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ABSTRACT 

 UTM-LST model is a semi span model of aircraft wing which is scaled as 9% 

of generic transport. This model is important in investigating aircraft wing 

aerodynamic performance such as lift, drag and shear forces acting on the wing in 

various conditions. These forces affect an important aircraft flight parameter which is 

pressure coefficient, Cp and flight performance due to air vortex formation. The 

established technique for measuring Cp is using conventional static pressure sensors 

embedded into the wing model. This work focuses on measurement of Cp and locating 

air vortex formation on the UTM-LST half model surface. Two techniques, namely, 

fiber Bragg gratings (FBGs) strain sensor and static pressure sensors were employed 

for these purposes and measurement were performed inside a low speed wind tunnel. 

The FBGs strain sensor was placed as close as possible to the pressure sensor taps to 

allow more accurate comparison of Cp measurement between these two techniques. 

The wind tunnel test was conducted at the wind speed, v in the range of 20 m s−1 to 

40 m s−1 and the angle of attack, α in the range of 0° to 20°. The results revealed that 

FBGs sensors are capable in measuring Cp and to locate the air vortex formation on 

the wing. The Cp values obtained using FBGs were well in agreement with Cp values 

obtained using conventional static pressure sensors except the Cp obtained at 

separation region. The Cp measured using FBGs experiences strain due to air pressure 

from all directions is not only from wind flow but from vortices as well. The Cp 

obtained by pressure sensor is only affected by pressure difference. Thus, Cp measured 

using FBGs is higher than the one measured by pressure sensors. The formation of air 

vortex using FBGs can then be determined based on the location on wing that has a 

higher Cp from FBGs sensor compared to the one measured using conventional 

pressure sensors. In conclusion, the FBG strain sensor can be used as an alternative 

technique to determine Cp and to locate air vortex formation. 
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ABSTRAK 

Model UTM-LST adalah model separuh panjang sayap pesawat yang berskala 

9% daripada pesawat komersial. Model ini penting untuk mengkaji prestasi 

aerodinamik sayap pesawat seperti daya angkat, daya seretan dan daya ricihan yang 

bertindak pada sayap dalam pelbagai keadaan. Daya ini mempengaruhi parameter 

penerbangan pesawat yang penting iaitu pekali tekanan, Cp dan prestasi penerbangan 

yang disebabkan oleh pembentukan vorteks udara. Teknik yang digunakan untuk 

mengukur Cp adalah sensor tekanan statik konvensional yang telah terbina di dalam 

model sayap. Kerja ini memberi tumpuan kepada pengukuran Cp dan untuk mencari 

lokasi pembentukan vorteks udara pada permukaan model sayap UTM-LST. Dua 

teknik iaitu sensor terikan parutan Bragg gentian (FBG) dan sensor tekanan statik telah 

digunakan untuk tujuan tersebut dan ukuran ini telah dilakukan di dalam terowong 

angin kelajuan rendah. Sensor terikan FBGs diletakkan sedekat mungkin dengan paip 

sensor tekanan untuk membolehkan perbandingan lebih tepat bagi pengukuran Cp 

menggunakan kedua-dua teknik ini. Ujian terowong angin dilakukan pada kelajuan 

angin, v dalam julat 20 m s−1 sehingga 40 m s−1 dan sudut serang, α dalam julat 0° 

sehingga 20°. Hasil kajian menunjukkan bahawa sensor FBG mampu mengukur Cp 

dan mencari pembentukan vorteks udara pada sayap. Nilai Cp yang diperoleh 

menggunakan FBG hampir sama dengan nilai Cp yang diperoleh menggunakan sensor 

tekanan statik konvensional kecuali Cp yang diperoleh di kawasan pemisahan aliran. 

Nilai Cp yang diukur dengan menggunakan FBG adalah disebabkan tekanan udara 

yang bertindak dari semua arah dan bukan hanya disebabkan aliran angin, malah juga 

dari vorteks. Nilai Cp yang diperoleh sensor tekanan hanya dipengaruhi oleh 

perbezaan tekanan. Oleh itu, nilai Cp yang diukur menggunakan FBG menjadi lebih 

tinggi daripada bacaan sensor tekanan. Pembentukan vorteks udara menggunakan 

FBG boleh ditentukan berdasarkan lokasi pada sayap yang mempunyai nilai Cp yang 

lebih tinggi berbanding dengan Cp yang diukur menggunakan sensor tekanan 

konvensional. Kesimpulannya, sensor FBG boleh digunakan sebagai kaedah alternatif 

untuk menentukan Cp dan untuk mencari pembentukan vorteks udara. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Pressure coefficient, Cp is widely used in industry and scientific research to 

describe the relative pressure of a model. Every point in a fluid flow field has its own 

unique Cp which makes multipoint pressure measurement very important to get the 

best picture for the flow separation. In aerodynamic studies, analyzing the Cp on 

surface flow measurement helps the researcher and manufacturer to locate the flow 

separation formation on the aircraft and automotive models. It is very important to 

improve the designs for optimum flight and cruising performance. In aircraft 

manufacturing, the surface pressure measurement is crucial for effective and safe 

handling. The Cp can show the pressure distribution along the surface of the model 

with the help of the pressure sensors.  

