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ABSTRACT

Flow field on the helicopter is intricate and has puzzled aerodynamicists for 
decades. Tail shake problem has become an issue since the creation of helicopters, 
where it has caused tremors on the structure of the helicopter, performance, occupant’s 
comfort and interrupted the control, response and quality of the flight. It has been the 
continuous issues for designers and researchers in improving flight quality and better 
helicopter performance. However, previous researches focused on unsteady helicopter rotor 
hub wake at low range advance ratios merely up to 0.3 where the air load pressure was believed 
to be too small to influence the flow surrounding at the vicinity of tail parts. Therefore, 
simulation work beyond 0.3 is much required to investigate the unsteady flow 
characteristics at higher advance ratios. The aim of this research was to identify the 
aerodynamic characteristics elicited by the unsteady wake of the helicopter’s main 
rotor hub-assembly at higher advanced ratios beyond 0.3 through observations on static 
and dynamic analyses. The parameters investigated were the rotational speeds of 1200, 
1400 and 1600 rpm, with two, three and four main rotor blades, two different fairing 
configurations and four different angles of attack (a). Rotor aerodynamics was 
modelled using Computational Fluid Dynamics by employing sliding mesh method to 
account for rotor rotation and k-w Shear Stress Transport for turbulent modelling. The 
results were collected in percentage and compared with calculation that had been done 
through experimental works by other researchers. The data collected were pressure 
fluctuation, turbulent kinetic energy, turbulent intensity and drag force. Dynamic 
analysis focused on the power spectral density, which showed the wake amplitude 
formation in the frequency domain. In general, turbulent kinetic energy for four blades 
rotor components showed higher values as compared to two blades, three blades and 
fuselage components. Turbulent kinetic energy recorded maximum value from 3.0 m2 
/s2 to 4.0 m2 /s2 fuselage and 6.4 m2 /s2 to 10 m2 /s2 for rotor for elliptical fairing and
6.8 m2 /s2 to 13 m2 /s2 and 14 m2 /s2 to 22 m2 /s2 for rectangular fairing. Turbulent 
kinetic energy and turbulent intensity were effected by the number of blades, rotational 
speed, angle of attack and geometry of fairings. Drag force sourced out from the 
fuselage created 29% to 70% while the rotor produce 30% to 45% of drag. For dynamic 
analysis, turbulent kinetic energy of rectangular fairing showed a high wake amplitude 
of 7268.5 (m4/s4)/Hz, while turbulent kinetic energy of elliptical fairing showed wake 
amplitude of 7285.3 (m4/s4)/Hz, which showed the effect of complex geometry on the 
turbulent formation. Furthermore, the simulation conducted on the actual rotor hub 
indicated that a rotational speed of 1200 rpm has the highest value of turbulent kinetic 
energy of 42.7 (m4/s4)/Hz without the fairing employment. Employment of fairing has 
proven to reduce the formation of wake frequency. The results from 1200 rpm 
rotational speed were successfully validated with past researchers’ results in predicting 
the wake formation based on the frequency domain. In conclusion, the study 
successfully showed that the formation of unsteady wake sourced from a simplified 
model helicopter drawn and proved the presence of fairing does reduce the wake 
formation on the aft of the fuselage. Subsequently, this research proposes that three 
rotor blades with an elliptical fairing configuration is the best configuration with the 
lowest wake formation.



