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ABSTRACT 

During grid fault conditions, a distributed generation should remain connected 
for a pre-determined amount of time, and also provide reactive power to support the 
grid voltage. This is called low-voltage ride through (LVRT). LVRT control method 
for wind power generation systems under unbalanced and harmonic conditions is a 
well-developed research topic. However, too little attention has been paid to the LVRT 
control method for three-phase grid-connected photovoltaic (PV) systems under grid 
fault conditions. This thesis proposes improved control methods for a three-phase 
three-leg and a three-phase four-leg PV power converter under grid fault conditions. 
For a three-phase three-leg PV system, an improved positive-negative-sequence 
control scheme and an instantaneous active-reactive power control strategy are 
suggested. These schemes are used to cancel the double grid frequency oscillations in 
the active power and reactive power of a three-phase grid-connected PV during 
unbalanced grid condition. These methods are also effective to reduce the oscillations 
of Direct Current (DC)-link voltage that can be detrimental for DC-link capacitor. In 
order to track the desired unbalanced or harmonic reference current, enhanced 
proportional resonant (PR) current controllers with harmonic compensator have been 
designed using Bode frequency analysis. This study also suggests enhanced control 
method for a three-phase four-leg grid-connected PV system under unbalanced fault 
conditions using the combination of proportional integral (PI) and enhanced PR 
controllers using symmetrical components. Enhanced synchronization method for a 
three-phase four-leg grid-connected PV power converter operating in a three-phase 
four-wire system under unbalanced grid fault conditions using the magnitude and the 
phase angle of the positive, negative and zero sequence components is also presented. 
The proposed control strategy for the three-phase three-wire PV has the ability to 
cancel the double grid frequency oscillations in the active power, reactive power and 
also up to 55.5% reduction in the amplitude of the voltage oscillations under 
unbalanced grid fault conditions. The enhanced scheme for three-phase four-leg PV 
power converter operating in a three-phase four-wire system under unbalanced grid 
fault conditions has also the ability to cancel the oscillation of both the active and the 
reactive powers simultaneously. 
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ABSTRAK 

 Dalam keadaan kegagalan grid, penjanaan teragih sepatutnya kekal berada 
dalam keadaan tersambung bagi satu tempoh masa yang telah ditetapkan, disamping 
menyediakan kuasa reaktif untuk menyokong voltan grid tersebut. Ini digelar sebagai 
voltan rendah tunggang lalu (LVRT). Kaedah kawalan LVRT bagi sistem penjanaan 
kuasa angin yang berada dalam keadaan tidak stabil dan berharmonik adalah satu topik 
kajian yang telah diselami dengan dalam. Namun begitu, tumpuan amat kurang 
diberikan kepada teknik kawalan LVRT bagi sistem fotovoltaik (PV) sambungan grid 
tiga-fasa di dalam keadaan kegagalan grid. Tesis ini mengusulkan kaedah kawalan 
yang lebih baik bagi penukar kuasa PV tiga-fasa tiga-kaki dan tiga-fasa empat-kaki di 
dalam keadaan kegagalan grid. Bagi sistem PV tiga-fasa tiga-kaki, skim kawalan 
urutan positif-negatif yang ditambahbaik dan strategi kawalan serta-merta kuasa aktif-
reaktif adalah dicadangkan. Skim-skim ini digunakan untuk memansuhkan ayunan 
kekerapan grid berganda dalam kuasa aktif dan kuasa reaktif bagi sebuah PV 
sambungan-grid tiga-fasa dalam keadaan grid tidak seimbang. Kaedah ini juga efektif 
dalam mengurangkan ayunan voltan pautan-arus terus (DC) yang mana ia boleh 
menjejaskan kapasitor pautan-DC. Untuk mengesan ketidakseimbangan yang 
diperlukan atau arus rujukan harmonik, pengawal arus resonan berkadar (PR) yang 
dipertingkatkan dengan pemampas harmonik telah direkabentuk menggunakan 
analisis frekuensi Bode. Kajian ini juga mencadangkan kaedah kawalan yang 
pertingkatkan bagi sistem PV sambungan-grid tiga-fasa empat-kaki dalam keadaan 
kegagalan tidak seimbang menggunakan kombinasi integral berkadar (PI) dan 
pengawal PR yang dipertingkat menggunakan komponen simetri. Kaedah 
penyelarasan yang dipertingkat bagi penukar kuasa PV sambungan-grid tiga-fasa 
empat-kaki yang beroperasi dengan sistem tiga-fasa empat-wayar di dalam keadaan 
ketidakseimbangan sesar grid menggunakan magnitud dan sudut fasa bagi komponen 
positif, negatif dan urutan kosong juga turut dibentangkan. Strategi kawalan bagi PV 
tiga-fasa tiga-wayar yang diusulkan mampu untuk memansuhkan ayunan frekuensi 
grid berganda dalam kuasa aktif, kuasa reaktif dan juga pengurangan amplitud ayunan 
voltan sehingga 55.5% di bawah keadaan tidak seimbang kegagalan grid. Skim yang 
dipertingkatkan bagi penukar kuasa PV tiga-fasa empat-kaki yang beroperasi dalam 
sistem tiga-fasa empat-wayar di dalam keadaan ketidakseimbangan sesar grid juga 
mempunyai kebolehan untuk memansuhkan ayunan bagi kedua-dua kuasa aktif dan 
reaktif secara serentak. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of the Research 