 

In aircrafts pressure measurement study, the Cp is affected by the wind speed 

(v), angle of attack (α), and the density of fluid (ρ) (Corda, 2017). The change in these 

factors will change the aerodynamic flow of the wind around the airfoil which will 

lead to the change in pressure due to the force exerted by the wind on the surface area 

of the airfoil. Therefore, the pressure sensor is a crucial instrument in aircraft 

transportation as it provides information such as the lift force produced when it is 

moving at certain speed, v at different angle of attack, α during take-off and changing 

the altitude. The density of fluid is changing as the aircrafts moving at different altitude 

and climate.  

 

The failure of this sensors can cause fatal crash such happened to Ethiopia 

Airlines crash on 10th March 2019 and Lion Air 737 on 29th October 2018 (AFP, 

2018). The Ethiopia Airlines crash was caused by the anti-stall system activated 

automatically before the plane crashed near Bishoftu, Ethiopia which killed all 157 
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people on board (Reuters, 2019). The Lion Air 737 erroneous input from pitching 

angle sensors caused the plane crashed into the sea of Jakarta and sacrificed 188 life 

of passengers and crew (AFP, 2018). These incidents caused all airlines grounding the 

Boeing 737 MAX 8 flight operation. This has risen the awareness to the manufacturers 

to prioritise the development of sensors before the aerodynamics of the aircraft. 

 

A few sensors such as static pressure sensors and pressure-sensitive paint, 

(PSP) have been studied in the past to investigate the aerodynamic drag in order to 

optimize in-flight conditions and improve the flight safety (Corke, Enloe and 

Wilkinson, 2010). The static pressure sensor is the most common method used in 

surfaces pressure measurement study because it gives the most accurate measurement 

(Gregory et al., 2008). On the other hand, PSP method is less precise since it uses 

intensity of luminescence emitted by excited oxygen molecules (Liu et al., 1997). 

 

For active control mechanism, dielectric barrier discharge (DBD) plasma 

actuators has been used to reduce the skin friction drag around the model (Segawa et 

al., 2013). DBD plasma actuator consists of two conductors separated by dielectric 

materials and use high-voltage power supply to generate plasma. The generated plasma 

can reduce the net flow separation on a model. The application of the plasma actuators 

in actual flight is yet to be identified because of the ability to withstand high pressure 

in various real flight condition. 

 

The use of optical strain sensors using Fiber Bragg Gratings (FBGs) since the 

beginning of 20th century gains attention among researchers to investigate the 

feasibility of FBGs in the surface pressure measurement. This is because FBGs can 

simply be attached to desired location on the model, without modifying the structure 

of the model. Besides, FBGs is very thin and lightweight making it suitable to be used 

in surface pressure measurement as it would not disturb the aerodynamics of the flow. 

Other advantages of FBGs is that they have very high sensitivity, stable spectrum 

reflectivity, and is not affected by electromagnetic field (Kreuzer, 2006). The air 

pressure is determined by calculating the Bragg wavelength shift caused by strain 

exerted on the gratings 
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This work is carried out to design an array of FBGs strain sensor and investigate 

the performance of FBGs in measuring Cp and to locate the flow separation on 

aeroplane wing model known as generic Universiti Teknologi Malaysia Low Speed 

Tunnel (UTM-LST) half-model (Mansor, 2008). The results obtained by FBGs strain 

sensors are compared to the Cp obtained by static pressure sensors known as FKPS 

30DP. The outcome of this project can provide an alternative way for Cp measurement 

which is more compatible and convenient.  

 

 

 

1.2 Problem Statement 

The study of surface control and its effects on aircraft flow separation has been 

an interesting field for many researchers. The pressure coefficient, Cp is the desired 

parameter being measured in this study. This parameter provides a very clear visual of 

air pressure distribution on the wing model. Hence, the air separation location can be 

determined by analyzing the air pressure coefficient. It is necessary to locate the 

position of the air vortices formation to improve the design of the existing aircraft to 

enhance its performance.  

 

There are two conventional pressure sensors commonly used in this field, 

called as static pressure sensor and pressure-sensitive paint. However, the conventional 

static pressure sensors require a custom-made model which has holes on the body 

surface to install the pressure tubes to measure the pressure distribution. This means 

the design of the model must consider the sensor installation. Once the model is made, 

the position of the hole is fixed, thus pressure measurement is recorded on that 

position. If the measurement at some other points are required then, it cannot be 

performed on the same model. This is one of the disadvantages of using static pressure 

sensor. 

 

Other disadvantage of this sensor is the clogged problem either at the holes or 

inside the tubes. This problem is identified as icing in aviation where ice is formed 

around the aircraft surface and leading edge of the wing due to atmospheric condition 
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at high altitude (SKYbrary, 2016). The ice can block the sensor holes and give error 

pressure reading.  