ABSTRAK

Medan aliran pada helikopter adalah rumit dan telah membingungkan ahli 
aerodinamik sekian lama. Masai ah getaran pada ekor helikopter telah menj adi isu sej ak 
penciptaannya, yang mana ia telah menyebabkan gegaran pada struktur helikopter, 
pengurangan prestasi, keselesaan penumpang, mengganggu kawalan, tindak balas dan 
kualiti penerbangan. Ia telah menj adi isu berterusan dalam menambah baik ke arah 
penerbangan berkualiti dan helicopter berprestasi lebih baik. Walaubagaimanapun, 
fokus kajian terdahulu mengenai pemutar had keracak helikopter yang tidak stabil 
telah dilakukan pada julat rendah nisbah mara sehingga 0.3 yang mana beban tekanan 
udara dipercayai terlalu kecil untuk helikopter mempengaruhi aliran sekeliling di 
sekitar bahagian ekor. Oleh itu, kerja simulasi melebihi 0.3 amat diperlukan untuk 
menyelidiki ciri aliran tidak mantap pada nisbah mara yang lebih tinggi. Tujuan 
penyelidikan ini adalah untuk mengenai pasti ciri-ciri aerodinamik yang terkesan 
disebabkan keracak tidak-tetap dari pemasangan hab pemutar utama helikopter pada 
nisbah lebih tinggi melebihi 0.3 melalui pemerhatian pada analisis statik dan dinamik. 
Parameter yang disiasat adalah kelajuan pada putaran 1200, 1400 dan 1600 rpm, 
dengan dua, tiga dan empat bilangan bilah pemutar utama, dua konfigurasi reraut 
berbeza dan empat sudut serang (a) yang berbeza. Pemutar aerodinamik dimodelkan 
menggunakan kaedah jejaring gelangsar untuk putaran hab pemutar dan pemodelan 
gelora k-w Shear Stress Transport. Keputusan dikumpul melalui kadar peratus dan 
telah dibandingkan dengan pengiraan yang dilakukan melalui keija-kerja eksperimen 
oleh penyelidik lain. Bentuk data yang dikumpul adalah perubahan tekanan, gelora 
tenaga kinetik, keampatan gelora dan daya seretan. Analisis dinamik memberi 
tumpuan kepada ketumpatan spektrum kuasa, yang menunjukkan pembentukan 
amplitud terhadap domain frekuensi. Secara umumnya, gelora tenaga kinetik bagi 
komponen dengan empat bilah menunjukkan nilai yang lebih tinggi berbanding 
dengan dua, tiga bilah dan komponen fiuslaj. Gelora tenaga kinetik mencatatkan nilai 
maksimum dari 3.0 m2 /s2 hingga 4.0 m2 /s2 untuk fiuslaj dan 6.4 m2 /s2 hingga 10 m2 
/s2 untuk pemutar bagi reraut elips dan 6.8 m2 /s2 hingga 13 m2 /s2 dan 14 m2 /s2 hingga 
22 m2 /s2 untuk reraut segi empat tepat. Gelora tenaga kinetik dan keampatan gelora 
terbukti dipengaruhi oleh bilangan bilah, kelajuan putaran bilah, sudut serang dan 
geometri reraut. Daya seret yang diperoleh daripada fiuslaj memenuhi keputusan data 
yang dikumpul oleh penyelidik lain bahawa ia menghasilkan 29% hingga 70% daya 
seretan manakala pemutar menghasilkan 30% hingga 45% . Manakala, analisis 
dinamik reraut segi empat tepat untuk gelora tenaga kinetik menunjukkan amplitud 
yang tinggi sebanyak 7268.5 ((m4/s4)/Hz), bahkan reraut elips untuk gelora tenaga 
kinetik menunjukkan amplitud setinggi 7285.3 ((m4/s4)/Hz), menunjukkan kesan 
geometri yang rumit membantu dalam penghasilan dan pembentukan gelora. 
Tambahan pula, simulasi yang dilakukan pada hab bilah sebenar menunjukkan bahawa 
1200 rpm mempunyai nilai gelora tenaga kinetik tertinggi iaitu 42.7 ((m4/s4)/Hz) tanpa 
pemasangan reraut. Penggunaan reraut terbukti dapat mengurangkan pembentukan 
kekerapan gelora. Hasil daripada kelajuan putaran 1200 rpm telah berjaya disahkan 
dengan penyelidik lepas dalam pengiraan pembentukan amplitud berdasarkan domain 
frekuensi. Kesimpulannya, kajian telah membuktikan kehadiran reraut dapat 
mengurangkan pembentukan keracak tidak- tetap pada fiuslaj dan mencadangkan tiga 
bilah pemutar reraut elips adalah model konfigurasi helikopter terbaik dengan kadar 
pembentukan dan penghasilan gelora terendah.
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CHAPTER 1