One of the most significant current discussions in the field of electric power 

systems, in recent years, is the deployment of renewable energy technologies to reach 

sustainable development [1, 2]. Among different types of renewable energy resources, 

solar photovoltaic (PV) is a suitable choice, due to the possibility of direct conversion 

of sunlight into electricity using power electronic devices straightforwardly [3]. 

Furthermore, PV systems are highly popular because they contribute to world energy 

security, decreasing the nation's dependency on fossil fuels, preventing global 

warming in the world and providing a full range of voltage regulation [4, 5]. Despite 

some disadvantages such as the relatively high cost of solar modules and variable 

power output, PV systems have been commercialized in numerous countries for 

technical, economic and environmental reasons [6]. They are being installed in a wide-

ranging power capacities either in grid-tied or islanded mode to improve overall power 

quality and reliability of the main grid [7]. 

Grid-tied PV power systems are important renewable energy resources (RERs) 

in the distribution networks, and play a key role in stability, security and power quality 

of the power system. Nonetheless, to attain a reliable operation during both normal 

and grid fault conditions, some regulatory and technical problems have to be resolved 

before PV systems can become commonplace. In other words, the PV systems must 

be able to stay connected to the main grid for power quality enhancement even under 

grid faults [8]. The unregulated output power of PV power station under abnormal 

conditions can be regulated through grid-friendly converters, and the power system 

reliability can be guaranteed depending on the performance of these power converters.  
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Numerous research works have been published on the development and 

analysis of improved control systems for PV power converters during the last decades 

[9, 10]. In this regard, a growing body of literature has also suggested and analysed for 

grid synchronization, reference generation methods and current control of PV power 

converters [11]. When operated in power system applications, the PV power converter 

will be exposed to disturbances, transients and interruptions that propagate through the 

distribution network. Hence, PV systems should be controlled properly using power 

converters at their point of common coupling (PCC) under grid faults to keep PV 

systems connected to the utility grid. Grid faults can result in unbalanced grid voltages 

at the PCC of a PV power generator [12]. In other words, the delivered currents into 

the main grid by the PV power station lose their sinusoidal appearance as a 

consequence of abnormal grid conditions. Oscillations in the output power is a 

challenging control issue arising from grid fault conditions, and the main cause of 

tripping PV systems from the network.  

