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ABSTRACT 

 Concrete filled steel tubular (CFST) column is a composite structural 

member that consists of a hollow steel tube and concrete core. Literature has 

indicated that the concrete core could carry up to 60% of the applied compressive 

load. The use of fly ash (FA) in concrete has attracted the attention of many 

researchers due to the global quest for sustainable and green materials in achieving 

an economical and low carbon footprint environment. By the same notion, silica 

fume (SF) is added, to enable the concrete to flow and fill narrow steel tube, which 

resulted in the use of self-compacting concrete. Notably, the strength of Portland 

cement concrete would be affected by the FA and SF as cement replacement. 

Researchers have a mixed understanding of the ductility of CFST columns infilled 

with mineral admixtures as core concrete. The aim of this research was to investigate 

the performance and behaviour of CFST stub columns infilled with self-compacting 

concrete containing FA and SF under axial load. Laboratory investigations were 

conducted to develop self-compacting high-performance (SCHP) concrete containing 

FA and SF with a target compressive strength of 60 MPa. Series of SCHP concrete 

were prepared at water-cement ratio of 0.3 with 0%, 25%, 35%, 50%, 60%, and 75% 

replacement of Portland cement (PC) by FA and SF while maintaining 10% 

replacement of SF. The properties of the SCHP concrete were evaluated in terms of 

fresh, hardened, and microstructural properties, while the properties of structural 

cold-formed steel were obtained through a coupon tensile test. The performance of 

the FA-SF self-compacting CFST stub columns were examined through the axial 

compression capacity, the load shortening response, and the failure mode. The 

compression capacities of the CFST columns were then compared with the 

theoretical values obtained using the international design codes. The CFST stub 

column's behaviour was also simulated through Finite Element (FE) modelling using 

ABAQUS software. The experimental results showed that concrete with 25%PC, 

65%FA and 10%SF sustained a maximum compressive strength of 79.73 MPa at 28 

days, and the cement content of this mixture was just 146.88 kg/m
3
. The 

microstructure of FA-SF self-compacting concrete was relatively less porous 

compared to the ordinary Portland cement concrete. Moreover, the incorporation of 

FA and SF in the concrete core has resulted in a higher stiffness index and concrete 

contribution ratio, indicating the enhancement of the CFST stub columns' stiffness. 

However, the control CFST stub columns demonstrated better ductility. Comparing 

the FE predictions with test results revealed that the FE models marginally 

underestimated the circular and square columns' ultimate strengths by an average of 

1.3% and 1.43%, respectively. The proposed model forecasted the ultimate strength 

of the CFST stub columns with good prediction accuracy. The mean was 0.99, with a 

standard deviation of 0.01 for circular CFST columns, while a mean value of 1.05 

was obtained for square CFST stub columns with a standard deviation of 0.12. 

Although CFST stub columns infilled with FA-SF self-compacting concrete 

demonstrated higher axial load capacity and concrete contribution ratio, the ductility 

was lesser. However, this condition may still permit the usage of CFST stub columns 

with FA-SF self-compacting concrete to the construction in low seismic zones. 
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ABSTRAK 

Tiang tiub keluli terisi konkrit (CFST) adalah anggota struktur komposit yang 

terdiri daripada tiub keluli geronggang dan teras konkrit. Kajian lepas menunjukkan 

bahawa teras konkrit dapat membawa hingga 60% dari beban mampatan yang 

digunakan. Penggunaan abu terbang (FA) dalam konkrit telah menarik perhatian 

ramai penyelidik kerana usaha sejagat bagi bahan lestari dan hijau dalam mencapai 

persekitaran jejak karbon yang ekonomik dan rendah. Dengan pengertian yang sama, 

asap silika (SF) ditambahkan, untuk membolehkan konkrit mengalir dan mengisi tiub 

keluli sempit, yang mengakibatkan penggunaan konkrit pemadatan diri (SCC). 