INTRODUCTION

j I Background

Helicopter is a wingless aircraft that can attain vertical flight from the gyration 

of overhead blades (Brain et al., 2018). Helicopter runs through revolution of blades 

that forming a lift (Robert, 2017). Its ability to fly in multiple directions has been 

admired vigorously. Flight condition and duration are crucial as thehelicopter itself 

(Lombardo, 1993). De Jonge (1986), stated that helicopter manoeuvre results in a 

number of continuous incremental load of cycles as compared to a fixed wing. 

Advance helicopter design continuously focuses on implementation of a better and 

faster helicopter. However, the intricate geometry or rotational effect does play avital 

role in the production of hub drag (Raghav et al., 2013). Large eddy motion usually 

found in the formation of an unsteady wake, which shed downstream along the tail 

boom of the helicopter, usually create irregular frequency. As the unsteady wake hits 

the vertical tail rotor, the impact causes the formation of tail shakephenomenon. The 

aerodynamic interaction between a rotor and fuselage is complex and difficult 

problems. Understanding the component on the helicopter plays an important role in 

knowing the parts that involved in initiation of unsteady wake. Engine, main rotor and 

tail rotor are important key parts in flight formation; however, each component 

contributes to its own mechanical vibration. Therefore, investigation on the presence 

of unsteady wake will be the focus especially the unsteady wake interaction on main 

rotor hub assembly.
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\2 Importance of Rotor System

Helicopter is known for its specialty and uniqueness through their ability to 

manoeuvres in multiple directions during flight (Lombardo, 1993). However, 

everythingcomes with limitation. To obtain a better flight quality for a helicopter, new 

technology and ideas had been presented. Even though many aeronautic companies 

had come with various designs of helicopter with certain functionality, yet, it all comes 

down to blades of the rotor. Rex (2020) stated that vibrations and vibratory loads 

propagated through the rotor system into fuselage through rotor shaft and flexible 

control linkage, mechanically. Similarly, as stated by Wang (2020), to improve a 

helicopter ride, designers were required to minimise the vibration, which mostly 

originates from the rotor and interface with fuselage. De Jonge (1986) stated that it 

was difficult to accurately predict the rotor blade loading since it has to currently 

follow up with air worthiness requirements and fatigue analysis must be based on the 

existing measured loads. David (1986) and Brocklehurst (2013) had done a research 

on the characteristic of the optimum dynamic and a review paper on various design of 

rotor blade tip, which determined the best design and highest lift recorded. A desirable 

flight condition such as producing the best lift with minimum drag and fuel 

consumption is favourable. This project, concentrating on the main rotor hub assembly 

itself. There were few scholars who did a design on the main rotor hub to reduce the 

drag produced, for example, by Khier (2012). Khier (2012) stated that one third of the 

total drag on a modern conventional helicopter is attributed to the rotor hub and major 

contributor to the tail shake phenomenon (Cassier, 1994). Tail shake phenomenon 

relates to an anti-torque system, especially during forward flight, whereby, in this state, 

the highly unsteady main rotor wake strikes onto the tail boom and empennage, which 

excites a fluctuation of the lateral bending moment on the helicopter fuselage 

(Kowarsch et al., 2014). This high vibration level is considered to be unfavourable. 

Figure 1 shows the anti-torque system of the helicopter that is used to counter the 

torque production from the blade rotation.
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Figure 1 Anti-torque rotor produces thrust to oppose torque (FAA ,2012).

