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ABSTRACT 

 

 

 

 

Nowadays, pipeline system has become lifeblood of modern civilization, 

industrial society and residential community. Gas transmission and distribution lines 

transfer natural gas from a source to points of utilization. Typically, gas distribution 

pipeline is laid adjacent to water pipeline facility. This may pose a great danger 

through the release of high pressure water leakage that subsequently induced 

surrounding soil to form erosive slurry.  If the hit is directed towards metal pipe, 

slurry could directly cause continuous wall thinning of pipe that may lead to its point 

of failure. Therefore, this research is aimed to observe and evaluate the erosion 

pattern on natural gas pipeline due to water jetting. The Computational Fluid 

Dynamics (CFD) technique was employed to estimate the hydrodynamic 

characteristics, erosion patterns and locating the ruptured locations on the pipe in 

more expanded version.  The study also focused on the fluid velocity, sand wall 

shear, water wall shear and total pressure generated on surface of natural gas pipe. 

This work was validated by the incident of NPS8 carbon steel gas pipeline failure in 

April 2006. CFD simulation results showed that water jetting location at angle 45°, 

60° and 75° on the NPS8 pipe surface had similar impact such as leakage point, 

surface roughness and smoothness. The enhanced CFD simulation results 

successfully showed similar hydrodynamic characteristics as the NPS8 rupture 

incident. 
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ABSTRAK 

 

 

 

 

Pada masa kini, sistem perpaipan menjadi nadi kepada pengguna yang terdiri 

daripada kalangan penduduk perumahan serta masyarakat pengilangan. Penghantaran 

dan pengagihan gas dari punca ke titk penggunaan. Biasanya, paip pengagihan gas 

yang ditanam bersebelahan dengan fasiliti paip air. Sistem ini boleh menimbulkan 

kebocoran paip air dan mendatangkan bahaya yang besar menerusi “slurry” hakisan 

yang bertekanan tinggi terhadap sistem perpaipan gas asli.  Jika “slurry” hakisan ini 

terkena secara terus pada permukaan paip, ia akan berterusan menghakis dinding 

paip dan akhirnya, mengakibatkan kegagalan sistem perpaipan tersebut. Penyelidikan 

ini bertujuan untuk memerhati dan menilai corak hakisan permukaan paip 

disebabkan hentaman jet air bertekanan tinggi melalui teknik “Computaional Fluid 

Dynamic (CFD)”. Teknik CFD telah digunakan untuk menilai ciri-ciri hidrodinamik, 

corak hakisan dan lokasi kegagalan paip dengan lebih mendalam. Kajian terhadap 

halaju bendalir dan kesan ricihan pada pasir dan air dan tekanan keseluruhan yang 

terbina pada permukaan paip gas asli telah dijalankan. Kajian ini disahkan melalui 

perbandingan dengan kegagalan paip keluli karbon NPS8 yang berlaku pada tahun 

2006. Keputusan simulasi CFD menunjukkan pancutan air dari sudut 45°, 60°, 75° 

kepada permukaan NPS8 paip mempunyai banyak persamaan seperti titik kegagalan 

paip, corak permukaan kasar dan licin. Keputusan simulasi CFD pada paip  

menunjukkan kejayaan keputusan yang diperohi dengan ciri hidrodinamik yang 

berlaku pada kejadian bocor paip, NPS8. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0  Introduction 

 

 

Pipelines have been used to transport many flow media. Pipelines neither 

aboveground nor underground (buried pipelines) can be categorized to different types. 

The most common pipelines are sewage, water distribution system, oil and gas 

transferring pipelines. Thus, pipelines are classified as lifelines since they are 

commonly used to carry important material to support human life activities. As 

pipelines are generally buried, it is necessary to consider every influencing factor and 

variables possibly encountered in the pipelines operation. Erosion pipelines may cause 

leakage which will disrupt service and hazardous chemical leakage may possibly 

contaminate the surrounding environmental vicinity. 

