatkan 40% 

penambahbaikan daripada kolerasi asal yang dipilih. Pengesahan dilakukan terhadap 

data baru yang belum diuji untuk melihat kebolehgunaan dan had batasan kolerasi 

baru yang dihasilkan. Kaedah yang dicadangkan mampu menghasilkan ramalan 

empirik yang lebih jitu yang berpadanan dengan data ujikaji, sebagai kaedah untuk 

memperbaiki kolerasi yang sedia ada yang mana ia dapat mengurangkan bilangan 

eksperimen dan seterusnya mengurangkan kos yang berkaitan. Kolerasi yang 

diperbaiki di dalam kajian ini dapat menghasilkan ramalan empirik yang lebih baik 

bagi pekali pemindahan haba yang seterusnya membawa kepada rekabentuk yang 

lebih jitu dan seterusnya dapat menjimatkan bahan, bahan penyejuk dan kos bagi alat 

penukar haba mampat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

 Improving the performance of heat transfer devices has always been of great 

interest, towards saving energy, materials and costs. Among the most effective 

approach used to improve the thermal performance of a heat exchanging device is 

through the increase in the surface to volume ratio. Figure 1.1 shows the spectrum of 

surface to volume ratio in heat transfer applications. A heat exchanger having a 

surface area density on any one side greater than about 700 m2/m3 with a diameter 

between 5 to 6 mm is considered as a compact heat exchanger (Singh et al., 2014). 

The human lung with 20,000 m2/m3 is actually the most compact heat exchanger 

system to date (Zohuri, 2017). 

 

Figure 1.1  A spectrum of heat transfer surface density with channel diameter   

(Ranganayakulu and Seetharamu, 2018) 
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Bartel et al. (2015) studied the characteristics of a compact heat exchanger 

for a 600MW nuclear reactor system. The optimum conditions between the heat 

transfer coefficient, pressure drop and compactness are important in the design of 

small heat exchanging systems to ensure reliability, easy maintenance and low 

capital cost, under various constraints allowable. Unfortunately, despite the higher 

heat transfer achievable, a small heat transfer system experienced a high pressure 

loss due to friction. The high pressure required a high pumping power. Furthermore, 

the fabrication of a small system involves a series of channels, which resulted in a 

high manufacturing cost (Dixit and Ghosh, 2015). Optimization is the process in 

getting the best solutions under given constraints; high heat transfer, low pressure 

drop, and low cost. Thus, it is important for the thermal system to be optimized to get 

the desired heat transfer capacity at its best performance. 

Although Mehendale et al. (2000) and Kandlikar and Grande (2003) defined 

the small channel into several categories - mini, micro, meso, nano - nevertheless, 

‘conventional’ and ‘small’ channel is generally termed as ‘macrochannel’ and 

‘microchannel’ respectively. These terms shall be used in this work. A transition 

between macro and microchannel is important because many thermal flow properties 

and behaviour change as the channel diameter decreases. It is reported and agreed 

well that there is no definite threshold value that can be claimed as a general macro-

to-micro transition. It is not always suitable to define a microchannel at a specific 

hydraulic diameter, although this definition is often used nonetheless (Hesselgreaves 

et al., 2017). Until now, researchers defined a macro-to-micro transition based on 

three conditions; channel diameter, bubble confinement and bubble departure 

diameter.  

Since Tuckerman and Pease (1981) had shown that a small channel is capable 

of producing a higher heat transfer, further development in the compact heat transfer 

system has been studied in many applications. As an example, the air cooling in 

electronic devices has reached its cooling limitation due to the high demand and need 

for better performance. The better solution is by using  liquid cooling in the 

microchannel heat exchanger (Kheirabadi and Groulx, 2016; Sohel Murshed and 

Nieto de Castro, 2017). Subsequently, two-phase flow has been found to better 
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address very high heat flux removal that could not be handled by a single phase flow, 

the latent heat being much higher than that of the sensible heat transfer. 