Anti-torque system or also known as tail rotor is one of the control system that 

was design to help counter the torque created from the blade rotation. Through the 

control panel, the flight crew vary the thrust located on the tail rotor to maintain the 

direction of flight, especially during yaw or changing heading while hovering(Federal 

Aviation Administration, 2012). Tail rotor acts as the mounting for a single tail rotor 

as it creates torque during helicopter turns, whereas the rotor blades generate yawing 

effect (Padfield,1996). It is stated that in achieving a static stability even in the 

directional mode, the yawing derivative, Cm must be a positive value whereby it will 

turn to its balance condition when subjected to a yawing disturbance (Nelson, 1998). 

However, the focus of this project is to investigate the formation of an aerodynamic 

unsteady wake on main rotor hub which leads to the creation of tail shake phenomenon. 

There are two parts of the system that play crucial roles in flight and stability in 

unsteady wake investigation which are the main rotor and tail rotor.

1.3 Interaction of Unsteady Wake

Turbulent formation usually occurs due to disturbance of air flow surround or 

through an area that divert the original flow. Reduction or an increment of velocity due 

to surface roughness effects the generation of turbulent. It can be visibly seen on 

wingtip of a fixed wing during high speed flight whereby vortices occur due to the 

pressure differential over the wing surfaces (IVAO, 2018). Jimenez et al. (2016) 

stated that fuselage is one of the main contribution of a parasite drag which supported
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by Raghav et al. (2013) whereby 50% to 70% of drag generated by the fuselage of a 

helicopter that included both the main rotor fairing and hub. The complex geometry of 

the main rotor hub is one of the reason for the generation of unsteady wake that been 

said to contribute 25% to 30% of aircraft parasite drag (Kowarsch, 2014). Kowarsch 

(2014) listed that without the main rotor hub cap, it reduces the parasite drag portion 

by 5.7%, however, in the design stage of a helicopter, the number of rotor blade is 

crucial since it is closely related to main rotor hub assembly. The number of blades 

relatively dependent in the mission and weight of the aircraft. Most helicopter with 

one or two passengers tends to be assembled with a single rotor blade. Robinson R22 

is one of lightweight helicopter that commonly employed for surveying purposes 

whereby it is assembled with a single rotor blade. However, helicopter such as 

Chinook CH-47 is design for military mission and for heavy lifting, therefore the ideal 

CH-47 assembled with six rotor blades. The angle difference on rotor blades could cause 

the existenceof a wake turbulence. Moreover, the interference between the geometry 

of fairings and number of blades could lead to an increase of turbulent wake formed 

on the aft of a helicopter. In this paper, different number of blades and design of fairings 

will be used to observe the interference effects of geometry and number of blades in 

the formation of turbulent. Also, to prove either in the presence of hub cap or fairings, 

the wake frequency will be reduced. Figure 1.1 shows the area that believed to be 

contributing to the production of unsteady wake and tail shake phenomenon.

Figure 1.1 Main rotor hub assembly (FAA, 2012).
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During the forward flight, the geometry on the main-rotor-hub assembly 

includes the number of main-rotor blades believed to contribute to the formation of 

unsteady wake. Physically, the geometries of the main-rotor-hub assembly can be seen 

to have sharp edges and irregular surfaces that deflects the free stream flow. Refer the 

blades rotation into an element, which is labelled in red and black, as shown in Figure

1.2. Velocity is the best parameter used to explain and visually show the derivatives or 

changes that occurred during the flight. Figure 1.2 shows the adverse velocity 

generated alongthe main rotor blade. The analysis is based on the location of the 

element that moves further away from the hub with the velocity produced, also known 

as tip speed. During a normal rotation of blades, the red label element has higher 

velocity as compared to an element in black label whereby it is position closer to the 

centre of the main rotor hub.

Figure 1.2 Velocity differences along the main rotor blades

Equation (1) shows the relationship between the velocity of a blade element 

and the distance of an element to the centre of the hub.