 

 

In recent years, buried gas pipeline has been given a special attention and incur 

growing research of external surface pipe wear problems caused by subsurface 

hydraulic erosion, soil abrasion, poor ground conditions and seismic waves which 

energy travel through the Earth’s layer resulted by earthquake, explosion and volcano 

(Sun et al., 2011; Lee et al., 2009; Datta, 1999). Therefore, it is unsurprisingly the soil-

pipe interaction (buried pipe) has been studied for a number of decades. Buried pipe 

wear is a usual phenomenon and has been a serious and continuing problem in many 
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industrial operations. This work presented the prediction of the erosion pattern on the 

surface gas pipeline under the threat of 9 atm water jet release, represented by the leak 

from water pipe. Two major reasons resulted to this study were identified. Firstly, 

statistical data shows that accidents of service pipe leak accounting for 40% of gas 

leakage or so, in which about 50% of the underground service pipe leak are caused by 

the corrosion of pipes under erosion of abrasive particles (Wang et al., 2012). It means 

underground service pipeline leaks were initially caused by erosion which thinning the 

pipeline coating in turn, pipe corrosion. Secondly, external erosion damage of surface 

buried pipe caused by the impaction (deformation and cutting action) has not been 

fully understood because of the complication of soil behaviour (Sun et al., 2011). 

 

 

In the earliest study, the main objectives of the study on buried pipe were to 

correlate predictions of pipe-soil interactions during installation, ground motion 

include seismic behaviour of buried gas pipe under earthquake, distribution of soil 

pressure and soil stress on buried pipe and earth loads effect (Lee et al., 2009; McGrath, 

1998; Ho, 2008; Choo et al., 2007; Datta, 1999). But, recently, researchers are 

interested in the erosion caused by service pipe leakage under buried pipe condition 

(Majid et al., 2010). Throughout the years there have been many studies of erosive 

wear and many type erosion patterns have been applied for erosive study. The first 

technical paper related on erosive wear is started at 1946 by Wahl and Harstein (1946), 

publishing the first systematic survey of erosion. American Society for Testing and 

Materials, ASTM G-73, G-76 and G-134 are ASTM wear testing standards (Peter et 

al., 1999) which developed for used to solve practical erosion problem. ASTM G-73, 

G-76 and G-134 were used rotating apparatus, gas jet and cavitating liquid jet 

respectively for erosion tests. At the same time, there are still no practical solutions to 

real erosion mechanism under buried pipe for purposely improving qualitative 

understanding of buried pipe surface impact in idealized systems. Different 

engineering standard approved by a recognizes standard organization such as British 

Standard, Gas Malaysia Standard, etc. cause the confusedness of engineering practice 
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in the field.   Consequently, numbers of codes of practice which define as a set of 

guidelines and regulations to be followed to achieve the standards of health and safety.  

However, historical overview of the erosion problem study is beneficial in order to 

optimize future erosion testing or even approachable idealized simulation.  

 

 

Erosion has been classified as a wear process in a classification scheme based 

on relative motion (Meng, 1994) and as wear mechanism. According to American 

Society for Testing and Materials (ASTM), erosion is ‘progressive loss of original 

material from a solid surface due to the mechanical interaction between that surface 

and a fluid, a multi component fluid, or impingement liquid or solid particles’ 

(Lindsley and Marder, 1999). In a strict sense, erosion is defined as cutting, fatiguing 

and melting by impingement particles of any of these wear mechanisms operating 

either singly or combination as shown in Figure 1.1 (Meng, 1994). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1   The Four Submechanisms by which Erosion Separates Materials From a 

Target and the Four Separate Modes of Material Behavior in the Loss Process 

(Meng, 1994).  

Computational Fluid Dynamics (CFD) has been used in research of single 

phase or multiphase erosion for many years. CFD is a powerful tools and well known 
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of predicting erosion pattern damage. Unlike many erosion models which shown from 

literatures, CFD modelling can be applied to any complex components or geometries. 

