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ABSTRACT 

This study presents the synthesis of Silicon Carbide Quantum Dots (SiC QDs) 

by Very High   Frequency-Plasma Enhanced Chemical Vapour Deposition (VHF-

PECVD) method. Si (100) was used as a substrate where the growth was performed at 

a much lower temperature (100°C) than previous work. Besides, the growth time has 

been shorten in order to enhance the SiC QDs growth process. The effect of different 

Radio Frequency (RF) plasma frequencies (150 MHz, 160 MHz and 200 MHz) on the 

structural properties of SiC QDs were investigated. The growth parameters such as 

growth temperatures, growth time and hydrogen flow rates were manipulated in order 

to study the optical properties of SiC QDs grown at 150 MHz.  Silane (SiH4) and 

methane (CH4) were used as precursor gases and both were decomposed by RF plasma 

excitation to silicon (Si) and carbon (C) respectively at certain temperature for the 

growth of SiC QDs. The samples were then characterized by Field Emission Scanning 

Electron Microscopy (FESEM), Energy Dispersive X-ray Microscopy (EDX) and 

Atomic Force Microscopy (AFM) to observe the morphology and structure of quantum 

dots. FESEM images show that the dots diameter increased as the RF plasma increased 

from 150 MHz to 200 MHz and the EDX analysis further confirmed that quantum dots 

consist mostly of silicon (Si), carbon (C) and oxygen (O) elements. From the cross-

sectional image, it was suggested that the growth of SiC quantum dots follows 

Stranski-Krastanow (S-K) mode. Moreover, AFM results revealed that the surface 

roughness also increased concurrently with the increased of RF plasma frequencies. 

Raman spectra analysis and X-Ray Diffraction (XRD) pattern further confirmed that 

some of them composed of crystalline peak of SiC at 780.32 cm-1 with (200) growth 

plane. For emission properties of SiC QDs, two peaks detected for all samples located 

at 407 nm and 571 nm which are comparable to the 6H-SiC and 3C-SiC crystal 

structures. The energy band gap of a sample grown at 160 MHz with growth 

temperature of 200 °C was 3.19 eV which is approximately the energy band gap of 

4H-SiC (3.20 eV). In conclusion, this enhancement method in growing SiC QDs can 

be applied in future study in terms of its material properties and also its application in 

nanodevice technology. 
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ABSTRAK 

Kajian ini mempersembahkan sintesis Titik Kuantum Silikon Karbida (SiC 

QDs) menggunakan kaedah Pemendapan Wap Kimia Peneguhan Plasma-Berfrekuensi 

Sangat Tinggi (VHF-PECVD). Si (100) telah digunakan sebagai substrat di mana 

pertumbuhan telah dilakukan pada suhu yang lebih rendah (100°C) daripada kajian 

sebelum ini. Selain itu, masa pertumbuhan juga dipendekkan untuk meneguhkan 

proses pertumbuhan SiC QDs. Kesan frekuensi plasma Radio Frekuensi (RF) yang 

berbeza (150 MHz, 160 MHz dan 200 MHz) ke atas sifat struktur SiC QDs telah dikaji. 

Parameter pertumbuhan seperti suhu pertumbuhan, masa pertumbuhan dan kadar 

aliran hidrogen telah dimanipulasi untuk mengkaji sifat-sifat optik SiC QDs yang 

ditumbuh pada 150 MHz. Silane (SiH4) dan metana (CH4) telah digunakan sebagai gas 

pelopor dan kedua-duanya telah diuraikan oleh pengujaan plasma radio frekuensi (RF)   

terhadap silikon (Si) dan karbon (C) pada suhu tertentu untuk pertumbuhan SiC QDs. 