V =ror (1)

Where; the V = blade velocity, (m/s)

ro = angular velocity (revolution per min)

r = distance from the centre of hub to the colour label, (m)
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Equation (1) shows that the velocity is proportional to the distance from centre 

of the hub, r. It is proven that velocity increase as the well as the blade length increases. 

The speed of the tip of the blades is greater related to the speed of the blades which 

closer to the main rotor hub. The velocity difference causes the formation of velocity 

in irregular magnitude along the main-rotor blades. This produces pressure 

differential, which at particular pitch angle may cause the tail shake phenomenon. 

Figure 1.3 shows the top view of a helicopter that is assumed to be in a control system, 

with incompressible flow at forward flight condition. The velocity derivatives at the tip 

of the blades would produce higher velocity with an additional of free stream flow 

velocity. Stream flow increases the level of velocity as it is further way from the centre 

of rotation. The irregular velocities along the main-rotor blade generated are one of the 

causes of the uneven wake of the main rotor hub.

Figure 1.3 Velocity difference between the tip and the centre of the rotation.

Where,

V= Free stream flow velocity 

V’ = Derivative of velocity.

The adverse velocity along the rotor blades causes an adverse pressure, which 

leads to the formation of turbulent and wake. The cyclic load of blades generates an 

alternate form of adverse pressure in the form of air pocket. During forward flight, 

these air pocket’s adverse pressure travel towards the aft post of fuselage and hit the
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tail rotor continuously, whereby it leads to a so-called tail shake phenomenon. 

Vibration typically occurs between one and two times the rotor rotational frequency 

(Waard &Trouve,1999). The wake of the main rotor, the rotor hub and the airframe 

that imposes on the tail boom, causing an excitation of low-frequency of the entire 

helicopter airframe (Schaeferlein et al., 2017). Figure 1.4 shows the visual formation 

of unsteady wake sourced out from main rotor assembly.

Figure 1.4 Schematic of tail shake phenomenon (Waard and Trouve, 1999)

The unsteady wake was justified to affect the control performance and safetyof 

the helicopter structure. It is said to be complicated and leads to a complexity in 

understanding the aerodynamics itself (Hassan et al., 1999). Supported by Roesch and 

Dequin (1983) who stated that tail shake helicopter phenomenon caused the 

disturbance in performance, passenger’s comfort and control quality. Interactional 

Aerodynamics (I/A) still remain a prolong issue for continuous investigation. This is 

also agreed by Schaeferlein (2017), whereby such phenomenon described a significant 

interaction of the rotor wake with structure of the airframe leading to the flight 

instability and reduction in ride comfort.

A wind tunnel is an unwieldy device that need continuous monitoring and 

maintenance as compared to Computational Fluid Dynamic (CFD) which is a modern 

instrument that helps to reduce the time and cost of a simulation. However, a validation 

stage through grid independent study is required. It is to comprehend the capabilities 

of the software and the computer itself. Without validation, it cannot be a definite 

result. Vertical tail and the main rotor hub interaction is said to be the consequence of 

tail shake phenomenon, although the researcher’s hard work and a lot of effort given, 

yet little information of tail shake phenomenon had been made (Coton, 2009). Coton

Rotor hub wake Vertical tail
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(2009) said it was due to most data which were kept sensitive and private from 

most researchers.

1.4 Problem statement

The rotor hub system is one of the primary contributors to the helicopter 

parasite drag and inherent limiters to maximise the helicopter forward-flight speed 

(Reich et Al., 2016). Previous conducted study stated that one third of the total drag 

was generated from the rotor hub and this statement achieved from the analysis 

conducted on a modern conventional helicopter (Khier, 2012). Supported by 

Schaeferlein (2017), that rotor hub fairing, engine exhaust, cowling, the shape, position 

and dynamics of the tail boom play a key role in the characteristics of the tail shake 

phenomenon. Minimalising the production of drag is very much desired and an 

essential step in developing an operative, effective helicopters. However, the main 

rotor hub assembly believed to be the foremost contributor in tail shake phenomenon 

(Cassier, 1994). Interactional Aerodynamics (A/I) is complex even after experiencing 

and conducting many works, yet it is still hard to confidently predict the result without 

any flight test of a new design helicopter (Waard & Trouve, 1999). Due to sensitivity 

issues, most helicopter manufacturer tended to keep the A/I data away from most 

researchers and reduces the chances of understanding the complexity of tail shake 

phenomenon.