More importantly, CFD does allow investigators to target locations of high erosion 

and provide detailed patterns of erosion on surfaces.  CFD can provide great help in 

developing either simple or complex geometries, short timely procedure to predict the 

amount of erosion. 

 

 

 

 

1. 1  Problem Statements 

 

 

In the ninth European Gas pipeline Incident data Group (EGIG) report, there 

are 1309 gas pipeline leakage incidents reported for the period 1970 to 2013.  

According to EGIG, over the 10 years, external interference (activities caused the 

incident e.g. digging, piling, anchor, ground work etc.), corrosion (internal and 

external), construction defects (material defect, field weld etc.) and ground movement  

(erosion,  landslide, mining  etc.) were  represented 35%,  24%, 16%  and  

13% respectively of the gas pipeline incidents reported. However, according to U.S. 

Department of Transportation Pipeline and Hazardous Administration (PHMSA), 

there are 10,683 natural gas pipeline incidents was reported over the period 1968 to 

2012. In Malaysia, natural gas pipeline failure was not rare incident. Within 2 years, 

2006 to 2008, two natural gas pipe leak incidents were happened in Peninsular 

Malaysia. Both incidents were identified as erosion of slurry impact led to the rupture 

gas pipeline. For gas distribution pipeline system, gas pipeline was built nearby the 

utility pipeline. One of the gas pipeline incidents within 2006 to 2008 is happened as 

per similar environment whereas the gas pipeline was built crossing utility pipeline. 

For this work, the gas pipeline crossing utility pipeline was studied because it will take 
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as comparative with CFD results. Frequent failure of natural gas pipeline, natural gas 

pipeline has been studied for number of decades.  

 

 

There are many factors that may influence the erosion on external surface 

buried pipelines. These have been classified by Finnie (1972) into three main 

categories. First, the erosion is governed by particle flow such as angle of impingement, 

particle velocity and particle rotation. Secondly, properties of soil like hardness, 

angularity, shape and strength. Lastly, properties of target surface, such as surface 

topography, hardness, ductility and other mechanical properties. Generally, natural gas 

pipeline was in buried; the main causes and major governed the erosion of natural gas 

pipeline failure still remain doubt. Although Majid et al., (2010) was identifying the 

main root cause of the buried pipeline leakage caused by continuous impaction of the 

erosive slurry (leaked water pipe mixed with surrounding soil), there was still lack of 

information on the impaction happened hidden beneath the ground. 

 

A series of field research study to define the erosion impact of underground 

buried gas pipeline in order to assist the development of specific separation distance 

guide is therefore required. For instances, Mohsin et al., (2014) suggested 1200 mm 

as safety distance for natural gas pipeline with water pipeline system. Moreover, it is 

believed that through this particular research could greatly enhance better 

understanding of erosion pattern and able to predict buried natural gas pipe impact due 

to environmental change on different backfill materials. At the same time, it is also 

believe that this research will improve and enhance for the safety and integrity of 

buried gas pipe safety.  

 

 

Common dominating factors that typically enhance pipeline failures are wear, 

complication of soil and severity of other utility threats. The following sections 

provide below about the explanation on these three factors. 
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1.1.1  Wear 

 

 

In engineering’s world, wear is defined as damage to a surface resulting from 

mechanical interaction with another surface, body or fluid which moves relative to it. 

Engineers and designers should have equations to predict wear rates. However, the 

available equations with different variables used are usually confused designers to 

promote its practical usage in predicting the product life. Critically, there is still no 

specific equation for prediction of buried pipeline wear due to complication of soil 

(Sun et al., 2011). For buried pipe wear analysis, researchers are only left in word form 

to description because of the reason hidden beneath the ground. Therefore, more 

information is highly required on the relevant wear tests and laboratory works. 

