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ABSTRACT 

 

 

 

Series Arc Fault (SAF) is a failure that occurs between two electrical contacts 

and electrical circuitry. However, it is considered one of the common malfunctions of 

photovoltaic (PV) systems that causes serious problems, including fires and electric 

shocks. There are several reasons that can cause this type of failure, including 

incorrect installation, irregular maintenance, and environmental factors. The process 

of SAF detection and diagnosis is considered a significant problem as many plants 

with a substantial increase in their capacities are continuously coming into existence. 

However, to achieve safe maintenance, reliability, and productivity of large-scale PV 

plants, it is essential to develop a new intelligent method that presents a precise 

automatic detection and protection of any maloperation among thousands of PV 

modules. In this research, the characteristic and the behaviour of the DC series arc 

fault signals are analysed and modelled; nine models with different properties 

regarding each model are simulated. In addition, an intelligent detection and 

classification method that can precisely detect and classify the DC series arc fault in 

the PV system among the other normal or abnormal conditions are developed. Also, 

a validation to achieve all the requirements and further improve in the efficiency of 

the proposed method are presented through a comprehensive comparison with the 

previous methods based Artificial Intelligence including Artificial Neural Network 

(ANN), SVM, Fuzzy, HMM, and Convolutional Neural Network (CNN). The 

comparison is carried out in terms of high accuracy, fault classification ability, 

reliability, safety, and the Computational Complexity/Effort of the power plants. 

Two systems are designed and built, where each system has two levels. A change 

detection approach is developed in the first system using ANN which incorporates 

four different models with various dimensions of CNN to classify the input signal. In 

the second system, a Multilayer Perceptron (MLP) is used to detect abnormal signals, 

while a Bi-Directional Long Short-term Memory (MLP-BiLSTM) is developed to 

classify abnormal signals precisely. The presented systems can distinguish between 

different cases of signal input, including normal (inverter start-up and load change), 

short circuit fault, and SAF. Furthermore, various models of DC series arc fault 

alongside with the practical experimental records are employed with PSCAD as a 

tool for creating these models. Python code is used to build and evaluate the 

performance of the proposed methods. The performance evaluation of the two 

proposed systems is carried out by considering several scenarios, where each system 

has its own features, such as removing the vanishing, dropout problems and ensuring 

reliability. The achieved accuracy is approximately 98% using the proposed systems. 

The results demonstrated that the proposed systems have the ability to detect the 

series arc with a high accuracy and outperform the existing works. 
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ABSTRAK 

 

 

 

Kerosakan arka siri (SAF) adalah kegagalan yang berlaku antara dua kontak 

elektrik dan litar elektrik. Walau bagaimanapun, ia dianggap sebagai salah satu 

kerosakan biasa sistem fotovoltaik (PV) yang menyebabkan masalah serius, termasuk 

kebakaran dan kejutan elektrik. Terdapat beberapa punca yang boleh menyebabkan 

kegagalan jenis ini, termasuklah pemasangan yang salah, penyelenggaraan yang 

tidak teratur dan faktor persekitaran. Proses pengesanan dan diagnosis SAF dianggap 

sebagai masalah yang penting kerana banyak loji-loji dengan peningkatan yang 

ketara dalam kapasiti mereka wujud secara berterusan. Walau bagaimanapun, untuk 

mencapai penyelenggaraan yang selamat, kebolehpercayaan, dan produktiviti loji PV 

berskala besar, adalah penting untuk membangunkan kaedah pintar baharu yang 

menunjukkan pengesanan automatik yang tepat dan melindungi dari sebarang 

maloperasi di kalangan beribu-ribu modul PV. Dalam penyelidikan ini, ciri dan 

tingkah laku isyarat kesalahan arka siri DC dianalisis dan dimodelkan; sembilan 

model dengan sifat yang berbeza mengenai setiap model akan disimulasikan. 

Disamping itu, kaedah pengesanan dan klasifikasi pintar yang dapat mengesan dan 

mengklasifikasikan kerosakan arka siri DC dengan tepat dalam sistem PV antara 

keadaan normal atau tidak normal akan dibangunkan. Juga, pengesahan untuk 

mencapai semua keperluan dan meningkatkan tahap kecekapan kaedah yang 

dicadangkan akan dibentangkan melalui perbandingan komprehensif dengan kaedah 

sebelumnya berdasarkan Kepintaran Buatan termasuk Rangkaian Neural Buatan 

(ANN), SVM, Fuzzy, HMM dan Rangkaian Neural Konvolusi (CNN). Perbandingan 

dilakukan dari segi ketepatan yang tinggi, keupayaan klasifikasi kesalahan, 

kebolehpercayaan, keselamatan, dan Kerumitan Pengkomputeran/Usaha loji kuasa. 