Variation of time makes unsteady flow to be difficult and complicated as 

compared to a steady flow (Brock et al., 1972). In maintenance of an aircraft, some 

parts are required to undergo periodic maintenance based on the system cyclic. 

Through a continuous hours of flying, vibration is not something yet to be avoided by 

any mechanical system. Through unsteady wake formation source from the main rotor 

hub, it will create a tremor on the helicopter’s tail boom that generates continuous 

vibration which leads to poor control performance and responsive quality of the 

helicopter. Excessive vibration and additional of external forces reported to be one of 

the reason of any helicopter crashed incident. Wake is divided into near and far wake 

which comprised trailed and shed vorticity which later on created vortex (Xu Guo et



Al., 2002). The pulsation frequency plays the main part in the helicopter crash incident. 

The low inducedvelocity of the main rotor as well as the additional descent rate leads 

to a strong interaction between the main rotor wake and tail boom (Schaeferlein et al., 

2017). A subtle frequency existed as the rotor blades rotation been disrupted, however, 

with presence of outward forces, an intermediate vibration could be generated leading 

to disengagement of loose components on helicopter. A high frequency vibration can 

be detected especially when the tail rotor, tail drive cable and shaft, tail fan shaft 

vibrates equally or beyond the speed of tail rotor. In any circumstance, whereby the 

main rotor hub assembly wake coincides with the natural frequency on the tail section, 

a robust intensification would occur which leads to an impulsive structural failure that 

may transpire due to fatigueproblems. Addition of drag can be detected from the tail 

shake phenomenon that leads to poor handling and comfort. Moreover, the stability 

characteristic such as yawing and pitching can be affected (Ishak, 2012). By using the 

Computational Fluid Dynamics (CFD), an investigation on unsteady flow of air at 

constant velocity, various rotational speeds, and in different pitch angle, would help in 

understanding the effects of the unsteady wake produced from the main rotor hub 

assembly. It is important to perceive the outcome of the unstable flow under selected 

flight parameters, study Previous study researcher on the low range advance ratios of 

up to 0.3. However, the air load pressure is believed to be quite small for both the low 

and high pitching positions indicating that the wake generated is too small to influence 

the flow surrounds in the vicinity of tail parts (Leishman et al., 1996). Obviously, 

higher advance ratio works are highly demanded and this paper focuses on 

investigating the effects of high advance ratio towards the wake formation.

1.5 Objectives

1) To investigate the unsteady aerodynamic load characteristics triggered by 

the unsteady wake of the helicopter’s main rotor-hub assembly through 

numerical simulation.

2) To evaluate the static and dynamic analyses of unsteady wake of main 

rotor-hub assembly of a simplified and real rotor models for different flight 

configurations.
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15  Scopes ofStudy

The following are the scopes that will be covered:

1. Develop a simplified three-dimensional model of the main-rotor-hub 

helicopter for unsteady wake analysis.

2. Simulations on the actual helicopter model by using CFD software with 

various helicopter configurations and flight parameters.

3. Flight parameters and configurations that shall be studied:

i) Advance ratio / rotational speed

ii) Number of main rotor blades

iii) Configurations

iv) Angle of attack (a)

4. CFD results will be validated with experimental results 

conducted by other researchers.

From the selected flight configurations, this paper will be able to observe the 

formation of adverse pressure gradient surrounding the simplified and real rotor model. 

Quantified the amount of turbulent, pressure and drag generated and compared the 

effects of stream flow due to complex geometry and employment of fairing on the after 

wake for static and dynamic analyses.
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