Terutamanya, kekuatan konkrit simen Portland akan dipengaruhi oleh FA dan SF 

sebagai pengganti simen. Penyelidik mempunyai pemahaman campuran mengenai 

kemuluran puntung CFST yang diisi dengan campuran bahan tambah galian sebagai 

teras konkrit. Tujuan penyelidikan ini adalah untuk mengkaji prestasi dan kelakuan 

tiang puntung CFST yang dipenuhi dengan konkrit pemadatan diri yang 

mengandungi FA dan SF di bawah beban paksi. Penyelidikan makmal dilakukan 

untuk membangunkan konkrit pemadatan diri berprestasi tinggi (SCHP) yang 

mengandungi FA dan SF dengan kekuatan mampatan sasaran 60 MPa. Siri konkrit 

SCHP disediakan pada kadar nisbah air-simen 0.3 dengan penggantian 0%, 25%, 

35%, 50%, 60%, dan 75% simen Portland (PC) oleh FA dan SF, sambil mengekalkan 

penggantian 10% SF. Sifat-sifat konkrit SCHP dinilai dari segi sifat baru, pengerasan 

dan mikrostruktur, sementara sifat-sifat struktur keluli berbentuk struktur sejuk 

diperoleh melalui ujian tegangan kupon. Prestasi tiang puntung CFST pemadatan diri 

FA-SF diperiksa melalui keupayaan mampatan paksi, tindak balas pemendekan-

beban, dan mod kegagalan. Keupayaan mampatan tiang puntung CFST kemudian 

dibandingkan dengan nilai teoritis yang diperoleh menggunakan kod reka bentuk 

antarabangsa. Kelakuan tiang punting CFST juga disimulasikan melalui pemodelan 

Unsur Terhingga (FE) menggunakan perisian ABAQUS. Hasil ujikaji menunjukkan 

bahawa konkrit dengan 25% PC, 65% FA dan 10% SF menghasilkan kekuatan 

mampatan maksimum 79.73 MPa pada 28 hari, dan kandungan simen bagi campuran 

ini hanya 146.88 kg/m3. Mikro struktur konkrit pemadatan diri FA-SF agak kurang 

berliang berbanding dengan konkrit simen Portland biasa. Dalam pada itu, 

penggabungan FA dan SF dalam teras konkrit telah menghasilkan indek kekukuhan 

dan nisbah sumbangan konkrit yang lebih tinggi sekaligus menunjukkan peningkatan 

kekukuhan tiang puntung CFST. Walau bagaimanapun, tiang puntung CFST kawalan 

menpamerkan kemuluran yang lebih baik. Perbandingan ramalan FE dengan hasil 

ujian menunjukkan bahawa model FE telah menganggarkan kekuatan muktamad 

yang sedikit kurang bagi tiang bulat dan segiempat sama dengan purata masing-

masing 1.3% dan 1.43%. Model yang disarankan meramalkan kekuatan tertinggi 

tiang puntung CFST dengan ketepatan ramalan yang baik. Puratanya adalah 0.99, 

dengan sisihan piawai 0.01 untuk tiang puntung CFST bulat, sementara nilai purata 

1.05 diperoleh untuk tiang puntung CFST segiempat sama dengan sisihan piawai 

0.12. Walaupun tiang puntung CFST terisi dengan konkrit pemadatan diri FA-SF 

menunjukkan keupayaan mampatan paksi dan nisbah sumbangan konkrit yang lebih 

tinggi, kemulurannya lebih rendah. Walau bagaimanapun, keadaan ini masih 

membolehkan penggunaan tiang puntung CFST terisi konkrit pemadatan diri FA-SF 

untuk pembinaan di zon rendah gempa.  
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  CHAPTER 1

 

 

INTRODUCTION 

1.1 General Appraisal 

Concrete and steel are the most widely used construction materials in the 

world. Concrete is characterized by low cost, high compressive strength, and fire 

resistance. However, it has low tensile strength, brittle failure, high bulk density, and 

premature cracking. On the other hand, Steel has high tensile strength, high 

compressive strength, ductile with high modulus of elasticity, but less economical 

and low fire resistance compared to concrete. To achieve optimum utilization of 

concrete and steel, a thin-walled hollow structural steel section is filled with concrete 

to form a composite column. These columns are known as concrete-filled steel 

tubular (CFST) columns. It is characterized by good seismic performance, high load 

carrying capacity, small cross-sectional area, speedy construction, improved fire 

resistance, and a higher strength-to-weight ratio. The rigidity of CFST columns is 

more significant than reinforced concrete columns (Jegadesh and Jayalekshmi, 

2016). 

 CFST column offers good resistance to fire due to the prevention of the 

spalling of the confined concrete by steel casing and the heat sink effect of the 

concrete. The steel tube accommodates and confines the concrete, whereas the 

concrete strengthens the steel tube and prevent local inward buckling of the section. 

