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ABSTRACT 

               Gold nanoparticles (AuNPs) with customized morphologies, structures, optical 

and electronic properties for varied functional applications require an accurate synthesis 

and characterization technique. Furthermore, the basic understanding of these properties 

and validation of the experimental results depends on the precise modelling and first-

principle density functional theory (DFT)-based simulations. In view of this, some 

AuNPs were prepared using the eco-friendly pulse laser ablation in liquid (PLAL) 

technique. As-grown AuNPs were characterized via diverse analytical tools including the 

ultraviolet-visible (UV-Vis) absorption, attenuated total reflectance (ATR), transmission 

electron microscopy (TEM), high-resolution transmission electron microscopy 

(HRTEM), Raman spectroscopy and photoluminescence (PL) spectroscopy. The 

influence of various laser parameters (laser energies, repetition rates, liquid 

environments, and laser wavelengths) on the structure, morphology, and optical traits of 

these AuNPs was determined. In addition, the first-principle DFT simulation was 

performed using WIEN2k software to complement the experimental results and explain 

the electronic structure properties of the produced AuNPs. For the first time, the spin-

orbit coupling with the modified Becke-Johnson exchange potential (TB-mBJ) was 

included in the DFT framework for the band structure calculations of the AuNPs. A 

phenomenological model was also developed by integrating the effects of surface states 

and quantum confinement to describe the PL and absorption mechanism of AuNPs. The 

MATLAB code based on Mie-Gans theory was used to fit the experimental absorption 

data of AuNPs. By optimizing the laser parameters (especially the low laser energy 

ranging from 96.6 mJ up to 318 mJ, short pulse duration time of 3 min and low 

repetition rate of 1 Hz), the sizes of the spherical AuNPs were controlled in the 

deionized water (mean diameter of 7 to 30 nm) and ethanol (diameter of 3 to 6 nm) 

liquid medium. The strong UV-Vis absorption and surface plasmon resonance (SPR) 

peaks in the range of 521 to 529 nm accompanied by a blue-shift revealed by these 

AuNPs clearly indicated their effectiveness for sundry applications. The observed 

intense PL spectra of the studied AuNPs with optical band gap in the range of 2.95 to 3.9 

eV were attributed to the effect of quantum-confinement. The obtained absorption 

characteristics, PL peak shifts, phonon energy dispersion in the Raman spectra, widening 

and broadening of the spectral peak due to the quantum size effects of AuNPs were 

validated using the model. The TEM images disclosed the formation of the colloidal 

AuNPs of average size ranged from 1 to 50 nm. Based on the WIEN2K simulation and 

experimental outcome of AuNPs, a structural and optical correlation was developed. The 

inclusion of spin-orbit coupling with the modified TB-mBJ potential in the DFT 

framework could more accurately predict the band structure (band gap energy) and shifts 

in the optical spectra of the proposed colloidal AuNPs compared to the existing reports. 

The achieved excellent fit of the experimental data with the model and simulation 

outcome in terms of bandgap and PL energy indicated the accuracy of the present 

method. It is established that the good quality colloidal AuNPs with tailored attributes 

can be produced by tuning the laser parameters of the PLAL technique. In short, the 

present study improved the prediction accuracy over the existing art-of-the techniques. 

This disclosure may contribute towards the development of spherical colloidal AuNPs 

useful for various applications. 
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ABSTRAK 

               Nanozarah emas (AuNPs) dengan morfologi, struktur, sifat-sifat optik dan 

elektronik yang disesuaikan untuk pelbagai aplikasi fungsian memerlukan teknik sintesis 

dan pencirian yang tepat. Selanjutnya, pemahaman asas mengenai sifat-sifat ini dan 

pengesahan hasil eksperimen bergantung pada pemodelan tepat dan simulasi berdasarkan 

teori kefungsian ketumpatan (DFT) prinsip-pertama. Oleh itu, beberapa AuNPs 

disediakan dengan menggunakan teknik ablasi laser dalam cecair (PLAL) yang mesra 

alam. AuNPs telah dicirikan melalui pelbagai peralatan analisis termasuk penyerapan 

ultraungu-cahaya nampak (UV-Vis), pengurangan jumlah pantulan (ATR), mikroskopi 

elektron penghantaran (TEM), mikroskopi elektron penghantaran beresolusi tinggi 

(HRTEM), spektroskopi Raman dan spektroskopi fotoluminesen (PL). Pengaruh 

pelbagai parameter laser (tenaga laser, kadar pengulangan, persekitaran cecair, dan 

panjang gelombang laser) terhadap struktur, morfologi, dan sifat optik AuNP telah 

ditentukan. Di samping itu, simulasi DFT prinsip-pertama dilakukan menggunakan 

perisian WIEN2k untuk melengkapkan hasil eksperimen dan menjelaskan sifat-sifat 

struktur elektronik dari AuNP yang dihasilkan. Buat pertama kalinya, gandingan spin-

orbit dengan keupayaan pertukaran Becke-Johnson yang diubah suai (TB-mBJ) telah 

diambil kira dalam kerangka DFT untuk pengiraan struktur jalur AuNPs. Satu model 

fenomenologi juga dibangunkan dengan menggabungkan kesan keadaan permukaan dan 

pengurungan kuantum untuk menggambarkan mekanisme PL dan penyerapan AuNP. 

Kod MATLAB berdasarkan teori Mie-Gans digunakan untuk menyesuaikan data 

penyerapan eksperimen AuNPs. Dengan mengoptimumkan parameter laser (terutamanya 

tenaga laser rendah berjulat dari 96.6 mJ hingga 318 mJ, jangka masa nadi pendek 3 min 

dan kadar pengulangan rendah 1 Hz), saiz AuNP sfera telah dikawal di dalam air 

ternyahion (min diameter cecair dari 7 hingga 30 nm) dan etanol (diameter dari 3 hingga 

6 nm). Penyerapan UV-Vis yang kuat dan puncak permukaan resonans plasmon (SPR) di 

dalam julat 521 hingga 529 nm disertai dengan anjakan-biru yang ditunjukkan oleh 

AuNP ini jelas menunjukkan keberkesanannya untuk pelbagai aplikasi. Spektrum PL 

kuat yang dicerap daripada AuNP yang dikaji dengan jurang jalur optik dalam julat 2.95 

hingga 3.9 eV dikaitkan dengan kesan pengurungan kuantum. Ciri penyerapan yang 

diperoleh, anjakan puncak PL, penyebaran tenaga fonon dalam spektrum Raman, 

perluasan dan pelebaran puncak spektrum yang disebabkan oleh kesan saiz kuantum 

AuNPs dapat disahkan menggunakan model ini. Imej TEM mendedahkan pembentukan 

AuNP koloid dengan saiz purata berjulat daripada 1 hingga 50 nm. Berdasarkan simulasi 

WIEN2K dan hasil eksperimen AuNPs, korelasi struktur dan optik dapat dibangunkan. 

Rangkuman gandingan spin-orbit dengan keupayaan TB-mBJ yang diubah suai dalam 

kerangka DFT dapat meramal struktur jalur (jurang jalur tenaga) dan anjakan  spektrum 

optik AuNP koloid yang dicadangkan dengan lebih tepat berbanding dengan laporan 

sedia ada.  Penyesuaian data eksperimen yang dicapai dengan model dan hasil simulasi 

dari segi jurang jalur dan tenaga PL menunjukkan ketepatan kaedah ini. Telah dapat 

ditentukan bahawa AuNP koloid berkualiti tinggi dengan atribut yang disesuaikan boleh 

dihasilkan dengan menala parameter laser teknik PLAL. Secara ringkasnya, kajian ini 

meningkatkan ketepatan ramalan berbanding dengan teknik-teknik yang ada. 

Pendedahan ini dapat menyumbang ke arah perkembangan AuNP koloid sfera yang 

berguna untuk pelbagai aplikasi. 
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CHAPTER 1  

INTRODUCTION 

This chapter identifies the remaining issues involving the gold nanoparticles 

(AuNPs) and clarifies the need of the present study in this field. The motivation for 

the experimental and theoretical investigations addressing the past developments, 

present activities and future trends on the AuNPs are also highlighted as background. 