1.1.1 Two-phase heat transfer correlation in a microchannel 

A single phase flow occurs when the fluid is not changing its phase. It has a 

limit in temperature rise. A two-phase flow is when the fluid is changing its phase 

either from liquid-to-gas (evaporation) or from gas-to-liquid (condensation) to 

accommodate the increasing heat transfer. Two-phase heat transfer has a high latent 

heat thus having a higher energy efficiency compared to single phase (Li and Wu, 

2010a; Xu et al., 2012). The microchannel evaporation single phase flow correlation 

shows a good agreement with  conventional theories when it is in a fully developed, 

incompressible and laminar flow (Asadi et al., 2014). Therefore, it is generally a 

practice to test the single phase flow as a validation at the start of two-phase 

experiments. 

Even though two-phase flow has been successfully applied, there exist still 

challenges in the experimental work. Most of the experimental data heat transfer 

obtained had been calculated by assuming a linear pressure gradient and the validity 

is questioned. Mirmanto (2014) showed that at high heat flux, the local pressure 

distribution was not linear. The calculation by assuming a linear pressure gradient is 

only recommended at low pressure drop. This causes the deviations in calculation of 

saturation temperature which further affect the prediction of the heat transfer 

coefficient.  

Two mechanisms of evaporation heat transfer in a channel have been 

identified through experimental work; nucleate boiling and forced convective process 

(Riofrío et al., 2016). Nucleate boiling is the phase where there is bubble nucleation 

growth and forced convective is the moving of heated fluid from the surface. 

Charnay et al. (2015) listed three conditions on how a heat transfer correlation was 

being developed - nucleate boiling dominance, forced convective dominance and no 

predominance from both mechanisms. However, this dominant heat transfer 
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mechanism have been conclusively done based on the significant effect of heat flux 

or mass flux towards the experimental data without adequate physical discussion 

(Wang and Wang, 2014).  

Initial correlations for a microchannel originated from those developed for a 

macrochannel. Most correlations in a macrochannel are developed under turbulent 

conditions and dominantly by convective rather than nucleate boiling. Meanwhile, 

the microchannel involves laminar liquid flow (Ducoulombier et al., 2011). This is 

caused by different effects of dominant forces. During two-phase flow in a 

microchannel, the capillary forces become dominant, while buoyancy forces are 

weaker (Kumar et al., 2017). In practice, the selection of a suitable functional form 

for a correlation has been done by comparing several correlations from the literature 

that match the experimental data. The correlation that fits in well with the data was 

selected as the basis form (Zou et al., 2010; Chen et al., 2015; Kanizawa et al., 

2016). Some others, correlated their own correlation through selection of 

dimensionless parameters that was tested having an influence on the data (Bertsch et 

al., 2009; Li and Wu, 2010a; Shah, 2017). Either way, new data in heat transfer 

correlations has to fit into the functional form that they tested with. According to 

Asadi et al. (2014), the data on microchannels was limited with the absence of a 

theoretical base when choosing a specific correlation. The ability to acknowledge the 

constants and parameters involved in each prediction method reduces the possibility 

of high cost and unfitting design of heat transfer equipment (Kandlikar, 1990). 

1.1.2 Refrigerant  

A refrigerant is a liquid that absorbs heat during an evaporation process. 

Ether was used during the first breakthrough in refrigeration system on 1834. Later 

on, natural refrigerants such as ammonia, CO2 and others were applied until the early 

1930s, when the synthetic refrigerant of clorofluorocarbons (CFCs) was invented. 