Moreover, CFST columns can save on the cost of construction material by 

eliminating the need for formwork and provides reduced column size, thus yielding 

more useable floor areas (Liew et al., 2016). The steel tube may also act as a 

permanent formwork and reinforcement, offering a more economical section by 

minimizing construction costs and time. There are two types of composite columns 
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commonly used in buildings, in-filled steel section with concrete and steel section 

encased in concrete. 

Concrete-filled steel tubes have nearly 50 years of use in China. Since 1966 it 

has been used as the primary column in Beijing Metro stations and since the 1970s in 

workshops and power plant buildings. The concrete-filled steel tube was used in 

buildings during the 1980s to avoid having a column of huge sizes. Several CFST 

buildings were constructed in Beijing and Fujian province. Many buildings have 

been erected in different cities in China since the 1990s. The pace of concrete-filled 

steel tube building has stepped up rapidly in recent decades. The concrete-filled steel 

tubes are used in bridges, buildings, and other structures as major compressive 

components. In the construction of bridges, CFST members were used as the piers, 

main girders, arch ribs, the falsework, pylons, etc. CFST members are commonly 

used as central arch ribs (Chen et al., 2017). The utilization of CFST members as 

arches can provide full use of their load-bearing capacity because arches are 

practically under pure compression when exposed to distributed loading. These 

bridges are commonly referred to as CFST arch bridges.  

Due to improvement in the field of concrete technology, self-compacting 

concrete (SCC) is used to fill hollow structural steel (HSS) sections thereby, increase 

the workability and compactness of concrete (Han et al., 2017). SCC can flow and 

compact under its weight and fill the formwork without vibration (Thirumal and 

Harish, 2016). Some of the benefits of using SCC include speedy construction, noise 

elimination, and labour cost reduction. However, SCC often requires a high volume 

of cementitious material ranging from 400 kg/m
3
 to 600 kg/m

3
, EFNARC (2002). To 

overcome the afore-mentioned problem, fly ash (FA) and silica fume (SF) are used 

as supplementary cementing materials. SF and FA have once been considered 

industrial by-products, contributing to contamination and secondary emissions. The 

use of these by-products in Portland cement concrete would offer ecological benefits 

and help reduce Portland cement consumption while improving the properties of the 

concrete (Liew et al., 2017). 
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1.2 Problem Background 

The placement of concrete in thin structural hollow steel tubes and its 

durability require adequate compaction. Concrete tends to get stiffer from pumping 

or lose slump and entrained air than with other casting methods. This is partially due 

to friction-induced additional heat as the concrete is forced through the pipe. 

Portland cement is a vital ingredient of concrete production at a relatively 

high cost. One of the key contributors to CO2 pollution in the air is the cement 

industry. A metric tonne of cement produced causes the emission of one metric tonne 

of CO2. The emissions of carbon dioxide are causing global warming, which leads to 

climate change. Large-scale cement production is causing environmental issues and 

the loss of natural resources. Coupled with nations' desire to reduce greenhouse gas 

emissions, demand for high-quality concrete products, Conservation of natural 

resources and insufficient landfills have led researchers to use industrial by-products 

as additional cementation material for the manufacture of concrete. 

For several years, extensive research on the CFST column has been carried 

out worldwide, and a greater perception of the CFST stub column's behaviour has 

been established. However, very few researches were available on CFST stub 

columns containing fly ash and silica fume as partial replacement of ordinary 

Portland cement. Little information is known about incorporating fly ash and silica 

fume on the behaviour of the CFST stub column. Zhang et al., (2016) investigate the 

structural behaviour of circular fly ash-concrete filled steel tubular stub column with 

a fly ash content of 90% and 100%. It was observed that the ultimate load decreases 

as fly ash content increases because concrete with a very high fly ash content does 

not include enough cement to maintain a pozzolanic reaction, the axial load 

performance of CFST column with 25% weight (wt). Fly ash replacement of cement 

and 0.5, 1.0, and 1.5% polypropylene fibres addition was explored by Jegadesh and 

Jayalekshmi (2016). The research results showed that the concrete with a 1% 

addition of fibre and 25% wt. FA gives the peak axial capacity of CFST columns. 

Moreover, the incorporation of FA and fibres in the concrete core improves the axial 

capacity of the CFST column.  
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Furthermore, Vinod Kumar and Rajamane (2017) investigates the axial load 

behaviour of CFST columns using cold-formed steel and geopolymer concrete. FA 

and ground granulated blast furnace slag are used as Portland cement replacement 

materials in the concrete. Results indicated that the geopolymer CFST column's load-

carrying capacity was higher than the OPC concrete filled steel tubular column. 