The goals and objectives of the undertaken thesis are explained. The research 

workflows, methodology, scopes, and significance are discussed. 

 

1.1 Research Background 

Currently, the AuNPs have attracted significant research interests 

(fundamental and applied) because of their unique size- and shape-dependent 

(morphological) properties beneficial for diverse purposes (De Souza et al., 2019; 

Kayang et al., 2019; Laban et al., 2020). These unique properties have led to many 

significant potential technological applications and have opened new (challenging) 

opportunities for the nanoscience and nanotechnology. In particular, the correlation 

among the structural, physical, and optical properties of the small size AuNPs (at 

nanoscale) is not clearly understood (Luo et al., 2019; Shabaninezhad and 

Ramakrishna, 2019). The morphologies of the AuNPs prepared using varieties of 

synthesis techniques show wide variations depending on the method used. On top, it 

has been realized that the optical, electrical, and physical properties of these 

nanoscale gold particles are decided by their structure and morphology (Amendola et 

al., 2014). Thus, an in-depth theoretical understanding is necessary for the diverse 

application of these NPs, where modeling and simulation play a vital role. So far, a 

comprehensive phenomenological model for the evaluation of such properties of the 

grown AuNPs has been lacking. Despite many experimental studies and some model 
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calculations (Derkachova et al., 2016; Zhang et al., 2017b; De Souza et al., 2019), 

the detail theoretical understanding of the correlation among structural, physical, and 

optical properties of the AuNPs is far from being achieved. 

As aforementioned, the renewed interest in the AuNPs arises from their 

unique structural, physical, and optical properties that enable using them in the 

diverse settings (Taghizadeh et al., 2019; Vedhanayagam et al., 2019). In the last 50 

years, much research has been focused into the production of the AuNPs with 

controlled morphology (sizes and shapes) where different system parameters of the 

growth processes are adjusted to achieve the optimum properties (Frens, 1973; Hong 

and Li, 2013; Laban et al., 2020). The AuNPs with desirable size in the range of 10 

µm to 1 nm were prepared from the reliable and high-yield techniques (Zhang et al., 

2017a). However, the enhancement of the production accuracy for the much-desired 

growth of these nanoparticles remains demanding. In addition, the theoretical 

perceptive or knowledge on the mechanism behind the distinctive optical properties 

of these NPs is still incomplete (Pattabi and Pattabi, 2014; Cai et al., 2018). A 

complete model for these NPs that include the surface state and quantum 

confinement effects is relatively a new area needs to be explored, wherein the 

simulation of such model can bring a better understanding of the mechanisms related 

to various properties. On the other hand, most of the theoretical formulations and 

modelling using the first-principle density functional theory (DFT)-based 

calculations are still ongoing for the bulk gold (Kurelchuk et al., 2017; Matrane et 

al., 2018). Therefore, considering the immense fundamental and applied significance 

of AuNPs it can be asserted that there is a pressing need for more intensive research 

on their experimental and theoretical understanding. To achieve this goal the present 

research work is conducted.  

1.1.1 Synthesis and Characterization of Gold Nanoparticles  

Over the years, many techniques have been introduced to prepare the AuNPs 

of tiny sizes such as the physical irradiation (Dehghani et al., 2017), laser ablation 

(Rafique et al., 2017), chemical reduction (De Souza et al., 2019), sol-gel 
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(Kobayashi et al., 2001), and biological (such as microorganisms, plants) (Ahmed et 

al., 2016). However, in spite of some advantages of each such technique most of 

them suffers from some limitations, including the difficulty in controlling the 

nanoparticles morphology (shape and size), sustainability, stability, yield, 

reproducibility, separations, narrow distribution and surface functionalizations with 

other chemical species. Furthermore, the production of the contaminant-free AuNPs 

with acceptable morphology and desired characteristics is an essential requirement 

for further investigations and developments in the field. 

In recent times, the optical methods for synthesizing various types of organic 

and inorganic NPs has attracted wide interest because of their accuracy in adjusting 

system parameters, eco-friendliness, simplicity, cost-effectiveness, high yield, 

scalability, tunable morphology, non-requirement of extra chemicals, and the ability 

to produce contaminant free nanoparticles with desired properties (Zeng et al., 2012; 

Lee et al., 2020). In this regard, the pulsed laser ablation in liquid (PLAL) due to its 

simplicity and low cost has emerged as one of the most versatile green methods for 

producing ultrafine NPs with outstanding purity and unique surface chemistry in the 

form of highly stable colloidal suspension (Giorgetti et al., 2012). The PLAL is also 

an adaptable and environmental friendly approach for obtaining varieties of the 

impurity-free nanoparticles with the desired morphologies. Since its inception, the 

PLAL method has been used to improve the structures and morphologies of different 

types of nanostructures (Yan and Chrisey, 2012). The results obtained from the 

PLAL technique were shown to be highly promising for the diverse potential 

applications, wherein various operational parameters related to the laser and other 

conditions can be adjusted to improve the experimental outcome (Zhang et al., 

2017a). These controlled conditions include the laser parameters such as the type of 

laser source, pulse wavelength, duration, energy, fluence, and repetition rate 

(Amendola and Meneghetti, 2013), nature of the liquid species (Riabinina et al., 

2012), physical conditions (Dell’Aglio et al., 2016), and growth chamber design 

(Maciulevičius et al., 2013). Compared to other chemical and physical methods, the 

PLAL technique for the production of various nanoparticles has advantages related to 

purity, simplicity and morphology improvement.  
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The morphological characterizations of the grown ultra-fine AuNPs are 

usually performed using transmission electron microscopy (TEM) and high-

resolution transmission electron microscopy (HRTEM). Thus, the HRTEM has 

become an essential image analysis tool for obtaining the precise size and 

distribution of AuNPs. The structural properties (vibrational modes) of the AuNPs 

related to the different functional groups can accurately be determined using the 

Fourier transform infrared (FTIR) and Raman spectral analyses. In contrast to bulk 

Au, the AuNPs have higher visible absorption and scattering cross-sections (in the 

spectral range near 520 nm) depending on their surface plasmon absorption spectra 

(Kreibig and Vollmer, 2013; Link and El-Sayed, 1999). These unique features of the 

AuNPs make them suitable to study their optical traits by the ultraviolet/visible 

(UV/Vis) spectroscopy (Wang et al., 2014). In addition, the photoluminescence (PL) 

emission attributes of the AuNPs that is extremely significant from the applied 

viewpoint can be analyzed using the PL spectroscopy (Mooradian, 1969). Actually, 

the PL measurement provides the vital information about the direct and indirect 

optical band gaps, radiative recombination of the d electrons with holes near the 

Fermi level, quantum size effects and the allowed optical transitions. Although 

intensive research has been directed towards the preparation, structural and optical 

properties of the AuNPs, very few studies have explored their correlations in terms 

of the basic mechanisms behind these properties. Thus, together with the 

experimental studies on the AuNPs there is a need to develop model and perform 

simulation to complement the theoretical predictions on various properties and their 

correlations. 

1.1.2 Modelling of Optical and Structural Correlations of Gold 

Nanoparticles  

Photoluminescence emission traits of the AuNPs have intensively been 

investigated in the past decade because of their potential applications in different 

fields of engineering, technology and biomedicine (Carattino et al., 2018; Nedyalkov 

et al., 2019). Various structural parameters such as the nanoparticle sizes (ranging 

from 0.3 to 20 nm), surface ligands/attached functional groups, and valence states 
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have been tuned to synthesise high quality luminescent AuNPs (Pattabi and Pattabi, 

2014; Cai et al., 2018). Some theoretical studies have been conducted to understand 

the effects of these factors on the luminescence emission mechanisms of the AuNPs 

and to further improve as well as predict the PL properties (Zheng et al., 2012). 

However, the incorporation of the quantum confinement (QC) and surface state 

effects of the AuNPs of varying sizes in an analytical model that can predict the 

experimentally observed PL spectra and optical band gap energy of the AuNPs is still 

deficient. 

