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ABSTRACT 

The biopharmaceutical proteins, especially monoclonal antibodies have 

become of great significance in the drug manufacturing and development industry 

during the last two decades. This significance can be attributed to their effectiveness, 

selectivity and the wide range of diseases and health problems cured by them. 

Consequently, the demand for these proteins has increased greatly. To meet this 

increasing demand for these proteins, optimization and development of the production 

process is required. This optimization is done through intensive screening of different 

culture options which requires an effective screening tool. The traditional screening 

methods such as shake flask system are slow and cost-ineffective. Multi-well plate is 

an option to accelerate the process of development with a rational cost. The goal of 

this study is to evaluate the usage of the multi-well plate as a screening tool in the 

bioprocess development. To achieve this goal, 24-multi-well plate was used to 

compare between batch and fed-batch cultures of CHO-DG44 cells. Cell density, cell 

viability, cell morphology and confluency, glucose concentration, and total protein 

concentration were determined in both batch and fed-batch cultures. Cell counting was 

done using trypan blue excluding method with a haemocytometer, while the glucose 

concentration was determined using 3, 5-dinitrosalicylic acid (DNS) assay. On the 

other hand, total protein concentration was determined using Lowry assay. It has been 

observed that feeding nutrients during the fed-batch culture enhanced the cell density 

and viability compared to the batch culture. On day 7, the cell density and viability of 

the cells in batch culture were (3.667±1.04) ×104 cell/ml and (45.453±4.54) % 

respectively, while in fed-batch culture the cell density and viability were (5.167±0.76) 

×104 cell/ml and (70.416±1.11) % respectively. Moreover, the protein production of 

the cells was prolonged during the fed-batch culture. This study revealed that the multi-

well plate system can be used as a small-scale screening tool for optimization of CHO-

cell culture. 
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ABSTRAK 

Protein biofarmaseutikal, terutamanya antibodi monoklonal telah menjadi 

sangat penting dalam industri pembuatan dan pembangunan dadah sejak dua dekad 

kebelakangan ini. Kepentingan ini boleh dikaitkan dengan keberkesanan, pemilihan 

dan keupavaan dalam mengubati pelbagai penyakit dan masalah kesihatan. Oleh yang 

demikian, permintaan untuk protein-protein ini telah bertambah tinggt. Bagi 

memenuhi permintaan yang semakin meningkat terhadap protein ini, pengoptimuman 

dan pembangunan proses pengeluaran diperlukan. Pengoptimuman ini dilakukan 

melalui pemeriksaan intensif pilihan kultur yang berbeza dan memerlukan alat 

pemeriksaan yang berkesan. Kaedah pemeriksaan tradisional seperti sistem kelalang 

goncang adalah lambat dan kos yang tidak berkesan. Piring berbilang telaga adalah 

pilihan untuk mempercepatkan proses pembangunan dengan kos yang rasional. 

Matlamat kajian ini adalah untuk menilai penggunaan piring berbilang telaga sebagai 

alat penyaringan dalam pembangunan bioproses. Untuk mencapai matlamat ini, 24-

piring berbilong telaga digunakan untuk membandingkan antara kultur ‘batch’ dan 

‘fed-batch’ sel CHO-DG44. Ketumpatan sel, daya tahan sel, morfologi dan konfluens 

sel, kepekatan glukosa, dan jumlah kepekatan protein ditentukan dalam kedua-dua 

‘batch’ dan ‘fed batch’ kultur. Penghitungan sel dilakukan menggunakan kaedah 

trypan biru tidak termasuk dengan hemasitometer, manakala kepekatan glukosa 

ditentukan dengan menggunakan asid 3, 5-dinitrosalicylic (DNS). Sebaliknya, jumlah 

kepekatan protein ditentukan menggunakan ujian Lowry. Dari pemerhatian, memberi 

nutrient semasa kultur fed-batch meningkatkan ketumpatan dan daya tahan sel 

berbanding dengan kultur ‘batch’.  Pada hari ke-7, ketumpatan sel dan daya maju sel-

sel dalam kultur ‘fed-batch’ adalah (3.667±1.04) ×104 sel/ml dan (45.453±4.54) %, 

manakala dalam kultur fed-batch, ketumpatan dan daya tahan sel adalah (5.167±0.76) 