Besides, the use of FA and SF has been documented by Sadrmomtazi et al., (2018) to 

improve the transition zone structure by micro-fillers or their deterrence of calcium 

hydrate crystal production. Apart from that, FA reduces concrete porosity because of 

micro filler and prohibit the development of calcium hydrate crystals and thus 

increased the concrete's compressive strength. 

Also, the creep performance of plain fly ash concrete (FAC) and fly ash 

concrete-filled steel tubes (FACFTs) and the effect of fly ash-replacement ratios, 

20%, and 40%, was studied by Han et al., (2017) and found that fly ash has un-

ignorable effects on the creep of FACFTs.  Apart from this, Li et al., (2019) studied 

the performance of C40 fly ash and silica fume SCC as filled in-line multi-cavity 

steel tube bundle shear wall. They conclude that the confinement effect improves the 

deformation resistance of fly ash and silica fume SCC. Likewise, Liu et al., (2017) 

explored the interaction between steel tubes and reactive powder concrete (RPC) 

core. Silica fume ground granulated blast-furnace slag or fly ash was incorporated as 

supplementary cementing materials to prepare the 170 MPa RPC. Their findings 

indicated that the utilization of RPC as core concrete in CFST stub columns 

improves the ductility of high strength concrete. Given the preceding, FA concrete 

filled steel tubular columns have strong potential for load-bearing, but little work is 

currently underway on FA and SF self-compacting CFST columns.  

There is a synergy between FA and SF that can provide an excellent 

alternative to produce concrete with smaller cement content and improved 

mechanical properties. FA application in high quantities might influence the early 

strength of concrete. Nevertheless, the incorporation of SF enhances the pozzolanic 

activity and early strength (Samhitha et al., 2019). Moderate additions of SF seemed 

to densify the microstructure of the interfacial transition zone. The blending of plain 

concrete with 10–20% SF significantly improved the corrosion resistance. Moreover, 
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Dotto et al., (2004) also conclude that the addition of SF can be effectively used in 

protecting steel reinforcement against corrosion. In addition, Lee et al., (2005) 

observed that the incorporation of 10% SF in OPC concrete indicates no evidence of 

spalling and cracking up to about one year of exposure. Furthermore, in concrete 

mixtures containing FA, the depth of carbonation was slightly higher compared to 

control concrete. However, the depth of carbonation was lower in concrete 

containing FA and SF, and this is because SF had little effect on carbonation (Gonen 

and Yazicioglu, 2007). Therefore, it is essential to study the axial compression 

behaviour and failure mechanism of steel tubular stub columns filled with fly ash-

silica fume self-compacting (FSS) concrete. 

1.3 Problem Statement 

CFST column may be the best solution, as the reinforced concrete (RC) 

column may need to be heavily reinforced to fulfil the strength requirement where 

the structural element is prone to heavy loading. For the concrete to flow and fill 

unique forms, and heavily reinforced sections, SCC could be used. SCC is the best 

alternative as compacting concrete in a narrow structure, such as a hollow steel tube, 

is difficult and could lead to honeycombs. 

However, SCC often requires a high volume of cementitious material ranging 

from 400 kg/m
3
 to 600 kg/m

3
, EFNARC (2002), which is necessary to keep enough 

yield stress and viscosity of the fresh concrete. When a large quantity of cement is 

used in self-compacting concrete, it could increase the heat of hydration and cost, 

thus increasing the risk of cracking in hardened concrete. Zhu et al., (2016) observed 

that shrinkage of SCC is higher than normal vibrated concrete due to the high cement 

consumption of SCC. Therefore, to meet the strength and durability requirement and 

minimize the cement content, supplementary cementitious materials (SCM) could be 

used.  
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Malaysia depends mostly on coal-fired power plants for generating 

electricity. One of the four coal power plants in Malaysia, known as the Tanjung Bin 

power plant, produces 42,000 metric tons of FA per month from coal ash burning 

(Abdullah et al., 2018). It is expected that the production of FA will increase as the 

demand for coal for electricity generation in Malaysia is projected to increase in 

2020 because coal is the most abundantly available and cheapest fossil fuel in the 

world (Abdullah et al., 2018). Despite the vast FA production, its utilization in 

concrete is very low (Zhang et al., 2016). 