An analytical PL model (also called phenomenological model) based on the 

effects of the QC and localised surface states (LSSs) has been proposed for the 

semiconductor (especially nanosilicon) with finite band gap energies (Islam and 

Kumar, 2003; Isiyaku and Ghoshal, 2016). In this perception, it is believed that the 

quantum confinement effects mediated by the discrete energy levels in the metal NPs 

can lead to a great improvement in the PL model and further simulation outcome 

especially the electronic structure properties. The prediction of the exact mechanism 

of the visible PL emission from the metal NPs with diverse morphologies based on 

the reliable theoretical model simulation is essential for fundamental knowledge and 

various applications. An accurate calculation of the PL spectra of the AuNPs with 

various shapes and sizes (different morphologies) can be made to verify the 

experimental observation. Nevertheless, the UV/Vis absorption spectra have already 

been modelled for different particle sizes, shapes, and concentrations of the AuNPs 

that are known to have strong dependence on the surface plasmon resonance (SPR) 

effects (Amendola and Meneghetti, 2009; Affandi et al., 2015). 

The UV/Vis spectroscopy enables the characterisation of the content in an 

AuNPs suspension by fitting the spectra according to the Mie model for the spherical 

particles and the Gans model for the spheroidal particles (Link and El-Sayed, 1999; 

Amendola and Meneghetti, 2009; Affandi et al., 2015). The calculation of these 

optical properties is possible with a numerical solution depending on the dielectric 

function 휀(𝜔) of the materials. The dielectric functions incorporated in the analytical 

Mie-Gans model for the pure elements such as the Au and silver (Ag) [휀(𝐴𝑢) and 

휀(𝐴𝑔)] have been obtained for the bulk metal (Amendola and Meneghetti, 2009; 
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Affandi et al., 2015). By merging the nano-dialectic function with the inter-band 

transitions in the analytical model for the absorption properties of the AuNPs, it is 

possible to gain some new insights for controlling and predicting the optical 

properties of the AuNPs in a customised way. An accurate understanding of different 

optical and physical properties and thereby establishing their correlation requires a 

thorough investigation of the electronic band structure properties of the AuNPs. It 

can be attained using the first principle DFT-based simulations and subsequent 

validation with the experimental results. 

1.1.3 Simulations of Electronic Structure Properties of Gold 

Nanoparticles 

It is worth mentioning that the theoretical determination of the electronic 

band structures of the bulk Au has been an open issue for more than five decades 

(Rangel et al., 2012). The remarkable physical properties of the Au especially the 

oxidation resistance make it one of the few materials capable of withstanding long-

term exposure to the atomic oxygen atmosphere. This characteristic makes Au a 

standard material to protect spacecraft and satellite parts, a property that was 

famously exploited to make the golden records on the Voyager spacecraft (Jones et 

al., 2013). Despite the similarity in the crystal structure and atomic radius between 

Au and Ag, the atomic-scale mechanism of Au has attracted great interest for gaining 

a fundamental understanding of the unique properties of bulk Au.  

  

For more than 30 years, first-principle DFT has been successfully used for the 

parameter-free description of the electronic band structure calculations and properties 

related to the total energy. These characteristics via total energy minimization 

include the equilibrium volume, elastic constants, and phonon frequencies of any 

solid, can be predicted with reasonable precision (Glantschnig and Ambrosch-Draxl, 

2010). Numerous approximation techniques have been proposed for enhancing the 

calculation accuracies of the Kohn-Sham (KS) Hamiltonian equation. Amongst these 

methods the most commonly used are of the local-density approximation (LDA), 

generalized gradient approximation (GGA), and Perdew, Burke, and Ernzerhof 
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(PBE) approximations (Koller et al., 2012). The GGA overcomes many 

shortcomings of the LDA, especially for the systems with strong variations in the 

electron density and provides reasonable results that are comparable with the 

experiments (Matrane et al., 2018). One of the shortcomings of both the LDA and 

GGA is the poor estimation of the band gap value (Baida and Ghezali, 2018). Thus, 

to enhance the accuracy of the calculated properties, different effects and 

approximations must be considered. 

Within the framework of KS-DFT, many difficulties that exist with the 

LDA/GGA can be overcome. Recently, Tran and Blaha (TB) have proposed a meta-

GGA type local potential that is built on the early work by Becke and Johnson which 

has been termed as the TB-mBJ potential (Koller et al., 2012). By applying to a 

comprehensive set of semiconductors, the Tran and Blaha showed that the TBmBJ 

potential can give remarkably accurate band gaps with a computational effort 

comparable to that of the LDA/GGA calculation (Tran and Blaha, 2009).  Based on 

this rationale, the TB-mBJ approach has been further extended to different types of 

materials (Jiang, 2013; Benatia et al., 2018; Özdemir and Merdan, 2020). However, 

the results obtained using the TB-mBJ potential for the metallic material has shown 

poor accuracy (Koller et al., 2011). Although many studies (Theileis and Bross, 

2000; Dal Corso and Conte, 2005; Glantschnig and Ambrosch-Draxl, 2010) have 

attributed the observed remarkably varying physical properties of the bulk Au to the 

huge influence of the relativistic effects, hardly any accurate calculations of the 

structural and optical properties have been performed for further validation. It has 

been inferred that the implementation of the full relativistic effect with the most 

recent TB-mBJ potential for the bulk Au might give an accurate prediction of the 

structural and optical properties. Moreover, the correlation between the experimental 

results and first principle DFT-based calculation for the AuNPs can be validated 

through the model simulation. In this view, the present work investigates the 

structural and optical properties of the AuNPs via synthesis, characterization, 

theoretical formulation, modeling and simulation. Figure 1.1 illustrates the overall 

design for the thesis. 
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Figure 1.1  Concept map of the thesis. 

 

1.2 Problem Statement 

As mentioned previously, although several methods have been developed 

over the years to synthesize the AuNPs of desirable sizes, morphologies, and 

distributions for varied applications however there is a need for the accurate and eco-

friendly technique to produce pure AuNPs (Bhattarai et al., 2018; Nayef and 

Khudhair, 2018; Liu et al., 2019). Considering the advantages and disadvantages of 

these preparation methods for the production of the accurate colloidal AuNPs with 

purity, the optical techniques show much more promise (Zhang et al., 2017b; 

Choudhury et al., 2019). Very few studies have used PLAL to synthesize AuNPs 

(Dell’Aglio et al., 2016; Palazzo et al., 2017; Rafique et al., 2017). Recent reports 

revealed that ( Zhang et al., 2017a; Vinod et al., 2017; Yu et al., 2017) using the 

PLAL technique it is possible to control and optimize the structure, morphology, and 

various other properties (for example the physical, optical, and chemical) of the 

AuNPs by varying different laser-related parameters (such as the laser energy, time 

duration, repetition rate, and laser wavelength) together with the growth media, 

physical conditions, and chamber design. Most of the earlier works (Vinod and 

Gopchandran, 2014; Affandi et al., 2015; Rafique et al., 2017) are focused to 
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produce the AuNPs in the size range of 9.5 to 49 nm. However, to the best of the 

present authors’ knowledge no studies have been dedicated to prepare tiny AuNPs 

using the low energy pulse laser ablation and short pulse durations with the 

frequency in the intermediate range. It is expected that such variations in the laser 

parameters are not only suitable for achieving the desirable morphology and structure 

of the AuNPs but also can lead to the better control and tunability towards the 

production process to yield contaminant-free, good quality, and accurate NPs with 

narrow size distributions. 

 A comprehensive literature review indicated that for any kind of NP (organic 

or inorganic) application, the systematic and in-depth characterizations of the diverse 

properties (physical, structural, morphological, optical, and electronic structures) are 

prerequisite. The optical, structural, and morphological characteristics of the PLAL-

grown NPs (produced at higher energy fluencies) have recently been reported 

(Dell’Aglio et al., 2016; Palazzo et al., 2017; Yu et al., 2017). However, the 

production possibilities of the AuNPs in the regime of the intermediate energy 

(moderate laser fluence) and low time duration have not been inspected. In addition, 

none of the existing reports showed any correlation between the structural, 

morphological, optical and electronic structure properties of the PLAL-grown NPs. 

Only systematic characterizations using diverse measurements and comprehensive 

analyses of the experimental data using various mechanisms can provide a better 

understanding of the PLAL-grown AuNPs. Therefore, more experimental efforts 

together with the theoretical formalisms are needed to enhance the AuNPs database. 