Sampel-sampel kemudiannya dicirikan dengan menggunakan Mikroskopi Elektron 

Pengimbasan Pelepasan Medan (FESEM), Serakan Tenaga Sinar-X (EDX) dan  

Mikroskopi Daya Atom (AFM) untuk memerhatikan morfologi dan sifat struktur titik 

kuantum. Imej-imej FESEM telah menunjukkan bahawa diameter titik-titik meningkat 

dengan peningkatan frekuensi plasma RF dari 150 MHz kepada 200 MHz. Analisis 

EDX seterusnya mengesahkan bahawa titik-titik kuantum kebanyakannya terdiri 

daripada unsur-unsur silikon (Si), karbon (C) dan oksigen (O). Daripada imej keratan 

rentas, adalah dicadangkan bahawa pertumbuhan titik kuantum SiC mengikuti mod 

Stranski-Krastanow (S-K). Selain itu, hasil AFM mendedahkan bahawa kekasaran 

permukaan juga meningkat sejajar dengan peningkatan frekuensi plasma RF. Analisis 

spektrum Raman dan corak Pembelauan Sinar-X (XRD) selanjutnya mengesahkan 

bahawa sebahagian daripadanya terdiri daripada puncak kristal SiC pada 780.32 cm-1 

dengan orientasi kristal (200). Bagi sifat pancaran SiC QDs, dua puncak dikenalpasti 

untuk semua sampel yang berada di 407 nm dan 571 nm yang setanding dengan 

struktur kristal 6H-SiC dan 3C-SiC. Jurang jalur tenaga bagi satu sampel yang 

ditumbuh pada frekuensi 160 MHz dengan suhu pertumbuhan 200° C ialah 3.19 eV 

iaitu lebih kurang sama dengan jurang jalur tenaga 4H-SiC (3.20 eV). Kesimpulannya, 

kaedah peneguhan dalam pertumbuhan SiC QDs ini boleh digunapakai dalam kajian 

masa depan dari segi sifat bahan dan aplikasinya dalam teknologi peranti nano. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

This chapter explains the background of study, problem statement, objectives, 

scope and also significant of the research. Finally the thesis layout will be presented at 

the end of this chapter. 

 

1.2 Background of the Study 

The fabrication of nanostructure materials has been a great interest in the past 

few years. Nanostructures with nanoscale dimensions have been put so much attention 

by many researchers due to their interesting characteristics and properties compared 

to those of bulk materials. Silicon carbide (SiC) materials are among the most popular 

candidate since their properties are essentially correspond to the available 

semiconductor production processes. 

 

As a wide bandgap semiconductor materials, SiC has received a great deal of 

attention due to their application in high frequency, high temperature and high power 

systems (Lucia et al., 2017). Its outstanding mechanical properties, chemical inertness 

and thermal stability has gained important for several applications in optoelectronic 

devices such as light emitting diode, electroluminescent devices, 

nanoelectromechanical system (NEMS) sensors fabrication and also thermoelectric 

cooling (TEC) devices for deployment in harsh environments (Zorman and Parro, 

2008). 

  

In recent years, zero-dimensional semiconductor such as Silicon Carbide 

Quantum Dots (SiC QDs) have been studied because of their unique properties for 

device application. Quantum dots are interesting building blocks for the fabrication of 
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various devices on nanometer scale. Thus, the fabrication and understanding of the 

properties of SiC QDs are decisive for the development of SiC based nanodevices. 

Generally, there are various methods that have been used to synthesize SiC QDs for 

the past few decades. 

 

One of the common method that have been applied to grow SiC QDs is 

inductively coupled plasma assisted RF magnetron sputtering. For example, Cheng et 

al. (2007) managed to fabricate SiC QDs by means of low frequency (13.56 MHz) and 

low substrate temperature of 400°C on Si substrates. They confirmed that by varying 

the growth time from 20 to 120 minutes, the size and density of the SiC QDs increased 

from 14 nm to 29 nm. From the observation, the nanosized SiC grains covered the 

entire Si (100) surface uniformly. (Cheng et al., 2007). 