Therefore, replacing cement with industrial by-product materials like FA and 

SF would reduce the heat of hydration in concrete, improve the rheological and 

mechanical properties of concrete. Research has pointed out that 25% wt. fly ash 

replacement of cement yields savings up to 20% on the construction costs due to a 

reduction in cement consumption and contributes to environmental sustainability by 

indirectly reducing carbon dioxide emissions in the cement production process. It, 

therefore, offers a positive and environmentally friendly solution. 

In most studies on the composite action of the CFST columns, researchers 

have mixed understanding about the ductility of CFST columns infilled with high-

strength concrete (Liu et al., 2017; Xu et al., 2018). To some of these, the utilization 

of concrete with mineral admixtures as core concrete in CFST columns improves the 

ductility. In contrast, for others, there is no apparent improvement in the post-peak 

ductility due to the high brittleness of core concrete. Furthermore, In the existing 

design codes, only one loading condition in the column members is considered, i.e. 

the load is applied simultaneously to the steel tube and the concrete core. On the 

contrary, in engineering practice, tube structures can be exposed to different loading 

conditions (Huang et al., 2012).  

What is more, Eurocode 4 design equations for the axial load capacity of 

CFST stub columns are relatively complex. The simplified design method described 

in ENV1994-1-1 accurately predicts resistance obtained in laboratory tests. 

Nonetheless, it only applies to isolated non-swaying columns. Initial imperfections 

are considered without explicitly defining their values (R P Johnson et al., 2005). 
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Moreover, the local buckling of the steel section of CFST columns is also omitted in 

EC4 by limiting the section slenderness ratio D/t to 90(235/fy) for circular sections 

and B/t to         ⁄  for rectangular sections (H. Thai and Thai, 2020). 

Although, CFST column is one of the best alternatives to fulfil strength 

requirement and SCC can be used adequately to fill and compact the narrow steel 

tubes. The utilization of a large quantity of cement in SCC can pose problems. 

However, to minimize the cement content in SCC, FA and SF can be used as partial 

replacement of Portland cement, the axial load performance of CFST columns with 

mineral admixtures as core concrete needs to be investigated. 

Experiment models in laboratory tests could only indicate the location of the 

deformation and damages. The precise conditions of load distribution and stress 

concentration across the CFST column could not be measured by the experiment 

model. Finite element models (FEM) might be helpful to validate the results obtained 

from experiments as sometimes it is difficult to simulate and control parameters in 

experiments. Both the FEM simulations and experiments depend on many 

parameters: material properties, boundary conditions (B.C.), etc. The advantage of 

FEM is this very possibility to model even bad experiments. Moreover, the FEM 

model can be used to "measure" what cannot be measured in the actual experiment 

for the benefit of knowledge. The FEA of the fly ash-silica fume CFST stub column 

model is yet to be established. Such simulation requires lots of parameters to be 

predefined carefully to achieve more identical conditions with physical testing. 

Hence, the FEM is needed to fully understand the structural behaviour of fly ash-

silica fume CFST stub columns. 

1.4 Research Goal 

This research aims to investigate the axial load behaviour of fly ash-silica 

fume concrete-filled steel tubular stub column. The study will examine the aspect of 

composite capacity, axial load-deformation curve, failure modes and the 

improvement of analytical design equations and the FE modelling. 
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1.4.1 Research Objectives 

This research aims to investigate the axial load performance of CFST stub 

columns with mineral admixtures as core concrete with the following objectives: 

i. To develop self-compacting high-performance concrete (SCHPC) mixes 

containing fly ash-silica fume and evaluate the fresh, hardened, and 

microstructural properties of the SCHPC, with a target compressive strength 

of 60 MPa 

ii. To investigate the axial load behaviour of fly ash-silica fume CFST stub 

column experimentally 

iii. To simulate the behaviour of fly ash-silica fume CFST stub column under 

axial loading through Finite Element (FE) Model via ABAQUS software and 

evaluate the FE predictions with experimental results 

iv. To formulate an equation to predict the ultimate axial load capacity of the fly 

ash-silica fume CFST stub column based on the findings of experimental 

studies. 

1.5 Scope of the study 

The scope of this study is limited to experimental investigation and numerical 

analysis to provide a better assessment of the behaviour of cold-formed concrete-

filled tubular stub column under axial loading. The use of cold-formed steel sections 

in residential construction has grown extensively over the past 20 years. Cold-formed 

steel sections could be alternative economic structural components and frame 

systems for both residential and commercial construction due to its rapid and robust 

manufacture, ease of handling and transport, cost and material efficiency, high 

strength-to-weight ratio, fully recyclable, fast erection, and durability (BAMAGA, 

2013). The increased use of cold-formed steel as a building material necessitates 

more research in this area (Ghersi et al., 2002). 