The experimental data concerning the optical properties of the diverse 

metallic and semiconducting nanostructures have been modeled using different 

techniques by incorporating the effects of the quantum confinement and surface 

states separately. The main aim of these developed models was to explain the 

fluorescence spectra, absorption data, and band gaps (Lin et al., 2016; Cai et al., 

2018). However, none of these models have been applied to the Au nanostructures 

for explaining their optical and electronic structure properties. Experimental reports 

suggest that most of the optical properties of AuNPs are decided by the quantum 

confinement and surface state (Kumar, 2013). The surface states in combination with 
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the quantum confinement effect have been identified as the versatile and successful 

model to explain the PL properties of the semiconductor nanostructures (Islam and 

Kumar, 2003; Isiyaku and Ghoshal, 2016). Therefore, this model with some 

modifications can be applied to explain the optical properties of the AuNPs. So far, 

none of the reports has been indicated to apply such a model on the spherical NPs 

grown via the PLAL method. Subsequent simulations of the model with various 

parameters, such as average particle size, peak energy, NP distributions, peak 

position and width might lead to better fits of the experimental data for the AuNPs 

that are not yet performed. However, the legitimacy of the developed model needs to 

be validated via the comparison with another state-of-the-art technique, particularly 

the first principle-based DFT calculations. 

The first-principle-based DFT is the most popular one among the diverse 

electronic band structure calculation schemes (Glantschnig and Ambrosch-Draxl, 

2010; Suárez et al., 2016). Various algorithms and different types of functionals such 

as the non-empirical, minimal empirical and over empirical have been developed. 

The development of these formalisms led to the easy availability of different 

functionals and approximations. Non-empirical functionals such as the LDA and 

GGAs are reliable for predicting the electronic structure properties of the new 

systems. However, these functionals often produce systematic errors and that need to 

be corrected. Recently, the DFT has been applied to produce properties of the bulk 

Au and Au nanostructures (Dal Corso and Conte, 2005; Glantschnig and Ambrosch-

Draxl, 2010). Glantschnig and Ambroshch-Draxl (2010) have produced the scalar–

relativistic terms in the DFT calculations and observed a great disagreement between 

the theoretical and experimental results. It is believed that to enhance the electronic 

structure, further investigations concerning the exchange–correlation (xc) effects 

need to be conducted (Koller et al., 2011; Nainaa and Ez-Zahraouy, 2018). It is 

important to mention that not much accurate simulations have been performed on the 

band structure of AuNPs using the first-principle DFT-based calculations. Thus, the 

present thesis propose to use the celebrated WIEN2K codes with the recent xc 

potential called the Becke-Johnson potential modified by Tran and Blaha (TBmBJ) 

and the scalar–relativistic terms to bridge the gap between theory and experiment. 

Although the WIEN2K simulations and DFT have been used to simulate a variety of 

the metallic nanostructures for their electronic structure properties, systematic DFT 
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calculations concerning the colloidal spherical gold NPs are still lacking. By 

validating the simulation data with the experimental and modeling results, it is 

possible to develop an interrelationship among the structural, optical, morphological, 

and electronic structure properties. In short, despite the different synthetic technique 

of producing AuNPs, different models for explaining their overall properties, 

different characterization techniques for better analysis of the NPs, and various 

simulations including the DFT to validate the experimental- and model- calculated 

data are still lacking. On top, no conclusive remarks on the optical properties of the 

AuNPs have been made so far. 

The above-mentioned facts clearly indicate that the careful synthesis, 

characterizations, phenomenological modeling, and first-principle DFT-based 

simulations concerning the colloidal AuNPs are critically important. Based on these 

research gaps, the following objectives are set to resolve some of the existing issues 

related to the PLAL-grown colloidal AuNPs. 

1.3 Research Objectives 

The following research objectives were identified: 

1. To synthesize spherical the AuNPs using the PLAL method with various laser 

parameters and liquid media. 

2. To characterize the synthesized AuNPs for their structural, morphological 

and optical properties. 

3. To determine the structural and optical properties correlation of these AuNPs 

by developing a phenomenological model and subsequent MATLAB 

simulation. 

4. To validate the model by comparing with experimental findings and first-

principle DFT-based calculations on the structural and optical properties of 

AuNPs.  
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To accomplish these objectives, several methods and techniques have been 

employed as described in the scope of the study. 

1.4 Scope of the Research  

As mentioned above, the main objectives of the thesis are to prepare the 

AuNPs using the PLAL technique and then to characterize the as-grown AuNPs 

using diverse analytical techniques.  Next, the experimental data need validation 

using a comprehensive phenomenological model and comparison of the results with 

the experimental data and accurate DFT-based calculations. To achieve these 

objectives, several steps were considered:  

1. Preparation of the AuNPs using the PLAL techniques with various laser 

parameters, especially using the intermediate energies.  

2. Structural characterization using HRTEM, FTIR, ATR, and Raman 

spectroscopy.  

3. Determination of the optical properties using UV/Vis absorption and 

fluorescence spectroscopy. 

4. Development of a phenomenological model by incorporating the quantum 

size effects and surface states. 

5.  Simulation of the model using MATLAB coding to determine the structural 

and optical properties of AuNPs of varying shape and size.  

6. Validation of the model by comparing with the achieved experimental results 

and other findings.  

7. MATLAB programming of the model for calculating the AuNPs size and 

shape-dependent structural and optical properties.  

8.  Determination of the structural and optical properties using the first-principle 

DFT based simulation using WIEN2K software.  
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9. Fitting of the experimental data on the morphology-dependent structural and 

optical properties of AuNPs with the phenomenological model via the 

MATLAB programming. 

 

1.5  Significance of the Study 

This study is of interest to both fundamental and applied researchers in terms 

of synthesis, characterization, modeling and simulation of high-quality AuNPs, 

which are needed for many applications. Besides, the understanding of the structural 

and optical properties is significant for development of new applications. The 

knowledge on the modeling and simulation can play vital roles in fulfilling the 

experimental gap and linking experimental data to theories. Recent progress in the 

plasmonic NPs reveals that they have the prospect for diverse application in science, 

technology, and engineering. In this view, the present work is going to accomplish 

the set objectives and resolve the existing issues related to AuNPs.  The 

phenomenological modeling and subsequent simulation are expected to bridge the 

gap between the theory and experiments. The first-principle DFT-based simulations 

would make accurate quantitative predictions about the structural and optical 

properties of the AuNPs. This work is expected to develop a better insight into the 

shape- and size-dependent optical and structural properties of spherical AuNPs.  

1.6 Novelty and Contributions 

This thesis investigates various properties of the colloidal AuNPs starting 

from the synthesis, modeling, theory and simulation. The main novel contributions of 

this research project consist of several findings: 

i. Use of different laser parameters such as the intermediate laser 

energy, low repetition rate, and very short duration time to produce 

the AuNPs with desired morphology. 
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ii. The incorporation of the dielectric function for the spherical AuNPs in 

the modeling for the implementation in the scattering theory.  

iii. Integrations of the quantum confinement and the surface state in the 

comprehensive phenomenological model for the AuNPs to predict the 

PL spectra of the synthesized spherical AuNPs 

iv. The enhancement of the AuNPs in the DFT calculations via the 

application of the relativistic terms with the recent potential of the 

Becke-Johnson potential modified by Tran and Blaha (TBmBJ) to 

calculate an accurate structural and optical properties for AuNPs. 

v. The evaluation of a structural and optical correlation in the AuNPs for 

the first time. 

 

1.7 Thesis Organization 

This thesis is divided into several chapters. An overview of the thesis 

chapters is given in Figure 1.2 

 

Figure 1.2 Chapter content flowchart of the thesis. 

 

In chapter 1, general background information concerning the fundamental 

and experimental techniques for synthesizing AuNPs is given. The objectives, 

significance, and the problems are also described. 
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Chapter 2 provides a detailed literature review on the theory of DFT-based 

calculations in addition to the theory of optical AuNP properties. The review 

includes a description of the Mie-Guns modelling for the absorbance property of 

AuNPs. 