×104 sel/ml dan (70.416±1.11) % masing-masing. Tambahan pula, pengeluaran protein 

sel-sel telah berlanjutan semasa kultur fed-batch. Kajian ini mendedahkan bahawa 

sistem piring berbilang telaga boleh digunakan sebagai alat pemeriksaan berskala kecil 

untuk mengoptimumkan kultur sel CHO. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

The biopharmaceutical therapeutic proteins have become an important part in 

the world of medicine. This importance can be attributed to the effectiveness of these 

proteins, their selectivity and the wide range of diseases and health problems that can 

be treated by them (Chaturvedi et al., 2014; Ho et al., 2013; Li and Zhu, 2010). 

Consequently, the market of these proteins has been rapidly developing; thus, the 

revenue of these products is increasing by 10 – 20% annually worldwide (López-Meza 

et al., 2016; Zhu, 2012). Among the various recombinant therapeutic proteins, 

monoclonal antibodies are the most rapidly growing group (Ecker et al., 2015; Elgundi 

et al., 2017; Liu, 2014; López-Meza et al., 2016).  

Traditionally, various expression systems have been used for the production of 

therapeutic proteins such as bacteria and fungi (Birch and Onakunle, 2005). 

Escherichia coli (E. coli) is the most well-known bacteria strain and it has been used 

to produce several important recombinant therapeutic proteins such as human insulin 

and growth hormone (Agrawal and Bal, 2012). Despite the advantages of the bacterial 

expression system such as low cost, short term production cycle, and the high 

productivity, bacteria are not able to perform post-translational modifications like 

glycosylation. Post-translational modifications affect the kinetic and the biological 

activity of the therapeutic proteins in human (Mahmoud, 2007; Zhu, 2012). On the 

other hand, the post-translational modifications of the yeast (the most well-known 

fungi) expression system are different from human post-translational modifications 

which lead to decrease the efficiency of the protein, lower the half-life and cause an 

immunogenic reaction in human (Lam et al., 2007). Conversely, mammalian cells like 

Chinese hamster ovary (CHO) cells perform post-translational modification similar to 

human post-translational modification. Mammalian cells have the capacity for 
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appropriate folding and assembly and they are able to produce complex therapeutic 

proteins with higher efficacy and half-life (Chadd and Chamow, 2001; Warnock and 

Al‐Rubeai, 2006; Wurm, 2004; Zhang, 2010). As a result, the mammalian expression 

system has become the most preferred system for the production of recombinant 

therapeutic proteins and more than 50% of the approved recombinant proteins on the 

market are produced using mammalian expression system (Matasci et al., 2008; Zhu, 

2012). 

Chinese hamster ovary (CHO) cell is known as the model cell for the 

mammalian cells, similar to E. coli in bacterial cells (Jayapal et al., 2007). CHO cells 

are the most well-known and most preferred cell line for monoclonal antibodies 

production due to their high adaptability, capacity for production of high concentration 

of recombinant proteins, good growth profile, and stability (Browne and Al-Rubeai, 

2009; Kelley, 2007). In order to increase the viable cell density and recombinant 

protein production of CHO cell culture and other mammalian culture, most of 

biopharmaceutical companies use fed-batch or perfusion system in place of the 

traditional batch culture (Birch and Racher, 2006; Rouiller et al., 2013; Toussaint et 

al., 2016). In the fed-batch system, nutrients are supplied to the culture during the 

incubation time to prolong the culture duration and increase the recombinant protein 

production (Altamirano et al., 2004; Birch and Racher, 2006; Chu and Robinson, 2001; 

Matasci et al., 2008). 