 

9 

Circular and square steel hollow sections were studied. Self-compacting 

concrete incorporating fly ash-silica fume with target concrete compressive strength 

of 60 MPa were developed and evaluated based on fresh, hardened, and 

microstructural properties. The CFST columns are three times the diameter to reduce 

the end effects and ensure that it would be stub columns with minimum impact from 

slenderness. A three-dimensional nonlinear finite element (FE) model using 

ABAQUS software was developed to predict the fly ash-silica fume CFST stub 

column's axial load behaviour. The proposed ABAQUS model was verified against 

the experimental results.  

1.6 Significance of the study 

The introduction of self-compacting concrete initiated the development of 

construction technologies. The most important achievement is saving construction 

time due to the improved speed of casting and eliminating vibration. The benefit of 

using high strength concrete in thin steel casings is that the structural steel cost is 

minimized and provides more excellent resistance to compressive load. However, 

plain steel or reinforced concrete columns are still used more extensively than CFSTs 

due to the lack of knowledge and skill that engineers have with CFST structural 

systems. 

The utilization of waste materials from the construction industry in structural 

engineering applications reduces plants' technical and environmental problems. It 

minimizes electricity costs besides reducing solid waste, greenhouse gas emissions 

associated with Portland clinker production and conserves existing natural resources. 

From the background study of CFST columns, it is obvious that CFST 

column is a better and convenient system to fulfil the strength requirement where the 

structural element is prone to heavy loading as compared to the RC column. Due to 

the benefit of composite action of the steel tube and the core concrete, the CFST 

column possesses a large energy absorption capacity, excellent seismic resistance, 

high ductility, and high strength. Therefore, it is vital to improve the productivity and 
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quality of the core concrete by the incorporation of silica fume and a large volume of 

fly ash as partial replacement of ordinary Portland cement. The addition of silica 

fume and fly ash in Portland cement concrete reduces the concrete porosity and 

improves the compressive strength of concrete. Besides, the utilization of a high 

volume of fly ash in concrete as cement replacement will reduce Portland cement 

consumption and offer an ecological benefit. Hence, this research is essential and can 

implement a new way of construction of CFST column that is economical and 

environmentally friendly. 

1.7 Organization of the Thesis 

This thesis is organized into seven chapters. 

Chapter 1: This chapter provides a general appraisal and overview of the 

background problem. It also identified the goals, scope of the study, and significance 

of the research  

Chapter 2: Presents a review of the accessible, relevant, and related literature. 

Chapter 3: The chapter outlines the detailed description of the materials and the 

suitable procedures adapted for conducting the laboratory experiment and numerical 

program for the purpose of achieving the stated objectives. 

Chapter 4: The chapter analyses and discusses the developed mix design method. 

The results of fresh properties of SCHPC in terms of slump flow, L-box passing ratio 

and V-funnel time were examined. The results of the hardened properties of the 

SCHPC focused on the compressive strength, the splitting tensile strength and the 

modulus of elasticity of the SCHPC. Likewise, the results of the microstructural 

analysis such as field emission scanning electron micrograph (FESEM), and X-ray 

diffraction analysis (XRD) were analysed and discussed 
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Chapter 5: This chapter reports the results and discussions arising from the axial 

load test conducted on 24 concrete filled steel tubular stub columns. The failure 

modes, axial load capacity, and axial deformation of the columns were discussed. 

The performance indexes, in terms of strength index, concrete contribution ratio, and 

ductility index were determined to analyse the performance of fly ash and silica fume 

SCHP CFST stub column. Similarly, the ultimate axial load capacities of the 

specimens examined were compared with predictions of Eurocode 4 

Chapter 6: The numerical models' precision, and effectiveness in simulating the 

response of fly ash and silica fume CFST columns were analysed and discussed in 

this chapter. Comparisons were made between the main experimental results and 

those obtained by FE models. A simple analytical formula is proposed to predict the 

axial load capacity of CFST stub columns made with self-compacting high-

performance concrete. The prediction accuracy of the proposed model is compared 

with the Eurocode 4 prediction and test results. 

Chapter 7: This chapter deals with the conclusion of the study and highlights the 

contribution of the research. It also presents recommendations based on the research 

findings. 
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