Irrespective of the type and size, one critical component for any PV power 

station is the effectiveness of its operation under grid faults [13]. Development of the 

conventional control solutions for power electronic interfaces (PEIs) can fulfil the tight 

requirements imposed by the grid operator and provide the required stability, reliability 

and to maintain the specified power quality during transient grid faults. Reactive power 

support, voltage recovery, frequency stability and ensuring that the PV systems remain 

connected to the grid without generating overcurrent are the main requirements of PV 

generation systems under grid faults. Consequently, power and energy engineers 

everywhere are pondering the challenges of operation of PV power station under 

abnormal conditions, as it is the most way to improve the power quality, stability and 

reliability of utility grid with the high penetration of the PV systems [14] To attain the 

stable operation and appropriate integration, it is required for PV power stations to 

offer an improved low-voltage ride-through (LVRT) capability and maintain grid 

functionality throughout fault conditions [15]. In the following sections, the problem 

statement, thesis objectives, scope and thesis outline of this study are presented.  
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1.2 Problem Statement 

Nowadays, three-phase PV systems are increasingly integrated into 

distribution networks to generate power locally near the customers. Under normal 

condition, PV systems operates with unity power factor to generate the maximum of 

active power. In order to cope with fault circumstances, the PV systems are needed to 

disconnect from the power system. Nevertheless, grid fault occurrence in distribution 

networks with high penetration of distributed generations (DGs), the cascade 

disconnection of all PV systems could trigger more severe grid challenges than the 

initial event. To overcome such potential issues, new grid codes are used by some 

countries to provide ancillary services such as voltage and frequency regulation for 

DGs. LVRT is the ability of PV keeps connected to the utility grid throughout short 

period during voltage sags. Furthermore, under abnormal conditions this ability 

control schemes must accurately control the current regulator under unbalanced and 

harmonic distortion; rapidly detect voltage faults; properly calculate active and 

reactive current references (reference current generator); prevent overcurrent failure; 

control the DC-link voltage; and prevent the active and reactive power oscillations. 

Different LVRT methods for three-phase three-leg PV power converters in 

three-wire distribution systems are presented under grid fault conditions. However, the 

LVRT control methods for three-phase three-leg PV power converter in three-wire 

distribution systems under abnormal conditions often suffer from slow transient 

response, complex control algorithm, poor synchronization performance, 

unsatisfactory performance under harmonic distortions and active and reactive power 

oscillations. Consequently, it is vital to propose enhanced control methods to mitigate 

and reduce such disturbances for three-phase three-leg PV power converters in three-

wire distribution systems. 

The proportional integral (PI) current control is one of the popular current 

regulator in three-phase PV inverters. However, steady-state magnitude and phase 

error and limited disturbance rejection ability are the main disadvantages of this 

controller. When the current controlled inverter is connected to the utility grid, the 

phase error results in a power factor decrement and the limited disturbance rejection 
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ability leads to the need of grid feed-forward compensation. Nevertheless, the 

imperfect compensation action of the feed-forward control results in high harmonic 

distortion of the current and as a result non-compliance with international standards. 

In addition, designing a proper control for the DC–AC converter to remain connected 

PV systems to the ac source under grid fault conditions due challenges such as the 

oscillation of the active and reactive power or the overloaded current is a great 

challenge. Consequently, it is required the design of an improved current control, 

synchronization method and power control strategy for three-phase three-leg grid-

connected PV power in a three-wire system. 

In addition to above-mentioned challenges for LVRT methods for three-phase 

three-leg PV power converters, too little attention has been paid to the LVRT control 

techniques for three-phase four-leg PV power converters in three-phase four-wire 

distribution networks under grid fault conditions because of the presence of positive, 

negative and zero sequence components. The synchronization control methods and the 

current controller of three-phase four-leg PV systems in four-wire distribution systems 

under abnormal circumstances due to the presence of the positive, negative and zero 

sequence components are more complicated. Additionally, the output active and 

reactive power control exchanged with the power grid in three-phase four-leg PV 

systems requires the design of specific reference generation control schemes for 

determining the current that must be injected into the utility grid by the PV systems. 