In Chapter 3, the research methods, experimental setup, procedures, different 

laser parameters, and experimental techniques for collecting data are explained. This 

chapter also includes a description of the modelling system used in this study for 

determining the phenomenological model. The software-based setup for the DFT 

simulations is included as part of each chapter. 

Chapter 4 discusses the experimental results of the synthesized AuNPs. The 

optimum growth conditions are identified. Different laser dependent parameters were 

studied and discussed. 

In Chapter 5, the theoretical results are discussed. The comprehensive 

phenomenological model for absorbance and luminescence properties was explored. 

Structural and optical DFT calculations were also made for the AuNPs. The 

correlation between the experimental results and the theoretical calculations were 

validated.  

Finally, conclusions drawn from the discussion and overall outcomes of this 

research are described in Chapter 6. The possibilities of extending the present model 

in the future are also described. 

 

 

 

 



 

227 

REFERENCES 

Abràmoff, M.D., Magalhães, P.J. and Ram, S.J. (2004) ‘Image processing with 

ImageJ’, Biophotonics International, 11(7), pp.36-42. 

Adams, S. and Zhang, J.Z. (2016) ‘Unique optical properties and applications of 

hollow gold nanospheres (HGNs)’, Coordination Chemistry Reviews, 320, 

pp.18-37. 

Affandi, M.S., Bidin, N., Abdullah, M., Aziz, M.S.A., Al-Azawi, M. and Nugroho, 

W. (2015) ‘In situ measurement of gold nanoparticle production’, Journal of 

Nanophotonics, 9(1), p.093089. 

Agulló-Rueda, F., Mendez, E.E., Bojarczuk, B. and Guha, S. (2000) ‘Raman 

spectroscopy of wurtzite InN films grown on Si’, Solid State 

Communications, 115(1), pp.19-21. 

Ahmed, S. and Ikram, S. (2016) ‘Biosynthesis of gold nanoparticles: a green 

approach’, Journal of Photochemistry and Photobiology B: Biology, 161, 

pp.141-153. 

Alaqad, K. and Saleh, T.A. (2016) ‘Gold and silver nanoparticles: synthesis methods, 

characterization routes and applications towards drugs’, Journal of 

Environmental and Analytical Toxicology, 6(4), pp.525-2161. 

Al-Azawi, M.A. and Bidin, N. (2015) ‘Gold nanoparticles synthesized by laser 

ablation in deionized water’, Chinese Journal of Physics, 53(4), pp.201-209. 

Altunbek, M., Kuku, G. and Culha, M. (2016) ‘Gold nanoparticles in single-cell 

analysis for surface enhanced Raman scattering’, Molecules, 21(12), p.1617. 

Ambrosch-Draxl, C. and Sofo, J.O. (2006) ‘Linear optical properties of solids within 

the full-potential linearized augmented planewave method’, Computer 

Physics Communications, 175(1), pp.1-14. 

Amendola, V. and Meneghetti, M. (2009) ‘Size evaluation of gold nanoparticles by 

UV− vis spectroscopy’, The Journal of Physical Chemistry C, 113(11), 

pp.4277-4285. 

Amendola, V. and Meneghetti, M. (2013) ‘What controls the composition and the 

structure of nanomaterials generated by laser ablation in liquid solution?’, 

Physical Chemistry Chemical Physics, 15(9), pp.3027-3046. 



 

228 

Amendola, V., Meneghetti, M., Stener, M., Guo, Y., Chen, S., Crespo, P., García, 

M.A., Hernando, A., Pengo, P. and Pasquato, L. (2014) ‘Physico-chemical 

characteristics of gold nanoparticles’, In Comprehensive Analytical 

Chemistry (Vol. 66, pp. 81-152). Elsevier. 

Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M. and Iatì, M.A. (2017) ‘Surface 

plasmon resonance in gold nanoparticles: a review’, Journal of Physics: 

Condensed Matter, 29(20), p.203002. 

Amendola, V., Polizzi, S. and Meneghetti, M. (2006) ‘Laser ablation synthesis of 

gold nanoparticles in organic solvents’, The Journal of Physical Chemistry B, 

110(14), pp.7232-7237. 

Andersen, O.K. (1975) ‘Linear methods in band theory’, Physical Review B, 12(8), 

p.3060. 

Andersen, S.K., Pors, A. and Bozhevolnyi, S.I. (2015) ‘Gold photoluminescence 

wavelength and polarization engineering’, Acs Photonics, 2(3), pp.432-438. 

Ausili, A., Sánchez, M. and Gómez-Fernández, J.C. (2015) ‘Attenuated total 

reflectance infrared spectroscopy: A powerful method for the simultaneous 

study of structure and spatial orientation of lipids and membrane proteins’, 

Biomedical Spectroscopy and Imaging, 4(2), pp.159-170. 

Baida, A. and Ghezali, M. (2018) ‘Structural, electronic and optical properties of InP 

under pressure: An ab-initio study’, Computational Condensed Matter, 17, 

p.e00333. 

Benatia, M., Driss-Khodja, F.Z., Saadaoui, F., Driss-Khodja, M. and Boudali, A. 

(2018) ‘Structural, elastic, thermodynamic, and electronic properties of 

BaHfO3: A first-principles study using GGA-PBEsol+ TB-mBJ approach’, 

Computational Condensed Matter, 16, p.e00296. 

Bhattarai, B., Zaker, Y. and Bigioni, T.P. (2018) ‘Green synthesis of gold and silver 

nanoparticles: Challenges and opportunities’, Current Opinion in Green and 

Sustainable Chemistry, 12, pp.91-100. 

Bhuyan, B., Paul, A., Paul, B., Dhar, S.S. and Dutta, P. (2017) ‘Paederia foetida 

Linn. promoted biogenic gold and silver nanoparticles: synthesis, 

characterization, photocatalytic and in vitro efficacy against clinically 

isolated pathogens’, Journal of Photochemistry and Photobiology B: Biology, 

173, pp.210-215. 



 

229 

Blaha, P., Schwarz, K., Sorantin, P. and Trickey, S.B. (1990) ‘Full-potential, 

linearized augmented plane wave programs for crystalline systems’, 

Computer Physics Communications, 59(2), pp.399-415. 

Bohren, C.F. and Huffman, D.R. (2004) ‘Absorption and scattering of light by small 

particles’, John Wiley & Sons.  

Cai, Y.Y., Liu, J.G., Tauzin, L.J., Huang, D., Sung, E., Zhang, H., Joplin, A., Chang, 

W.S., Nordlander, P. and Link, S. (2018) ‘Photoluminescence of gold 

nanorods: Purcell effect enhanced emission from hot carriers’, Acs Nano, 

12(2), pp.976-985. 

Car, R. (2002) ‘Introduction to Density‐Functional Theory and ab‐Initio Molecular 

Dynamics’, Quantitative Structure‐Activity Relationships, 21(2), pp.97-104. 

Carattino, A., Caldarola, M. and Orrit, M. (2018) ‘Gold nanoparticles as absolute 

nanothermometers’, Nano letters, 18(2), pp.874-880. 

Cederquist, K.B., Liu, B., Grima, M.R., Dalack, P.J. and Mahorn, J.T. (2017) ‘Laser-

fabricated gold nanoparticles for lateral flow immunoassays’, Colloids and 

Surfaces B: Biointerfaces, 149, pp.351-357. 

Chartier, G. (2005) ‘Introduction to optics’, Springer Science & Business Media. 

Choudhury, K., Singh, R.K., Kumar, P., Ranjan, M., Srivastava, A. and Kumar, A. 

(2019) ‘Effect of confined geometry on the size distribution of nanoparticles 

produced by laser ablation in liquid medium’, Nano-Structures & Nano-

Objects, 17, pp.129-137. 

Christensen, N.E. and Seraphin, B.O. (1971) ‘Relativistic band calculation and the 

optical properties of gold’, Physical Review B, 4(10), p.3321. 

Cobley, C.M., Chen, J., Cho, E.C., Wang, L.V. and Xia, Y. (2011) ‘Gold 

nanostructures: a class of multifunctional materials for biomedical 

applications’, Chemical Society Reviews, 40(1), pp.44-56. 