Dua sistem direka dan dibina, di mana setiap sistem mempunyai dua tahap. 

Pendekatan pengesanan perubahan dibangunkan dalam sistem pertama menggunakan 

ANN yang menggabungkan empat model berbeza dengan pelbagai CNN untuk 

mengklasifikasikan isyarat input. Dalam sistem kedua, Perseptron Berbilang Lapis 

(MLP) digunakan untuk mengesan isyarat yang tidak normal, manakala Memori 

Jangka Pendek Panjang Dwi Arah (MLP-BiLSTM) dibangunkan untuk 

mengklasifikasikan isyarat yang tidak normal dengan tepat. Sistem yang ditunjukkan 

dapat membezakan antara kes berbeza bagi isyarat input, termasuk yang normal 

(pemula penyongsang dan perubahan beban), kesalahan litar pintas, dan SAF. 

Tambahan pula, pelbagai model kesalahan arka siri DC bersama dengan rekod 

eksperimen praktikal digunakan dengan PSCAD sebagai alat untuk mencipta model 

ini. Kod Phyton digunakan untuk membina dan menilai prestasi kaedah yang 

dicadangkan. Penilaian prestasi keduadua sistem yang dicadangkan adalah dijalankan 

dengan mempertimbangkan beberapa senario, di mana setiap sistem mempunyai ciri-

ciri tersendiri, seperti menyingkirkan yang lenyap, masalah keciciran dan 

memastikan kebolehpercayaan. Ketepatan yang dicapai adalah kira -kira 98% 

menggunakan sistem yang dicadangkan. Keputusan menunjukkan bahawa sistem 

yang dicadangkan mempunyai keupayaan untuk mengesan arka siri dengan ketepatan 

yang tinggi dan mengatasi kerja - kerja yang sedia ada. 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 
Recently, renewable energy has become an essential power source due to the 

change in climate and the concerns of decreasing fossil fuel resources. The technology 

of photovoltaic (PV) system can be considered a good choice of energy generation to 

achieve this demand due to its suitable characteristics, such as compatibility with the 

environment, lower costs for PV modules [1], short installation time, and low 

maintenance cost [2][3]. Therefore, the installation capacity of the global power plant 

of PV has been raised from 1.3 GW to 177 GW between 2000 to 2014 [3]. At the end 

of 2016, approximately 310 GW capacity was generated from the installed global PV 

[4]. The development of solar power is continuously increased worldwide, especially 

the grid-connected PV generation or the residential rooftop solar panels that can 

support the microgrids and the main loads. 

 

PV systems can exploit the sun’s energy to generate electricity. Small but 

powerful generating units can considerably decrease a household’s net power 

consumption from the grid. Large infrastructure with a large number of units can be 

used to support power generated by more traditional plants and fatten it into the grid 

[5]. The number of PV installations providing power is rapidly increasing as their 

popularity grows due to lower installation costs and higher electricity costs. PV 

systems are being installed in many homes and utilities worldwide to produce power 

to their loads. Power supply networks have traditionally been centralised, with large 

power generators, a transmission and distribution network, and distributed loads. A 

central station monitors and controls the generators and network infrastructure. 

Troubles, such as an arc fault that can lead to a fire, and taking immediate action to 

control the situation can be easily performed because of the high monitoring level of 
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generators. With PV systems, generation is becoming more decentralised and less 

centralised. Individual modules and cable connections receive less direct oversight due 

to the large size of many utility scale systems and the distributed nature of household 

systems. A whole array or string may be monitored in a large utility scale system, but 

individual modules may not be. 

 

Increasing the number of PV systems and the level of DC voltage has the high 

probability of generating DC arc faults (in the USA, between 600 and 1000 V can be 

typically produced by utility-scaled PVC solar farms, and between 120 and 600 V can 

be typically generated by PV building systems) [6]–[10]. Without proper scheduled 

maintenance of connectors, cables, conductors and other components of the system 

(these components usually suffer from deterioration due to the effect of weathering 

and aging), the DC arc potentially occurs in the PV systems [11]. In accordance with 

the summaries of [12]–[36], arc faults are considered to be prevalent events in PV 

systems [21]–[30]. Severe damage in system components can be caused by the plasma 

with an elevated temperature created by the sustained arcs [37]. Arc fault creates a 

path in the air for the current, and this path might be created from the presence of any 

cut-off in the conductors that carry the current or the insulation failure in the nearby 

carrying conductors of the current. Any category of an arc fault is dangerous to the PV 

system and can result in fire, which may lead to burnout isolation and fire risks in the 

surrounding area to the PV plant that contains flammable materials [38]–[43]. Three 

types of arc fault, namely, parallel, ground and series, are found in the PV system. A 

parallel and ground arc fault occurs because of any existence of arc fault between any 

two nearby conductors at various potentials. The overcurrent function is usually used 

to easily detect the high-frequency noise introduced in the DC current inside the PV 

array. However, some parallel arc faults need PV string short-circuiting, module-level 

disconnects or module terminals after they have been disconnected from the inverter 

for arc de-energizing. As shown in Figure 1.1, a series arc fault can occur in accordance 

with any arc generated from the discontinuity of any current-carrying conductors [44]– 

[46]. The discontinuity is commonly due to the damage of a cell, connectors’ 

corrosion, solder disjoint, damage by a rodent, and abrasion from various sources. 