CFCs were a favorite and have phased out natural refrigerants due to their excellent 

performance, are stable and safe to human health. Around 40 years after its first 

introduction, it was found out that CFCs caused a large ozone depletion (Abas et al., 
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2018).Consequently, under the Montreal Protocol (1987), CFCs were banned and 

phased out by 2010. This has shifted the use from CFCs to the widespread of 

hydroclorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Nevertheless, 

both were known as having a high global warming potential (GWP). Therefore, 

HCFCs and HFCs usage were controlled and scheduled to phase out by 2030 and 

2040, respectively.  Table 1.1 lists the important timeline related to the introduction 

and phase-out processes. This situation has put other alternative refrigerants such as 

hydrofluoroolefins (HFOs) and natural refrigerants as a more environmentally 

friendly choice. Figure 1.2 shows the alternative refrigerants considered for the CFCs 

till 2017.  

Table 1.1 A brief timeline of refrigerants 

Year Remarks 

1834 Ether was introduced 

1930s – 1950s Natural refrigerant 

1930s CFCs 

1980s HCFCs and HFCs 

1987 Montreal Protocol 

- Banned of CFCs by 2010 

1997 Kyoto Protocol 

- Phased out of HCFCs by 2030 

2016 Kigali Amendment 

- Phased out of HFCs by 2040 
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Figure 1.2 Alternative refrigerants for CFCs (Harby, 2017) 

Recently, Ciconkov (2018) suggested that natural refrigerants are the most 

promising long term solutions compared to other options due to their excellent 

behavior. A natural refrigerant is a substance which occurs naturally, which includes 

CO2, ammonia, water, air, and hydrocarbons, also known as the 'Gentle Five'. They 

have zero ozone depletion potential (ODP) and low GWP.  Hydrocarbons (HCs) such 

as R600 (butane) and R290 (propane) have become a choice in commercial and 

domestic refrigeration applications. The only disadvantage is their flammability. 

According to ASHRAE Standard 32, HCs are classified as class A3 which is highly 

flammable. Thus, it has to be applied with a safety precaution. Due to this, 

hydrocarbons have been selected as a good choice in the application of compact 

systems as they can reduce its charge, thus reducing the cost and increasing the 

design efficiency (Belman-Flores et al., 2015; Choi et al., 2018).  

Substitutes of CFC refrigerants 

Transition Refrigerants of mean 

or long lifetime 

HCFC HFC Natural substances 
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R290/R600a 
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with R22 
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substances 

R22 

R124 
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substances 

R134a 

R125 

R32 

R143a 

  

Blends 

Azeotropic      evasiazeotropic     Zeotropic  

R507              R410a                       R407a 

        R407b 

        R407c 
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Propane or R290 is recognized as a potential replacement for R22 due to their 

similar properties and heat characteristics but twice the latent heat of vaporization. 

Heo et al. (2013) listed R290 as the first choice refrigerant in commercial 

applications. R290 has a GWP of less than 3 and zero ODP. At least one study (Oh et 

al., 2011) is available in reporting a comparison study in a microchannel between 

R290 and R22 to show the ratio 0.7:1.0 of their mean heat transfer coefficient.  In 

another study, it was suggested that R290 could achieve between 1.7 to 2.8 kW/m2.K 

heat transfer coefficient in an evaporative compact heat exchanger (Thonon, 2008). 

Several works reported on the advantages of R290 in their refrigeration system. 

Sánchez et al. (2017) showed that it has the highest increased cooling and 

performance capacity compared to R134a in their refrigeration system. At the same 

time, it showed increased in power consumption which needed system retrofitting 

and not suitable as a drop in refrigerant for R134a. Mastrullo et al. (2014) proposed 

the possibility to reduce the refrigerant charge by 30% and reducing energy 

consumption by 34% in a light commercial freezer when R404a is replaced with 

R290. Heo et al. (2013) showed that R290 charge in a large capacity freezer is 92 g, 

less than the allowable 150 g (according to International Standard IEC 60335 and 

European standards EN-378), which is safe to be used in any closed condition 

without any safety precaution. Due to these advantages and other promising 

potentials to be explored, R290 has been selected as the refrigerant for the current 

work. 