Courths, R., Zimmer, H.G., Goldmann, A. and Saalfeld, H. (1986) ‘Electronic 

structure of gold: An angle-resolved photoemission study along the Λ line’, 

Physical Review B, 34(6), p.3577. 

Dal Corso, A. and Conte, A.M. (2005) ‘Spin-orbit coupling with ultrasoft 

pseudopotentials: Application to Au and Pt’, Physical Review B, 71(11), 

p.115106. 



 

230 

De Souza, C.D., Nogueira, B.R. and Rostelato, M.E.C. (2019) ‘Review of the 

methodologies used in the synthesis gold nanoparticles by chemical 

reduction’, Journal of Alloys and Compounds, 798, pp.714-740. 

Deepak, F.L., Mayoral, A. and Arenal, R. eds. (2015) ‘Advanced transmission 

electron microscopy: Applications to nanomaterials’, Springer. 

Dehghani, Z., Noghreiyan, A.V., Nadafan, M. and Ara, M.M. (2017) ‘Investigation 

of gamma-ray irradiation on molecular structure, optical properties and mass 

attenuation coefficients of colloidal gold nanoparticles’, Optical Materials, 

70, pp.99-105. 

Dell’Aglio, M., Mangini, V., Valenza, G., De Pascale, O., De Stradis, A., Natile, G., 

Arnesano, F. and De Giacomo, A. (2016) ‘Silver and gold nanoparticles 

produced by pulsed laser ablation in liquid to investigate their interaction 

with ubiquitin’, Applied Surface Science, 374, pp.297-304. 

Derkachova, A., Kolwas, K. and Demchenko, I. (2016) ‘Dielectric function for gold 

in plasmonics applications: size dependence of plasmon resonance 

frequencies and damping rates for nanospheres’, Plasmonics, 11(3), pp.941-

951. 

Elsayed, K.A., Imam, H., Ahmed, M.A. and Ramadan, R. (2013) ‘Effect of focusing 

conditions and laser parameters on the fabrication of gold nanoparticles via 

laser ablation in liquid’, Optics & Laser Technology, 45, pp.495-502. 

Etchegoin, P. G., Le Ru, E. C. and Meyer, M. (2007) ‘Erratum: “An analytic model 

for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)]’, The 

Journal of Chemical Physics, 127(18), p. 189901. 

Etchegoin, P.G., Le Ru, E.C. and Meyer, M. (2006) ‘An analytic model for the 

optical properties of gold’, The Journal of Chemical Physics, 125(16), 

p.164705. 

Eustis, S. and El-Sayed, M.A. (2006) ‘Why gold nanoparticles are more precious 

than pretty gold: noble metal surface plasmon resonance and its enhancement 

of the radiative and nonradiative properties of nanocrystals of different 

shapes’, Chemical Society Reviews, 35(3), pp.209-217. 

Falahati, M., Attar, F., Sharifi, M., Saboury, A.A., Salihi, A., Aziz, F.M., Kostova, I., 

Burda, C., Priecel, P., Lopez-Sanchez, J.A. and Laurent, S. (2020) ‘Gold 

nanomaterials as key suppliers in biological and chemical sensing, catalysis, 



 

231 

and medicine’, Biochimica et Biophysica Acta (BBA)-General Subjects, 

1864(1), p.129435. 

Feis, A., Gellini, C., Salvi, P.R. and Becucci, M. (2014) ‘Photoacoustic excitation 

profiles of gold nanoparticles’, Photoacoustics, 2(1), pp.47-53. 

Frens, G. (1973) ‘Controlled nucleation for the regulation of the particle size in 

monodisperse gold suspensions’, Nature Physical Science, 241(105), pp.20-

22. 

Gagui, S., Zaidi, B., Megdoud, Y., Hadjoudja, B., Chouial, B., Meradji, H., Ghemid, 

S. and Shekhar, C. (2020) ‘Ab-initio study of the structural and 

optoelectronic properties of BaSe1-xSx alloys’, Computational Condensed 

Matter, 22, p.e00433. 

Ghoshal, S.K., Awang, A., Sahar, M.R. and Arifin, R. (2015) ‘Gold nanoparticles 

assisted surface enhanced Raman scattering and luminescence of Er3+ doped 

zinc–sodium tellurite glass’, Journal of Luminescence, 159, pp.265-273. 

Ghoshal, S.K., Sahar, M.R., Dousti, M.R., Sharma, S., Rohani, M.S., Arifin, R. and 

Hamzah, K. (2012) ‘Model for up-conversion luminescence in silver 

nanoparticles embedded erbium-doped tellurite glass’, Indian Journal of Pure 

& Applied Physics, 50, pp. 555-565 

Ghoshal, S.K., Sahar, M.R., Rohani, M.S. and Sharma, S. (2011) ‘Nanophotonics for 

21st century’, In Optoelectronics-Devices and Applications. IntechOpen. 

Giorgetti, E., Muniz-Miranda, M., Marsili, P., Scarpellini, D. and Giammanco, F. 

(2012) ‘Stable gold nanoparticles obtained in pure acetone by laser ablation 

with different wavelengths’, Journal of Nanoparticle Research, 14(1), p.648. 

Glantschnig, K. and Ambrosch-Draxl, C. (2010) ‘Relativistic effects on the linear 

optical properties of Au, Pt, Pb and W’, New Journal of Physics, 12(10), 

p.103048. 

Grady, N.K., Halas, N.J. and Nordlander, P. (2004) ‘Influence of dielectric function 

properties on the optical response of plasmon resonant metallic 

nanoparticles’, Chemical Physics Letters, 399(1-3), pp.167-171. 

Gupta, G., Nautiyal, T. and Auluck, S. (2004) ‘Optical properties of the compounds 

BaTiO 3 and SrTiO 3’, Physical Review B, 69(5), p.052101. 

Hao, F. and Nordlander, P. (2007) ‘Efficient dielectric function for FDTD simulation 

of the optical properties of silver and gold nanoparticles’, Chemical Physics 

Letters, 446(1-3), pp.115-118. 



 

232 

Hohenberg, P. and Kohn, W. (1964) ‘Inhomogeneous electron gas’, Physical Review, 

136. B864. 

Hong, S. and Li, X. (2013) ‘Optimal size of gold nanoparticles for surface-enhanced 

Raman spectroscopy under different conditions’, Journal of Nanomaterials, 

2013. 

Horikoshi, S. and Serpone, N. (2013) ‘Introduction to nanoparticles’, Microwaves in 

Nanoparticle Synthesis: Fundamentals and Applications, pp.1-24. 

Huang, T. and Murray, R.W. (2001) ‘Visible luminescence of water-soluble 

monolayer-protected gold clusters’, The Journal of Physical Chemistry B, 

105(50), pp.12498-12502. 

Huang, X. and El-Sayed, M.A. (2010) ‘Gold nanoparticles: Optical properties and 

implementations in cancer diagnosis and photothermal therapy’, Journal of 

Advanced Research, 1(1), pp.13-28. 

Isiyaku, A.K. and Ghoshal, S.K. (2016) ‘Photoluminescence spectral features of 

silicon nanowires’, Jurnal Teknologi, 78(3-2). 

Islam, M.N. and Kumar, S. (2003) ‘Influence of surface states on the 

photoluminescence from silicon nanostructures’, Journal of Applied Physics, 

93(3), pp.1753-1759. 

Jain, P.K., Lee, K.S., El-Sayed, I.H. and El-Sayed, M.A. (2006) ‘Calculated 

absorption and scattering properties of gold nanoparticles of different size, 

shape, and composition: applications in biological imaging and biomedicine’, 

The Journal of Physical Chemistry B, 110(14), pp.7238-7248. 

Jiang, H. (2013) ‘Band gaps from the Tran-Blaha modified Becke-Johnson approach: 

A systematic investigation’, The Journal of Chemical Physics, 138(13), 

p.134115. 

Johnson, P.B. and Christy, R.W. (1972) ‘Optical constants of the noble metals’, 

Physical Review B, 6(12), p.4370. 

Jones, R.R., Hooper, D.C., Zhang, L., Wolverson, D. and Valev, V.K. (2019) 

‘Raman techniques: fundamentals and frontiers’, Nanoscale Research Letters, 

14(1), pp.1-34. 