In three-phase three-wire systems, there exist four current control freedoms as the 

zero-sequence components are omitted due to the structure of power system. Hence, 

the active and reactive power oscillations cannot be mitigated at the same time. This 

issue can be more complicated under harmonic distortion. However, in the three-phase 

four-wire distribution networks with the zero-sequence components, there exist six 

current control freedoms. Therefore, it is essentially required the design of an 

improved reference generation control strategy to extend the controllability of the PV 

system by cancelling the oscillation of both the real and the reactive powers 

simultaneously. 
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1.3 Objectives of the Research 

The objectives of this research are: 

i. To design an improved current control strategy for a three-phase three-leg grid-

connected PV power converter operating in a three-phase three-wire system to 

cancel the oscillation of the DC-link voltage, active and reactive powers under 

unbalanced grid fault conditions and harmonic distortions. 

ii. To propose enhanced power control strategies for a three-phase three-leg grid-

connected PV power converter operating in a three-phase three-wire system to 

reduce oscillations in active power, reactive power and DC-link voltage under 

unbalanced grid fault conditions and harmonic distortions. 

iii. To design an enhanced power control strategy and synchronization scheme for 

a three-phase four-leg grid-connected PV power converter operating in a three-

phase four-wire system to cancel the oscillation of both the active and reactive 

power simultaneously under unbalanced grid fault conditions. 

 

1.4 Scope of the Research 

The focus of this study is on developing improved LVRT control strategies for 

three-phase grid-connected PV power converter. The LVRT control strategies are 

implemented on a three-phase three-leg PV power converter in a three-phase three-

wire distribution network and a three-phase four-leg PV power converter in a three-

phase four-wire distribution network. Hence, the main focal aspects of the study are 

listed as follow: 

i. This research is focused on current control strategy and power control strategy 

for grid-connected photovoltaic power converters.  
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ii. This research is concentrated only on asymmetrical faults, specifically single 

line-to-ground fault (SLG) which is considered ‘type B’ voltage sag, as well as 

line-to-line fault (LL) which is considered ‘type C’ voltage sag. 

iii. The symmetrical faults such as three-phase fault and three-phase to ground 

fault are beyond the scope of this research. 

iv. In this research both the steady-state and transient conditions are considered. 

v. The proposed control schemes are implemented in the three-phase three-wire 

and four-wire low voltage (LV) power system. 

vi. In this study only the grid-connected photovoltaic system is considered as the 

DG. 

vii. All the models are performed using MATLAB/Simulink toolbox and 

DIgSILENT PowerFactory tools under different grid fault conditions. 

 

1.5 Significance of the Research  

The significance of this research can be mainly categorized as follows: 

i. The proposed control strategies for the three-leg PV system has the ability to 

reduce power oscillations in active and reactive power.  

ii. The suggested controller for the four-leg PV system can totally mitigate the 

fluctuations in both the active and reactive power simultaneously. 

iii. The proposed control strategies are capable of relieving the current amplitude 

for the faulty phase without further increasing in the current amplitude in the 

normal phases. 

iv. The proposed control strategies are effective to reduce the oscillations of the 

DC-link voltage that can be detrimental for DC-link capacitor. 
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1.6 Thesis Organization 

This thesis is organized into five chapters, in which the outline of each chapter 

is as follows: 

Chapter 1 provides the general overview of the study by discussing the research 

background, problem statement, research objectives, scope and the significance of the 

research. 

The detailed literature review is illustrated in Chapter 2 with the focus on the 

concept of LVRT in grid-tied PV system and its characteristics, new grid code needs, 

and reactive power requirements. This chapter also discusses the general control 

structures of grid side converter for PV systems. Different control strategies for the 

three-phase grid-connected PV systems, reference frames, synchronization methods, 

types of inverters, control modification, different topologies for PV system as well as 

the network under various unbalanced grid-fault conditions are also comprehensively 

reviewed in this chapter. 

Chapter 3 defines and establishes the methodology of the research. This chapter 

is summarized into several subsections: modelling of grid-connected PV system, 

control strategy of inverter-based PV systems, design of conventional PI and PR 

current controllers, control strategy for three-phase three-wire PV grid-tied system, 

design considerations for the selection of DC-link capacitors, Power control strategy 

for three-phase four-wire power converter with zero sequence current path, system 

description, and the software used for the simulations. 

Chapter 4 presents the results and discussion. This illustrates the performance 

of the proposed control strategy. It also includes the simulation results, as well as 

discussions on the achievements of the improved control strategy for grid-connected 

PV system. The results are compared with the benchmark results from previous 

literatures that can prove their validity. 
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Finally, conclusions are presented in Chapter 5 and the thesis ends with 

possible recommendations for future works. 
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