 

SiC QDs also have been successfully synthesized by electrochemical etching 

method. Fan et al. (2012) reported the fabrication and photoluminescence properties 

of SiC QDs stemming from different polytypes (3C, 4H and 6H) of bulk SiC by 

electrochemically etched for 40 minutes in a HF:C2H5OH=2:1 solution. After 30 

minutes of ultrasonic treatment in deionized water, the solution become isolated 

colloidal SiC crystallites. Then, centrifugation take place to remove larger particles 

and a stable aqueous solution of SiC QDs for each polytype was obtained. The 

photoluminescence properties had been investigated for these three polytypes of grown 

quantum dots. The values of full width at half maximum (FWHM) of all spectra lie 

between 100 and 130 nm. The broad width of the spectrum are caused by the wide size 

distribution of the particles. From TEM characterization, it reveals that the size 

distribution of each sample ranging from 1 nm to 8 nm (Fan et al., 2012). 

 

In optoelectronics, SiC QDs are also adapted for bioanalysis application. Beke 

(2012) used the method of wet chemical etching of SiC microcrystals to form nanosize 

SiC QDs.  In this method, Silicon and graphite powder were first ground and pressed 

into a pallet before heated in an induction chamber to produce microcrystalline SiC 

powder. Then, the sample was etched in HF (50%), HNO3 (68%) and water mixture 

with volume ratio of 2:1:5 followed by washing with deionized water to make sure the 

SiC powder are clean from Si and C residue. All the dried sample was annealed at 900 

°C for 6 h. Moreover, in order to produce the highest yield, about 2.0 g of clean SiC 
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powder was placed in 23 mL Teflon-lined acid and annealed for 2 h at 120 °C. Finally, 

the sample with acid-treated were sonicated for 1 h and centrifuged at 4000 rpm for 

1.5 h to produce SiC QDs. The High Resolution Transmission Electron Microscopy 

(HRTEM) result confirmed that the SiC QDs are nearly spherical and the typical lattice 

spacing of 0.25 nm corresponds to the (111) plane of 3C-SiC. The average size 

distribution was 3 nm with relatively small dispersions in size (1–8 nm). With 

excitation range between 300-400 nm, photoluminescence (PL) of the SiC QDs was 

observed. The highest band intensity appears at an excitation of 360–370 nm with the 

corresponding emission in the range of 420–450 nm. In comparing to their previous 

study, there is a slight blue shift in the emission maximum of PL spectrum between 

closed and open system of synthesized SiC QDs and the spectrum for the closed 

reaction chamber is less broad due to the difference size distribution  (Beke, 2012). 

 

In other research, Zhu et al. (2014) fabricated 3C-SiC quantum dots by pulsed 

laser ablation method. The polycrystalline 6H–SiC target was placed into a cylindrical 

glass with deionized (DI) water. The top of 6H–SiC target to the surface of DI-water 

is set to 8 mm in distance. The target was then irradiated with 248 mm laser beam with 

10 ns of pulse duration and 10 Hz repetition rate. At a power of 320 mJ/pulse, SiC 

QDs colloidal solutions were prepared after about 2 h of laser irradiation. The TEM 

images reveal that most of the dots are about 2 nm in size. At the excited wavelength 

of 260–420 nm, the QDs show violet–blue photoluminescence (PL) emission. The 

dependence of PL intensity and peak position on the excitation wavelength confirms 

that QDs with the diameter of ~2 nm are 3C-SiC (Zhu et al., 2014). 

 

As being described before, several of the most common techniques used in 

fabrication of SiC QDs are revealed. To the best of our knowledge, there were no 

reports on SiC QDs growth by VHF-PECVD technique at higher frequency of 150 

MHz. Initial work reported by Alim et al. (2017) shown that SiC thin films was 

successfully deposited using VHF-PECVD at temperature of 400 °C. In this study, 

they investigated the effect of methane flow rates on the luminescence properties of 

the deposited thin film at 150 MHz. In other work, Azali et al. (2018) studied the 

crystallinity of the deposited thin film using the same method with different plasma 

frequencies of 100, 160 and 200 MHz. The results revealed that the crystallinity of 

the grown thin film increases with frequency (Azali et al., 2018).  
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1.3 Problem Statement 

Silicon carbide (SiC) has many advantages of its characteristics for 

semiconductor applications such as high thermal conductivity (Goela et al., 2006), 

wide band gap (Lucia et al., 2017), high electron mobility (Microsemi, 2014) and high-

saturated electron velocity (Bhagoji, 2012) and chemically inert (Gutmann et al., 

2010). According to those superior properties, SiC is a good candidate to be used for 

semiconductor devices such as power transistor, thermoelectric, optoelectronics and 

as coating material. Increasing the surface to volume ratio of the material to nanometer 

level such as SiC QDs structures will enhance the ability of SiC to operate in high 

temperature devices (Cheng et al., 2014). 