Jones, T.E., Piccinin, S. and Stampfl, C. (2013) ‘Relativity and the nobility of gold’, 

Materials Chemistry and Physics, 141(1), pp.14-17. 

Kayang, K.W., Nyankson, E., Efavi, J.K., Apalangya, V.A., Adetunji, B.I., 

Gebreyesus, G., Tia, R., Abavare, E.K.K., Onwona-Agyeman, B. and Yaya, 



 

233 

A. (2019) ‘A comparative study of the interaction of nickel, titanium, 

palladium, and gold metals with single-walled carbon nanotubes: A DFT 

approach’, Results in Physics, 12, pp.2100-2106. 

Khlebtsov, N.G. (2008) ‘Determination of size and concentration of gold 

nanoparticles from extinction spectra’, Analytical Chemistry, 80(17), 

pp.6620-6625. 

Kobayashi, Y., Correa-Duarte, M.A. and Liz-Marzán, L.M. (2001) ‘Sol− gel 

processing of silica-coated gold nanoparticles’, Langmuir, 17(20), pp.6375-

6379. 

Kohn, W. and Sham, L.J. (1965) ‘Self-consistent equations including exchange and 

correlation effects’, Physical Review, 140(4A), p.A1133. 

Koller, D., Tran, F. and Blaha, P. (2011) ‘Merits and limits of the modified Becke-

Johnson exchange potential’, Physical Review B, 83(19), p.195134. 

Koller, D., Tran, F. and Blaha, P. (2012) ‘Improving the modified Becke-Johnson 

exchange potential’, Physical Review B, 85(15), p.155109. 

Kreibig, U. and Vollmer, M. (2013) ‘Optical properties of metal clusters’, Vol. 25. 

Springer Science & Business Media. 

Kumar, C.S. ed. (2013) ‘UV-VIS and photoluminescence spectroscopy for 

nanomaterials characterization’, Berlin, Heidelberg: Springer. 

Kurelchuk, U.N., Borisyuk, P.V., Vasilyev, O.S. and Lebedinskii, Y.Y. (2017) ‘DFT 

study of electronic properties of noble d-metallic surface structures’, 

Materials Today: Proceedings, 4(12), pp.12343-12348. 

Laban, B., Ralević, U., Petrović, S., Leskovac, A., Vasić-Anićijević, D., Marković, 

M. and Vasić, V. (2020) ‘Green synthesis and characterization of nontoxic L-

methionine capped silver and gold nanoparticles’, Journal of Inorganic 

Biochemistry, 204, p.110958. 

Lee, S.H., Jung, H.J., Lee, S.J., Theerthagiri, J., Kim, T.H. and Choi, M.Y. (2020) 

‘Selective synthesis of Au and graphitic carbon-encapsulated Au (Au@ GC) 

nanoparticles by pulsed laser ablation in solvents: Catalytic Au and acid-

resistant Au@ GC nanoparticles’, Applied Surface Science, 506, p.145006. 

Liao, H., Wen, W. and Wong, G.K. (2006) ‘Photoluminescence from Au 

nanoparticles embedded in Au: oxide composite films’, Journal of the 

Optical Society of America B, 23(12), pp.2518-2521. 



 

234 

Lin, K.Q., Yi, J., Hu, S., Sun, J.J., Zheng, J.T., Wang, X. and Ren, B. (2016) 

‘Intraband hot-electron photoluminescence from single silver nanorods’, Acs 

Photonics, 3(7), pp.1248-1255. 

Link, S. and El-Sayed, M.A. (1999) ‘Spectral properties and relaxation dynamics of 

surface plasmon electronic oscillations in gold and silver nanodots and 

nanorods’, Journal of Physical Chemical B, 103(1), pp. 8410–8426. 

Link, S. and El-Sayed, M.A. (2000) ‘Shape and size dependence of radiative, non-

radiative and photothermal properties of gold nanocrystals’, International 

Reviews in Physical Chemistry, 19(3), pp.409-453. 

Liu, K., He, Z., Curtin, J.F., Byrne, H.J. and Tian, F. (2019) ‘A novel, rapid, 

seedless, in situ synthesis method of shape and size controllable gold 

nanoparticles using phosphates’, Scientific Reports, 9(1), pp.1-13. 

Liu, L. and Corma, A. (2018) ‘Metal catalysts for heterogeneous catalysis: from 

single atoms to nanoclusters and nanoparticles’, Chemical Reviews, 118(10), 

pp.4981-5079. 

Liu, X., Wang, Y., Eisenbach, M. and Stocks, G.M. (2018) ‘Fully-relativistic full-

potential multiple scattering theory: A pathology-free scheme’, Computer 

Physics Communications, 224, pp.265-272. 

Long, P.D., Chien, D.T., Trung, N.T., Hieu, N.S., Van Cat, V. and Lam, V.D. (2017) 

‘Plasmonic Effect Enhanced Photocurrent in Nanostructured TiO 2 Films 

Decorated with Gold Nanoparticles’, Journal of Electronic Materials, 46(7), 

pp.4448-4454. 

Lu, M., Zhu, H., Bazuin, C.G., Peng, W. and Masson, J.F. (2019) ‘Polymer-

templated gold nanoparticles on optical fibers for enhanced-sensitivity 

localized surface plasmon resonance biosensors’, ACS Sensors, 4(3), pp.613-

622. 

Luo, D., Wang, X., Zeng, S., Ramamurthy, G., Burda, C. and Basilion, J.P. (2019) 

Prostate-specific membrane antigen targeted gold nanoparticles for prostate 

cancer radiotherapy: does size matter for targeted particles?’, Chemical 

Science, 10(35), pp.8119-8128. 

Maciulevičius, M., Vinčiūnas, A., Brikas, M., Butsen, A., Tarasenka, N., Tarasenko, 

N. and Račiukaitis, G. (2013) ‘Pulsed-laser generation of gold nanoparticles 

with on-line surface plasmon resonance detection’, Applied Physics A, 

111(1), pp.289-295. 



 

235 

Maiman, T.H. (1960) ‘Stimulated optical radiation in ruby’, Nature, 187(4736), 

pp.493-494. 

Matrane, I., Mazroui, M. and Boughaleb, Y. (2018) ‘Diffusion and adsorption of Au 

and Pt adatoms on ideal and missing row reconstructed surfaces of Au (110): 

DFT and EAM calculations’, Surface Science, 677, pp.83-89. 

Mätzler, C. (2002) ‘MATLAB functions for Mie scattering and absorption’, version 

2. IAP Res. Rep, 8(1), p.9. 

Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., 

Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T. and Prohaska, T. (2016) 

‘Atomic weights of the elements 2013’, Pure and Applied Chemistry, 88(3), 

pp.265-291. 

Mendivil Palma, M.I., Krishnan, B., Rodriguez, G.A.C., Das Roy, T.K., Avellaneda, 

D.A. and Shaji, S. (2016) ‘Synthesis and properties of platinum nanoparticles 

by pulsed laser ablation in liquid’, Journal of Nanomaterials, 2016. 

Menéndez-Manjón, A., Wagener, P. and Barcikowski, S. (2011) ‘Transfer-matrix 

method for efficient ablation by pulsed laser ablation and nanoparticle 

generation in liquids’, The Journal of Physical Chemistry C, 115(12), 

pp.5108-5114. 

Minoli, D. (2005) ‘Nanotechnology applications to telecommunications and 

networking’, John Wiley & Sons. 

Mohammed, Y.H., Sakrani, S.B. and Rohani, M.S. (2015) ‘Improved structural 

features of Au-catalyzed silicon nanoneedles’, Superlattices and 

Microstructures, 85, pp.849-858. 

Mooradian, A. (1969) ‘Photoluminescence of metals’, Physical Review Letters, 

22(5), p.185. 

Moura, C.G., Pereira, R.S.F., Andritschky, M., Lopes, A.L.B., de Freitas Grilo, J.P., 

do Nascimento, R.M. and Silva, F.S. (2017) ‘Effects of laser fluence and 

liquid media on preparation of small Ag nanoparticles by laser ablation in 

liquid’, Optics & Laser Technology, 97, pp.20-28. 