When the DC operating voltage is equal to or higher than 80 V, the National Electrical 

Code (NEC-2011) states that a PV system needs a protection device against the series 

arc fault. These protection devices are termed as arc fault circuit interrupters (AFCIs) 
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[47][48]. AFCI and ground fault detector and interrupter devices are mounted in the 

PV system inverter. Any fault that occurs can be read out through a display that is 

located on the front panel of the inverter. 

 

AFCI devices are often used to stop the PV system operation when a series arc 

fault occurs. However, they might not have the ability to respond correctly in the 

existence of a parallel arc fault. Consequently, parallel and series arc faults can be 

easily recognised from each other by detecting the sudden drop in the current/voltage, 

which is related to the increase in noise in the DC current. All series of arc faults can 

be extinguished via the PV array disconnection from the inverter. This process can be 

done by opening one of the terminals in each string of the PV. However, series arc 

faults are still the most challenging to be detected because of their low current 

compared with parallel arc faults. Therefore, many researchers have attempted to 

establish an effective detection method that can precisely identify them. 

 

 

 

 

 
 

Figure 1.1 DC series arc fault in PV system 
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1.2 Motivation 

 

 
Several special conditions are considered in the development of DC arc fault 

detection for PV systems. The motivation of this work can be summarised as follows: 

 

1. In recent years, the use of the PV system as a source of clean energy 

and an alternative to fossil fuels that cause pollution has significantly increased, where 

it converts the solar energy to the electrical energy used in the homes. 

 

2. High voltages as 600 V in the U. S. and reaching to 1000 V in other 

countries are used in modern grid-interactive models [6][7]. High-voltage DC arcs are 

more challenging to extinguish, especially when they are energised. 

 

3. A substantial percentage of a PV system’s DC wiring is not 

encapsulated within an enclosure. Wiring of string (such as run conductors of home) 

is commonly trimmed to the PV modules’ frame and racking’s backside. Some 

exposed faults may occur in the conductors, posing a higher risk to nearby flammable 

materials. 

 

4. Three types of arc fault can occur in the PV system: series, parallel and 

ground. However, parallel and ground arc faults can be detected in accordance with 

the associated high current compared with the series arc fault. Overcurrent protection 

can be used to detect parallel and ground arc faults. 

 

5. Series arc fault is difficult to be diagnosed with the overcurrent 

protection method. An electrical shock hazard and fires can occur because of this arc 

fault. Therefore, it acts as an attraction point for researchers to find different detection 

methods for avoiding the risks associated with it. The wiring between modules 

contains a large number of connectors due to the configurable characteristic of the 

string design. Each one of them represents a distinct point of failure. 
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1.3 Problem Statement 

 

 
The process of series arc fault detection and diagnosis in large-scale PV plants 

is considered to be an important problem because many plants with a substantial 

increase in their capacities continuously emerge. However, a new intelligent method 

that presents a precise automatic detection and protection of any maloperation amongst 

thousands of PV modules must be developed to achieve safe maintenance, reliability 

and productivity of large-scale PV plants. These conditions can be summarised as 

follows: 

 

(a) Overcurrent protection can be used to detect parallel and ground arc faults. 

Series arc fault is difficult to be diagnosed with the overcurrent protection 

method [49][50]. Once an arc or fire starts, the PV modules can continue to 

feed power to the fire in daylight, even in cloudy conditions [51]. A 

comprehensive dataset of series arc fault signals regarding more than one 

model should be generated to simplify the study of a critical issue of series arc 

faults in the PV system. Electric arc models used for simulation can be divided 

into three forms: physical principle-based models, conventional V–I empirical 

models obtained from measured data, and heuristic models [52]. Each model 

has a special characteristic different from the other. One model used in many 

previous studies leads to inadequate results of the detection method. Therefore, 

more than one model is needed to acquire DC series arc fault dataset. 