1.2 Problem Statement 

The available two-phase heat transfer correlations consist of dimensionless 

numbers which are related to various types of dominant forces existing in the heat 

transfer in a channel. The dimensionless numbers are generally a function of, among 

others, the channel diameter, heat flux, mass flux and thermodynamic properties 

under the influence of saturation pressure and temperature. The theory behind these 

correlations originates from a macrochannel; there are different flow characteristics 

and effect of forces in a microchannel. To date, it is still questionable that the 

conventional theory on heat transfer and fluid flow is valid for a two-phase flow in a 
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microchannel due to the difference in nucleate boiling and forced convective 

mechanism acting in both channel sizes (Karayiannis and Mahmoud, 2017). The 

contribution of nucleate boiling and forced convective in a microchannel and its 

reppresentation in heat transfer correlation is still an issue. However, increasing the 

contributions of each during a heat transfer process is much desired regardless their 

respective operating conditions. 

A heat transfer correlation is generally developed within its experimental 

parameters range. Certain correlations are developed from several selected 

refrigerants which have different range of physical and thermodynamic properties, 

where the relevancy can be argued. Through recent review works, it can be 

concluded that there are no general predictive methods applicable to all range of data 

and types of refrigerants (Cheng and Xia, 2017; Fang et al., 2018). The mean 

average error (MAE) associated with the available correlations for evaporative heat 

transfer in a small channel is still unsatisfactory. Consequently, more experiments are 

being done and planned to reduce the MAE. The unavailability of a correlation for a 

new replacement refrigerant and limited applicability of the existing correlations 

favors continuous development of the correlation for a specific refrigerant with a 

more accurate design performance.  

A HC such as R290 is a favourite as a replacement to a conventional 

refrigerant, but there is still inadequate study on individual R290 data especially 

involving microchannels (Wang et al., 2014; Lillo et al., 2018). Most studies with 

R290 are partial work where comparisons were done between potential substitute 

refrigerants (Longo et al., 2017; Sánchez et al., 2017) or as a mixture refrigerant 

(Zhu et al., 2015; He et al., 2016) with other natural or conventional refrigerants. The 

development of microchannel systems together with new alternative refrigerants can 

essentially increases the heat removal performance and addresses the concerns of a 

sustainable environment. 
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Although there are several approaches utilized to predict the heat transfer 

coefficient, these developed correlations (from macro and micro channels) based on 

past experimental data still disagree (unsatisfactory MAE) with later experimental 

data obtained even under similar conditions – channel diameter, flow regime, mass 

flux etc. Most empirical work in heat transfer correlations generally correlated the 

experimental data using the regression method. New constants and coefficients are 

produced which resulted in the development of a new correlation (Li and Wu, 

2010a). Cheng and Xia (2017) suggested the possibility that an inaccurate regression 

method led to an unreliable correlation for a new refrigerant with different heat 

transfer behaviour. An accurate prediction of the heat transfer coefficient in two-

phase flow in a microchannel is crucial to avoid under or over design of heat 

exchanging devices for savings in material and cost.  

1.3 Research Question 

This study aimed to address the following research questions;  

1. Can nucleate boiling and forced convective (both identified to be contributing 

factors) be optimized simultaneously to enhance the total heat transfer 

performance in two-phase flow?  

2. How can genetic algorithm be applied to develop a correlation for a new 

experimental data of a specific refrigerant using a functional form of the 

existing correlation? 

3. Can the discrepancies between experimental and existing two-phase heat 

transfer correlations be minimized under a particular experimental condition? 
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1.4 Objective 

The objective of this research is to propose an approach to modify the two-

phase evaporative heat transfer correlation for R290 by using an optimization method 

in reducing the discrepancies of heat transfer coefficient between predicted and 

experimental data in a small channel.  To fulfil this, the following needs to be 

completed; 

1.  Identify the optimal parameters involved in the contribution of nucleate 

boiling and forced convective heat transfer towards the total two-phase 

evaporative heat transfer coefficient using Multi-objective genetic algorithm 

(MOGA). 