Corrosion is included one of wear phenomenon, but the damage is performed by 

chemical reaction rather than mechanical action. Thus, this research will focus upon 

the erosion of buried natural gas pipe to obtain the information underneath erosion 

natural gas pipe. The consequence of direct impact from direct exposure of high 

pressure water jetting will be studied accordingly.  

 

 

 

 

 

 

1.1.2  Characteristic of Backfill Soil 
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The size and shape of particle are of fundamental importance in many areas of 

engineering. There is scientific research focus to study the backfill particle shapes; in 

particular abrasive and erosion wear processes known as tribology system. The 

determination of particles shape still remains one of the most difficult problems. 

Although much effort already been initiated by researchers to develop a universal 

definition of shape and angularity, there are still no precise definition exists to date 

because of the inability to quantify angularity.   

 

 

 

 

1.1.3  Severity of Other Utility System Threats 

 

 

As mentioned by Finnie, three main categories that are significant when 

addressing erosion on buried pipe are: angle impingement erosion, abrasivity or 

angularity of erodent impingement erosion and velocities. Therefore, safety distance 

used to place natural gas pipe away from water pipeline should be given special 

attention. However, only standard 300 mm safety distance between natural gas pipe 

and water pipe; such an encounter may arise when nearby water pipe leak from a wide 

variety angle and direction towards natural gas pipe which will eventually erode the 

natural gas pipe. Since buried gas pipe structure is located underground, main erosion 

causes of leaks such as impingement angle, angularity backfill etc. still remain 

doubtful and unidentified. In fact, buried gas pipe may evidently expose to other 

deterioration mechanisms than erosion, more specifically abrasivity, fatigue and other 

wear form. Due to doubtness on the main cause of gas pipeline leakage, specific study 

on severity of others utility system threat on buried gas pipeline need to be embarked.  
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1.2  Research Objectives 

 

 

In line with the above mentioned problems encountered by buried gas pipeline 

system, the following objectives have been developed:  

 

 

(a) To observed and evaluate the erosion pattern onto natural gas pipeline due to 

water jetting via computational fluid dynamic. 

 

 

(b) To investigate the surface morphology onto the natural gas pipeline due to 

angle impingement slurry jetting via computational fluid dynamic. 

 

 

(c) To verify the erosion pattern and surface morphology via expected data and 

field study. 

 

 

 

 

 

 

 

1.3  Scope of Works 

 

 

The scopes of work were directed towards assessing the effects of the severity 

erosion pattern on the gas pipeline. Incident of NPS 8 gas pipeline rupture was used to 
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compare the extended physical impact towards testing case with CFD results.  The 

scopes of work considered in the study are as follow:  

 

 

i. Variation in leakage angle impact direction i.e. 30°, 45°, 60°, 75°, 85°, 90°, 

100°, 105°, 115°, 130°, 145°  to observed the water and sand velocities flow 

within buried condition.  

 

ii. Variation in leakage angle impact direction i.e. 30°, 45°, 60°, 75°, 85°, 90°, 

100°, 105°, 115°, 130°, 145°  to observed the effect of wall shear pattern and 

total pressure impaction on the NPS 8 gas pipeline. 

 

iii. Variation in sand compactness fraction (0.8 and 1.0) to observed the water and 

sand velocities flow within buried condition. The effect of wall shear pattern 

and total pressure impaction on the NPS 8 gas pipeline. 

 

iv. Variation of sand particle size which acts as backfill to observed the impaction 

of the natural gas pipeline. The effect of wall shear pattern and total pressure 

impaction on the NPS 8 gas pipeline. 

 

 

 

 

 

 

1.4  Assumptions 

 

 

Four assumptions have been made for establishing the erosion behaviour of the 

buried pipe in this work. First, the live load over the ground surface is negligible. 
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Second, the internal pressure within the pipe is ignored. Finally, the condition is at pH 

7, the degradation was non-corrosion dominated and that corrosion played only a little 

role in the several damage mechanisms. These three assumptions have been made on 

the basic sound engineering judgement for this work. 
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