 

Meanwhile, the pressure-sensitive paint has very complicated and long 

procedures before the model can be tested as it needs time to paint the model and let it 

completely dry. This method is limited to a scaled model in order to get accurate 

pressure distribution photograph (Nakajima et al., 2008). This is due to the reason that 

illumination light and charge coupled device, (CCD) camera can only covered a small 

area of model. 

 

As an alternative technique, FBGs strain sensors can be used to measure the 

pressure on the Generic UTM Half-model. This sensor can be installed and removed 

without having to embed the sensors permanently as the static pressure sensor 

technique. The FBGs strain sensor is thin and light thus it can be easily attached on the 

desired surface without disturbing the aerodynamic of the system. 

 

 

 

1.3 Research Objectives 

The objectives of this project are: 

i. To determine the pressure distribution coefficient, Cp of UTM-LST 

half model at various wind speed and angles using FBGs strain sensor. 

ii. To determine the location of the flow separation on the UTM-LST half 

model based on pressure distribution coefficient, Cp using FBGs strain 

sensor. 

iii. To evaluate the performance of FBGs strain sensors in determining Cp 

and to locate flow separation on UTM-LST half-model and compare 

with static pressure sensors. 
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1.4 Scope of Study 

Two arrays of FBGs with five central wavelengths of 1535.0 nm, 1540.0 nm, 

1545.0 nm, 1550.0 nm, and 1555.0 nm are attached on the surface of aircraft model 

called UTM-LST Half model. The gratings are attached in perpendicular position to 

the direction of wind to enhance the strain effect on the sensors. The model is placed 

in Universiti Teknologi Malaysia Low Speed Wind Tunnel (UTM-LST) for testing at 

the wind speed, v = 20 m s−1, 30 m s−1, and 40 m s−1 with the angles of attack, α = 

0°, 3°, 6°, 9°, 12°, 15°, 18° and 20°.  

 

The pressure distribution is measured simultaneously using static pressure 

sensor and the FBGs strain sensors. The spectral response is recorded using 

interrogator to calculate the Bragg wavelength shift. The data is then compared to the 

pressure distribution obtained using FKPS 30DP electronic pressure scanner to 

calculate the pressure coefficient distribution on the aircraft model. 

 

 There is a limitation that needed improvement to get a more reliable data for 

the develop FBGs strain sensor. The first one is the pre-strain of the FBGs grating 

sensors when attached on the model. Applying pre-strain can increase the sensitivity of 

the FBGs by supressing the pressure induced by mechanical contraction of the fiber. 

The second constrain was the invisible tape used to attach the sensors needed to be 

properly pasted to the model or it will be detached due to high wind speed produced by 

the turbine.   

 

 

 

1.5 Significant of Study 

The pressure measurement study is very important in manufacturing and 

improvising the design of aircraft models. This study can provide an alternative 

technique in Cp measurement which is more convenient and compatible. The Cp 

obtained can be used to determine the flow separation location thus provides useful 

information to improvise the design of the wing model for optimum fight condition 
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and increase the load of the flight. FBGs strain sensor can be easily used at any model 

without any modification that can affect the aerodynamics of the system. Hence, the 

design of automotive vehicles especially aircraft can be improved without a new 

model. This method can overcome the clogged tube problem in static pressure 

technique due to the formation of ice at higher altitude (SKYbrary, 2016). 

 

 

 

1.6 Thesis Outlines 

Chapter 2 gives an overview on the aerodynamics characteristics of an airfoil 

during flight, flow separation, and pressure coefficient in terms of definition and the 

factors that affect them. The conventional pressure sensors were also presented in this 

chapter to show the working principle, advantages and disadvantages of each pressure 

sensor. An overview of the fiber Bragg grating sensors in term of structure, working 

principle, and applications were mentioned. The properties of wing model and wind 

tunnel test section were described in this chapter.  

 

Chapter 3 is the research methodology of this study. A new design of FBGs 

strain sensors and the properties of the sensors were presented. All the components and 

structure of the strain sensors were reported in detail. The experimental setup such as 

angle of attack and wind speed to achieve the objectives of this study to locate air vortex 

formation and to evaluate the performance of the FBGs strain sensors were clearly 

demonstrated. Also included in this chapter the calibration of the FBGs sensors and the 

calculation of Cp for the sensor.  

 

Chapter 4 reveals the experimental results of all the tests conducted in chapter 

3. The Cp measured by the FBGs strain sensor did not differ much from the Cp 

measured by the conventional pressure sensor. However, at low angle, the FBGs strain 

sensor will experienced more drag force at the leading edge of the model. The FBGs 

strain sensor measured very high Cp at certain point and angle of attack along the 

separation region compared to the pressure sensor. The performance of FBGs strain 

sensor for surface pressure measurement and locating air vortex formation was 

discussed.  
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Chapter 5 concluded that the objectives of this study are achieved. Future work 

to improve the FBGs strain sensors in term of sensitivity and reliability for surface 

pressure measurement is suggested. Two suggestions were given for the areas can be 

further investigated to improve the performance of the sensors.  
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