Various strategies have been used to meet the demand for the recombinant 

proteins by enhancing the production of these agents through improving cell 

performance and viability. The optimization of media composition and strategy of 

feeding in fed-batch culture are found to be the most efficient strategies to enhance the 

process of the cell culture (Chaturvedi et al., 2014; Rouiller et al., 2013). In order to 

perform these developments, intensive screening of feeding strategies, components 

and many elements of the culture is needed.  The application of multi-well plates as a 

high-throughput screening system is an option to study the effects of a large range of 

the culture conditions and different concentration of a large number of components. 

These studies cannot be efficiently done by the traditional methods, such as shake flask 

or spin tube cultures because these traditional methods are slower and require more 
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efforts and materials (Chaturvedi et al., 2014; Rouiller et al., 2013). In this study, the 

performance of the CHO-DG44 cells in batch and fed-batch cultures were evaluated 

using the 24-multi-well plate to assess the performance of the multi-well plate system 

as a screening tool for bioprocesses development. 

1.2 Problem Statement 

The bioprocesses developments such as cell line development and selection, 

optimization of the media composition and feeding strategy are the key factors to 

improve the performance of the culture and thus increase the production of the 

recombinant proteins. These developments require intensive screening of different 

options and need to be done in small scale bioreactors before initiating the large-scale 

bioreactors. However, the traditional screening methods for bioprocesses development 

such as shake flasks and spin tube are slow and require a relatively high amount of 

materials (Chaturvedi et al., 2014; Rouiller et al., 2013). 

Therefore, a faster and more effective screening method is needed to meet the 

demand of the market at an appropriate time, affordable prices and with excellent 

quality. The use of multi-well plates as high-throughput screening system is an option 

for bioprocesses development with more time and cost-effectiveness and higher level 

of throughput (Betts and Baganz, 2006; Chaturvedi et al., 2014; Duetz et al., 2001; 

Lye et al., 2003; Rouiller et al., 2013). In this study and in order to evaluate the multi-

well plate as an alternative screening method for bioprocess development, CHO-DG44 

cell was cultivated in 24-multi-well plate using batch and fed-batch systems. Cell 

viability, cell density, culture morphology, cell metabolism and protein production 

were monitored and compared between batch and fed-batch system. 
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1.3 Objectives of the Study 

The main aim of this study was to evaluate the use of multi-well plate system 

as a screening tool in process development of animal cell culture. 

The objectives of the research are: 

(a) To study the growth profiles of CHO-DG44 cells during batch and fed-batch 

cultures in 24-multi-well plates. 

(b) To study the glucose concentration of the CHO-DG44 cells during batch and 

fed-batch cultures in 24-multi-well plates. 

(c) To determine the total protein concentration during the batch and fed-batch 

cultures of CHO-DG44 cells in 24-multi-well plates. 

1.4 Scope of the Study 

The 24-multi-well plates system was evaluated throughout this study. CHO-

DG44 cells were cultivated in 24-multi-well plates for the batch and fed-batch cultures 

system. The growth profile and glucose concentration were determined and studied in 

both systems. Furthermore, the protein production of CHO-DG44 cells in batch and 

fed-batch cultures were compared and the total protein concentration was determined. 

1.5 Significance of the Study 

The substitution of the traditional screening methods by multi-well plates can 

reduce time and cost of the bioprocess development and increase the level of 

throughput and parallelism (Betts and Baganz, 2006; Chaturvedi et al., 2014; Duetz et 

al., 2001; Lye et al., 2003; Rouiller et al., 2013). The use of multi-well plate as a high-

throughput screening system in bioprocess development could accelerate the 
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development process and make the pharmaceutical companies able to meet the demand 

of the market at the desired time and at a more affordable price. Silk et al. (2010) 

mentioned that the use of multi-well plate as a high-throughput screening system has 

resulted in an approximately 50-fold reduction in medium requirements compared to 

the traditional culture systems used now in early-stage cell culture process 

improvement such as shake flask system. The reduction in costs and time also allows 

more investigation and development to be carried by the researchers in order to 

increase the accuracy in choosing the most proper culture option. 
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