 

Nowadays, there has been a lot of methods in fabricating SiC QDs for 

nanodevices application such as RF magnetron sputtering (Cheng et al., 2007), 

electrochemical etching method (Fan et al., 2012), wet chemical etching (Beke, 2012) 

and laser ablation method (Zhu et al., 2014). 

 

There are still some lacking point in each method approached. In summary, 

from the previous study in fabrication of SiC QDs, there are still no approaches to 

synthesize SiC QDs by VHF-PECVD except for SiC thin film (Alim et al., 2017; Azali 

et al., 2018). Thus, VHF-PECVD is expected to be able to synthesize SiC QDs with 

shorter growth time from 1 to 5 minutes at lower temperature of 100 °C and higher 

frequency plasma of 150 MHz to 200 MHz. From conventional plasma excitation 

frequency to the higher frequency, it is also expected that it will influence the 

morphology, structural and optical properties of the grown SiC QDs. From this work, 

it is also expected that the grown SiC QDs will improve the photoluminescence 

emission which is tunable from blue to green emission in order to enhance the optical 

properties of SiC QDs for optical device applications.  
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1.4 Research Objectives 

The objectives of the research are: 

(a) To synthesize the SiC QDs using VHF-PECVD technique at various growth 

parameters such as RF plasma frequency, growth temperature, growth time and 

hydrogen flow rate. 

(b) To characterize the morphology and structural properties of SiC QDs grown 

with different RF plasma frequencies (150, 160 and 200 MHz). 

(c) To determine the effect of growth temperature, growth time and hydrogen flow 

rate to the optical properties of the grown SiC QDs at optimized plasma 

frequency in (b). 

 

1.5 Scope of Study 

SiC QDs will be synthesized on silicon (Si) (100) substrate using VHF-PECVD 

at frequency of 150 MHz, 160 MHz and 200 MHz. Then, QDs of 150 MHz RF plasma 

frequency will be grown with various growth parameters such as gas flow rate, growth 

time and growth temperature. The surface morphology and the elemental composition 

of the grown QDs were analysed using FESEM, EDX and AFM. Structural properties 

of the synthesized quantum dots were observed by using XRD analysis and Raman 

spectroscopy. While PL and UV-Vis were used to characterize the optical properties 

of the SiC QDs. 

 

 

1.6 Significant of Study 

From this research, the structural and optical properties of the QDs can be 

controlled by manipulating the growth parameters of VHF-PECVD method. These 

characteristics of the grown SiC QDS are important for the application in 

optoelectronics and microelectronics especially in extreme environment. This research 



6 

will give better understanding on morphology, structural and optical properties of SiC 

QDs grown at high RF plasma frequency. 

1.7 Thesis Structure and Organization 

This thesis is divided into several chapters. Chapter 1 presents some 

information of previous works that related to this study. The problem statement, 

objectives, scope and significant of the research are also presented. In Chapter 2, 

literature review related to this research will be discussed. This will cover in details 

about silicon carbide nanostructures and its properties, semiconductor quantum dots 

and its growth modes. Fundamental principle of PECVD method and the precursor 

gases used by previous researchers involved in growth of SiC QDs will be included in 

this chapter. Chapter 3 is the methodology which explain the fabrication of SiC QDs. 

Its present the sample preparation, fabrication of the quantum dots and followed by 

characterization techniques that will be used to observe the morphology, structural and 

the optical properties of the SiC QDs. Finally, the growth parameters in this 

experiment are summarized in the tables. Chapter 4 discusses the results of this 

research follows by Chapter 5 which conclude the research work and some 

recommendations for future research work. References and appendices are also listed 

at the end of this thesis. 
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