 

(b) Along with the drive to increase renewable energy usage, the installed capacity 

of solar power system has grown exponentially [3]. The presence of multiple 

sources in a fault condition is the primary cause of difficulty in fault 

identification and location. Therefore, the protection of this system against DC 

series fault is an important issue [53][54]. However, creating a precise 

detection and classification method is challenging; therefore, attempts to 

develop a detection and classification method with high accuracy are not 

presented [52]. The detection algorithm should be able to classify and 

distinguish the arc fault from no-fault conditions. The algorithm must not send 

false detection signals due to environmental noises or standard operating 
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conditions [52]. Therefore, further work is required to develop a detection and 

classification method that is more accurate and reliable. 

 

(c) Some of the critical issues, such as accuracy, fault classification ability, 

reliability, safety and computational complexity/effort, should be considered 

during the development of artificial intelligence (AI)-based detection method. 

These issues can cause a series of problems that can influence the detection 

method progress, which results in a performance degradation [52]. 

Consequently, the performance of the proposed method should be validated to 

ensure its efficiency. 

 

1.4 Research Objective 

 

 
The main aim of this research is to achieve a detection and classification 

method for DC series arc fault in the PV system with high accuracy. The research 

objectives are as follows: 

 

(a) To model and simulate the DC series arc fault signals based on the 

characteristic and behaviour of the DC series arc. Nine models with different 

properties are simulated. 

 

(b) To establish an effective and intelligent structure for the precise detection and 

classification of DC series arc faults with low complexity and high accuracy. 

The developed method guarantees the reliability and safety of DC network 

protection by fast and accurate detection of series arc faults. The detection and 

classification method can precisely discriminate between the exact series arc 

fault, other similar faults that can occur in the PV system, and the noise present 

in practice. A change detection method is proposed to be incorporated for 

detecting any changes that may occur in the signals. In this case, an alert is sent 

to the classification model for starting the classification process. 

 

(c) In order to validate and satisfy all the required criteria, as well as to achieve 

better efficiency; a two-step of evaluation process is used. first, the dataset was 

validated by conducting an experimental to obtain real dataset of DC series arc 
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fault. Second, the proposed method is evaluated in terms of (high accuracy, 

fault classification ability, reliability, safety, and the Computational 

Complexity /Effort) in comparison to previous methods based on AI-based 

methods (artificial neural network [ANN], support vector machine [SVM], 

fuzzy, HMM, convolutional neural network [CNN]). 

 

 
1.5 Research Scope 

 

 
The series arc fault is one of the most important causes of failure of PV 

systems. The models that are simulated to generate the DC series arc fault included 

some constants; each one can simulate different cases. In this model, the adaptable arc 

variables are arc time constant (τ). The arc time constant (τ) is an important parameter 

that describes the circuit breaker and electrical fuse circuit breaker function. A 

computer code based on Kovitya and Lowke’s (1985) ablation arch model was created 

to study the transient behaviour of ablation-stabilised arches [55]. The second 

adaptable parameter is the cooling constant (P). Cooling power is used in heat rays or 

thermomembrane anemometers. The basic concept is to measure the required current 

to keep the temperature of the overheated wire constant or the temperature change in 

the wire heated with a constant current [56]. Two constant parameters influence the 

mathematical equations of the arc model, which are (a) and (b), and the constant values 

are mentioned in Chapter Three in accordance with Table 3.1. For arc time constant, a 

parameter influencing the conductance dependency is τ (a). For the cooling power, a 

parameter affecting the conductance dependency is P (b). 

 

These concepts are used to collect a variety of case studies for evaluating the 

proposed algorithm. The scope of this study is limited to detect and classify the DC 

series arc faults and ignores other faults, such as parallel, ground, double-ground or 

arc faults between different strings of a solar power system. 

 

This study intended to identify and recognise the DC series arc fault rather than 

the other faults that may occur in the PV system. The proposed approach was evaluated 

on the basis of a number of specific criteria in accordance with previous studies. 
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Testing the proposed methods on a large-scale PV system does not reveal the problems 

in practical use because two separate stages are used for detection and classification. 

 

1.6 Thesis Outline 

 

 
The thesis is organised into five chapters as follows: 

 

 
Chapter 1 gives an overview of the DC series arc in PV system. The 

motivation, aim, objectives and scope this work are highlighted. 

 

Chapter 2 gives the background of the PV system structure, DC series arc 

fault. The general theories of ANN, CNN and its types, multilayer perceptron (MLP), 

and bi-long short-term memory (Bi-LSTM) technologies are discussed in details. The 

related studies of the DC series arc fault detection methods are described with the 

challenges and limitations. 

 

Chapter 3 presents and explores the design phases and the design details of 

the proposed detection and classification methods of the DC series arc fault in PV 

system. 

 

Chapter 4 explores the implementation and evaluation of the proposed method 

to prove the fulfilment of the requirement with case studies. A comparison between 

the proposed method and the related systems is presented through a tabular checklist. 

 

Chapter 5 concludes the thesis and provides directions for future work. 
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