2. Select a correlation functional form that consists of both the nucleate boiling 

and forced convective properties to be optimized in order to improve the error 

between predicted and selected R290 experimental data using Single-

objective genetic algorithm (SOGA). 

3. Analyse the performance of the modified correlation through prediction, 

trend and pattern by comparing against available experimental data, other 

refrigerants and other correlations. 

1.5 Scopes 

The research study will cover the following scopes; 

1. Analysis of the different approaches available in developing the current heat 

transfer coefficients for evaporation in small channels that have been based 

on established experimental work.  

2. Selection of data is done for R290, collected from available published works 

which reported the heat transfer coefficient values with the effect of 

increasing vapor quality. The channel diameter taken is between 1.0 to 6.0 
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mm. The data is extracted from the graph(s) by using Grabit, an extraction 

data function developed in MATLAB.  

3. The collected R290 data is analysed towards selected generalized 

correlations; superposition, asymptotic and strictly empirical types. This is to 

study the behavior of generalized correlations with the new data unknown to 

them. The selected generalized correlations either have R290 or no R290 data 

as their developed refrigerants. 

4. The collected R290 data is analysed towards two selected superposition 

correlations which were developed from R290. One of the correlations was 

developed specifically for R290 and another one consists of R290 along with 

other refrigerants. 

5. Investigating the contributions from nucleate boiling and forced convective 

heat transfer to the total evaporative heat transfer coefficient for a selected 

heat transfer coefficient functional form (superposition and asymptotic 

approach) to identify how both can be maximized simultaneously under 

parameters of mass flux, heat flux, vapor quality and diameter. The effect of 

saturation temperature is ignored. 

6. The optimization method is used as a novel approach in finding the 

coefficients and constants of dimensionless parameters in the selected 

correlation. The error to be calculated in MOGA is Mean Absolute Error 

(MAE) with the least value given by the optimization result taken as the 

acceptable result. The genetic algorithm is written in MATLAB environment.  

7. Three cases of dryout incipence quality are studied to determine the different 

condition of dryout vapor quality.  The dryout incipence quality is used to 

determine the condition where the portion of the liquid film starts to 

experience the dryout and the decreases of heat transfer coefficient. It is used 

as a threshold to differentiate between pre-and post-dryout data point.  

8. The applicability of the proposed method is tested with three different ways; 

with a new unknown R290 data to the optimized correlations, with a different 

type of refrigerant (R744) and with a different type of correlation 

(asymptotic). 
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1.6 Outline of the thesis 

The overall structure of the thesis takes the form of six parts, including this 

introductory chapter. In Chapter 2, previous pertinent studies on two- phase heat 

transfer correlations in small channels are discussed which involved channel 

classification, types of heat transfer correlations and issues related to the subject 

matter. 

Chapter 3 includes the theories of the two-phase heat transfer in a channel 

and the experimental calculations to get the heat transfer coefficient. The 

optimization concept and theory of genetic algorithm are presented. 

Chapter 4 presents the methodology part which includes the selected data, 

correlations and algorithm for SOGA and MOGA optimization. It presents the 

related transfer function, variables and genetic algorithm properties that are used 

throughout the study.  

Chapter 5 presents the discussion on the trend and pattern of nucleate boiling 

and forced convective contribution toward the selected total two-phase heat transfer 

correlations under optimized condition gained through MOGA. The parameters of 

mass flux, heat flux and vapor quality are taken as variables. The chapter also 

discusses the result on optimized correlation from SOGA in reducing the heat 

transfer coefficient error between predicted and experimental data. The validation of 

the optimized correlation is done through comparison between the available 

experimental data, different refrigerants and different correlations. 

Chapter 6 which is the last chapter concludes the research finding and fulfil 

the objectives mentioned. The recommendations and suggestions for further study on 

the improvement of related work are proposed. 
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