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ABSTRACT

The structural behaviour of stiffened steel plate shear wall (SPSW) with 
various stiffener configurations and manipulated parameters under cyclic loading was 
investigated by using nonlinear inelastic analysis. The main objective of the study is 
to investigate the effect of diagonal stiffeners with different configuration, thickness, 
width, and total cross-sectional area to energy dissipation, lateral displacement, 
ductility ratio, and lateral load capacity of SPSW under cyclic loading. The study focus 
on single and multiple diagonal stiffeners. Finite element models of the SPSWs were 
developed as two-dimensional element models and were analysed by using ABAQUS 
commercial software. The cross-sectional properties of the boundary elements and the 
thickness of infill steel plate remained constant for all models. Three different 
configurations of the stiffeners were used while the width and thickness of the 
stiffeners were varied. Cyclic horizontal loading was applied in accordance to ATC24 
-  Guidelines for Cyclic Seismic Testing of Components of Steel Structures at the top 
of the SPSW models and the lateral displacement at the top of the SPSW was recorded. 
Hysteresis curves of all models were plotted to determine energy dissipation, lateral 
displacement, lateral load capacity and ductility ratio. Finally, the result of the study 
indicates that the energy dissipation of the SPSWs models was increased between 9 
percent to 56 percent when diagonal stiffeners with different cross-sectional 
dimensions were added. The main factors that influence the value of the energy 
dissipation are the number of stiffeners followed by the thickness of the stiffeners. 
Lateral load capacity of the models was affected significantly only when the total 
cross-sectional area of the stiffeners was larger than 1600 mm2. Moreover, the 
ductility ratio of the diagonally stiffened SPSWs that had the same total cross-sectional 
area, and the same number of stiffeners, increased when the thickness of the infill plate 
was 10 mm, instead of 5 mm.
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ABSTRAK

Perilaku struktur dinding ricih plat keluli (SPSW) yang dikukuhkan dengan 

pelbagai konfigurasi dan parameter dimanipulasi pengukuh di bawah beban berkitar 

telah dikaji dengan menggunakan analisis tak anjal tak lelurus. Objektif utama kajian 

adalah untuk menyiasat kesan pengukuh pepenjuru dengan konfigurasi, ketebalan, 

kelebaran, dan jumlah luas keratan rentas yang berbeza terhadap kapasiti lesapan 

tenaga, anjakan sisi nisbah kemuluran dan kapasiti beban sisi SPSW di bawah beban 

kitaran. Kajian ini menumpu kepada pengukuh pepenjuru tunggal dan berbilang. 

Model unsur terhingga SPSW telah dibangunkan sebagai model element dua dimensi 

dan telah dianlisis dengan menggunakan perisian komersial ABAQUS. Sifat keratan 

rentas elemen sempadan dan ketebalan plat keluli isian kekal malar bagai semua 

model. Tiga konfigurasi berbeza bagi pengukuh telah digunakan sementara kelebaran 

dan ketebalan pengukuh diubah-ubah. Beban mengufuk kitaran telah dikenakan 

berpandukan ATC24 - Guidelines for Cyclic Seismic Testing of Components of Steel 

Structures pada bahagian atas model SPSW dan anjakan sisi di bahagian atas SPSW 

telah direkod. Lengkuk histeresis bagi semua model telah diplot untuk menentukan 

tenaga lesapan, anjakan sisi, kapasiti beban sisi dan nisbah kemuluran. Akhimya, hasil 

kajian menunjukkan bahawa kapasiti lesapan tenaga SPSW meningkat di antara 9 

hingga 56 peratus apabila pengukuh pepenjuru dengan dimensi keratan rentas berbeza 

ditambah. Faktor utama yang mempengaruhi nilai lesapan tenaga adalah bilangan 

pengukuh, diikuti oleh ketebalan pengukuh. Kapasiti beban sisi model berubah dengan 

ketara hanya apabila jumlah luas keratan rentas pengukuh melebihi 1600 mm2. 

Seterusnya, nisbah kemuluran bagi SPSW terkukuh pepenjuru yang mempunyai 

jumlah luas keratan rentas yang sama dan bilangan pengukuh yang sama, telah 

meningkat apabila ketebalan plat isian ialah 10 mm, dan bukannya 5 mm.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Malaysia is located on a one of the stable plates on earth which leads to false 

believe that Malaysia would not experience any major disturbance due to earthquake. 

However, in June 2015, Malaysia was stunned with the first major earthquake that 

struck in Ranau, Sabah which lasted for nearly 30 seconds. The event was significantly 

affecting many regions around Sabah.

As a developing modem country, the numbers of high-rise building being 

designed and constructed, are growing and thus, the obligation of inducing seismic 

design consideration is now a necessity. As a result, Malaysian National Annex of 

Eurocode 8 (MS EN 1998) was published in late 2017 by Department of Standards 

Malaysia. The practicality of replacing British Standard (BS8110) with MS EN 1998 

is definite because BS8110 does not consider seismic loading in its design 

consideration which was absurd. Ignorance of seismic loadings leads to structural 

failure and loss.

However, the theory of seismic design implements a design which create 

buildings with enough characteristics of energy dissipation without a collapse but not 

earthquake-proof.
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1.2 Background of Study

Steel plate shear wall (SPSW) is commonly used in steel structures in recent 

decades to withstand lateral stresses, both from the wind and from the earthquake. 

SPSW is made of infilled steel plate surrounded with beams and column. Horizontal 

boundary elements and vertical boundary elements are represented by beams and 

columns, respectively. SPSW serves as a cantilever plate girder with its columns as 

flanges, its beams serve as the stiffeners, while the steel plates are the web of the plate 

girder. Many supporting experimental, numerical, and statistical studies confirm that 

SPSW is seismically safe.

The shear wall structure in steel plate offers high elastic initial rigidity, 

maximum shearing capacity and large capacity for deformation, stable hysteretic 

behavior, as well as excellent plastic energy dissipation. SPSWs construction is 

similar with the steel structures and the wall can also be manufactured. Thus, SPSW 

implementation in real structures is quick and easy. The construction weight and thick 

building walls can also be reduced easily in order to save simple costs and increase the 

available building space. In addition, the homogenous shear wall materials improve 

the performance o f the connections and hence, improve the structural behavior.

The steel shear wall is thus an extremely promising lateral resistance device 

for high-strength buildings in seismic fortification areas of high intensity and seismic 

strengthening. Three main types of SPSW are available. The system can be used as 

stiffened, unstiffened, or in composition with reinforced concrete panels. In SPSW 

without stiffener, the infill steel plate may buckle in compression field due to small lateral 

force because the infill plate is thin. Therefore, the lateral forces are resisted by developing 

tension filed action. This behaviour is similar to the plate girders with slender web plate. 

In SPSW with stiffener, the stiffeners increase the buckling capacity of the infill steel 

plate. Thus, the shear yield takes place in the infill plate. Based on research by Cao et. 

al. (2019), the efficiency of using steel plate shear wall (SPSW) as a lateral load 

resisting system has increased substantially throughout the advancement of previous 

design approach.
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1.3 Problem Statement

The steel plate shear walls (SPSW) can be used to withstand extreme 

earthquakes, wind and low earthquake loads with infill plates attached to their 

boundaries. The structural behavior of SPSW is not fully understood as well as other 

well-known structure such as braced frame and moment frame under seismic loadings. 

There are small number of SPSW system that have been subjected to large 

earthquakes. As a result, data is limited on the actual performance of the system in 

terms of earthquakes.

However, considerable analytical and experimental research has been carried 

out since the early 1970s, with the majority taking place over the past 20 years from 

countries like Japan, Iran, Turkey, Canada, the United Kingdom, and the USA. These 

studies show that the system has great structural ductility, dissipation of energy and 

economical for both as a new lateral resisting system and possible retrofit scheme.

Nevertheless, SPSW has a few limitations. Several studies indicate that the 

limitations of using of SPSW can be countered by using stiffeners whereby the bucking 

capacity and deformation of a SPSW can be controlled by applying heavy stiffeners as 

reinforcement. However, most research has focused only on studying the behavior of 

the stiffened SPSW with single or multiple longitudinal stiffeners but not with multiple 

diagonal stiffeners. Hence, there are limited studies on structural behavior of SPSW 

structure with diagonal stiffeners, experimentally and analytically.

1.4 Research Goal

The unknown of the optimum configuration of stiffeners layout for SPSW is 

highlighted. Therefore, the goal of this research is to determine the effect of diagonal 

stiffener with different dimension to the behaviour of SPSW under cyclic loading. The 

objective of the research is:
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(a) To plot the hysteresis curve and determine the energy dissipation of SPSW 

with different configuration and dimension of diagonal stiffeners.

(b) To investigate the effect of different diagonal stiffener configuration, 

thickness, width, and total cross-sectional area of stiffener to energy 

dissipation, lateral displacement, ductility, and lateral load capacity of SPSW 

under cyclic loading.

1.5 Scope of Study

The scope of the study focus on the structural behavior of SPSW that is 

stiffened by diagonal stiffeners, in terms of ductility, energy dissipation and lateral 

capacity. Both the stiffeners and the infilled steel plate used for the study is A36 steel 

which is a mild steel while the boundary elements are made of A992 steel, which is 

high yield steel. The number and the location of stiffeners as well as the cross-sectional 

dimension of the stiffeners will be varied. Numerical simulation which involves 

nonlinear analysis of the SPSW will be analysed by using Abaqus where a cyclic 

horizontal load was applied at the top of the stiffened SPSW. A control model and 

three main models were developed for the study. The dimension of the cross section 

of the boundary element and infill steel plate remains constant. The dimension of steel 

plate used is 4000 x 4000 x 5mm. The displacement that is obtained from the non­

linear analysis allows the plot of hysteresis curve, which enables the calculation of 

energy dissipation, ductility, and lateral capacity of the stiffened SPSW.
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