Nainaa, F. and Ez-Zahraouy, H. (2018) ‘First-principle study of structural, electronic 

and optical properties of Cu2FeSnS4 semiconductor’, Computational 

Condensed Matter, 16, p.e00321. 



 

236 

Nayef, U.M. and Khudhair, I.M. (2018) ‘Synthesis of gold nanoparticles chemically 

doped with porous silicon for organic vapor sensor by using 

photoluminescence’, Optik, 154, pp.398-404. 

Neddersen, J., Chumanov, G. and Cotton, T.M. (1993) ‘Laser ablation of metals: a 

new method for preparing SERS active colloids’, Applied Spectroscopy, 

47(12), pp.1959-1964. 

Nedyalkov, N., Koleva, M.E., Nikov, R., Stankova, N.E., Iordanova, E., Yankov, G., 

Aleksandrov, L. and Iordanova, R. (2019) ‘Tuning optical properties of noble 

metal nanoparticle-composed glasses by laser radiation’, Applied Surface 

Science, 463, pp.968-975. 

Nikov, R.G., Nikolov, A.S., Nedyalkov, N.N., Atanasov, P.A., Alexandrov, M.T. and 

Karashanova, D.B. (2013) ‘Processing condition influence on the 

characteristics of gold nanoparticles produced by pulsed laser ablation in 

liquids’, Applied Surface Science, 274, pp.105-109. 

Nilsson, P.O., Norris, C. and Walldén, L. (1970) ‘The electronic structure of gold 

studied by photoemission’, Physik der Kondensierten Materie, 11(3), pp.220-

230. 

Olson, J., Dominguez-Medina, S., Hoggard, A., Wang, L.Y., Chang, W.S. and Link, 

S. (2015) ‘Optical characterization of single plasmonic nanoparticles’, 

Chemical Society Reviews, 44(1), pp.40-57. 

Özdemir, E.G. and Merdan, Z. (2020) ‘The effect of structural changes on the half 

metallic properties by using Tran Blaha modified Becke Johnson (TB_mBJ) 

method’, Journal of Magnetism and Magnetic Materials, p.167198. 

Palazzo, G., Valenza, G., Dell’Aglio, M. and De Giacomo, A. (2017) ‘On the 

stability of gold nanoparticles synthesized by laser ablation in liquids’, 

Journal of Colloid and Interface Science, 489, pp.47-56. 

Palik, E.D. ed. (1998) ‘Handbook of optical constants of solids’, Vol. 1-4, Academic 

press. 

Parra, M.J.A. and Paradinas, S.S. (2014) ‘Spectroscopic Techniques Based on the 

Use of Gold Nanoparticles’, In Comprehensive Analytical Chemistry, 66, pp. 

477-527.  

Patil, P.P., Phase, D.M., Kulkarni, S.A., Ghaisas, S.V., Kulkarni, S.K., Kanetkar, 

S.M., Ogale, S.B. and Bhide, V.G. (1987) ‘Pulsed-laser–induced reactive 



 

237 

quenching at liquid-solid interface: Aqueous oxidation of iron’, Physical 

Review Letters, 58(3), p.238. 

Pattabi, M. and Pattabi, R.M. (2014) ‘Photoluminescence from Gold and Silver 

Nanoparticles. In Nano Hybrids’, Trans Tech Publications Ltd, 6, pp. 1-35. 

Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.A. (2008) ‘Introduction to 

spectroscopy’, Cengage Learning. 

Peck, J.A., Tait, C.D., Swanson, B.I. and Brown Jr, G.E. (1991) ‘Speciation of 

aqueous gold (III) chlorides from ultraviolet/visible absorption and 

Raman/resonance Raman spectroscopies’, Geochimica et Cosmochimica 

Acta, 55(3), pp.671-676. 

Peña-Rodríguez, O. (2017) ‘Modelling the dielectric function of Au-Ag alloys’, 

Journal of Alloys and Compounds, 694, pp.857-863. 

Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) ‘Generalized gradient 

approximation made simple’, Physical Review Letters, 77(18), p.3865. 

Pyykko, P. (1988) ‘Relativistic effects in structural chemistry’, Chemical Reviews, 

88(3), pp.563-594. 

Qi, W.H. and Wang, M.P. (2005) ‘Size and shape dependent lattice parameters of 

metallic nanoparticles’, Journal of Nanoparticle Research, 7(1), pp.51-57.  

Qian, X. and Park, H.S. (2010) ‘The influence of mechanical strain on the optical 

properties of spherical gold nanoparticles’, Journal of the Mechanics and 

Physics of Solids, 58(3), pp.330-345. 

Rafique, M., Rafique, M.S., Butt, S.H., Kalsoom, U., Afzal, A., Anjum, S. and 

Usman, A. (2017) ‘Dependence of the structural optical and thermo-physical 

properties of gold nano-particles synthesized by laser ablation method on the 

nature of laser’, Optik, 134, pp.140-148. 

Rameshe, B., Gnanapoongothai, T., Shanmugapriya, K., Murugan, R. and Palanivel, 

B. (2016) ‘Theoretical Investigations on Electronic Structure, Structural 

Phase Stability and Optical Properties of Strontium Double Perovskites: 

Sr2AMoO6 (A= Mg, Zn)’, Materials Today: Proceedings, 3(10), pp.4242-

4248. 

Rangel, T., Kecik, D., Trevisanutto, P.E., Rignanese, G.M., Van Swygenhoven, H. 

and Olevano, V. (2012) ‘Band structure of gold from many-body perturbation 

theory’, Physical Review B, 86(12), p.125125. 



 

238 

Riabinina, D., Zhang, J., Chaker, M., Margot, J. and Ma, D. (2012) ‘Size control of 

gold nanoparticles synthesized by laser ablation in liquid media’, ISRN 

Nanotechnology, 2012. 

Rioux, D., Vallières, S., Besner, S., Muñoz, P., Mazur, E. and Meunier, M. (2014) 

‘An analytic model for the dielectric function of Au, Ag, and their alloys’, 

Advanced Optical Materials, 2(2), pp.176-182. 

Roduner, E. (2006) ‘Size matters: why nanomaterials are different’, Chemical 

Society Reviews, 35(7), pp.583-592. 

Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T. 

and Eliceiri, K.W. (2017) ‘ImageJ2: ImageJ for the next generation of 

scientific image data’, BMC Bioinformatics, 18(1), p.529. 

Sanna, S., Thierfelder, C., Wippermann, S., Sinha, T.P. and Schmidt, W.G. (2011) 

‘Barium titanate ground-and excited-state properties from first-principles 

calculations’, Physical Review B, 83(5), p.054112. 

Scherpelz, P., Govoni, M., Hamada, I. and Galli, G. (2016) ‘Implementation and 

validation of fully relativistic GW calculations: spin–orbit coupling in 

molecules, nanocrystals, and solids’, Journal of Chemical Theory and 

Computation, 12(8), pp.3523-3544. 

Schwarz, K., Blaha, P. and Madsen, G.K. (2002) ‘Electronic structure calculations of 

solids using the WIEN2k package for material sciences’, Computer Physics 

Communications, 147(1-2), pp.71-76. 

Shabaninezhad, M. and Ramakrishna, G. (2019) ‘Theoretical investigation of size, 

shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold 

nanoshells’, The Journal of Chemical Physics, 150(14), p.144116. 

Silva-De Hoyos, L.E., Sanchez-Mendieta, V., Camacho-Lopez, M.A., Trujillo-

Reyes, J. and Vilchis-Nestor, A.R. (2020) ‘Plasmonic and fluorescent sensors 

of metal ions in water based on biogenic gold nanoparticles’, Arabian 

Journal of Chemistry, 13(1), pp.1975-1985. 

Smith, D.J. (2008) ‘Ultimate resolution in the electron microscope?’, Materials 

Today, 11, pp.30-38. 

Smith, N.V. (1974) ‘Photoemission spectra and band structures of d-band metals. III. 

Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au’, Physical Review B, 

9(4), p.1365. 



 

239 

Smith, P.V., Hermanowicz, M., Shah, G.A. and Radny, M.W. (2012) ‘Spin–orbit and 

modified Becke–Johnson potential effects on the electronic properties of bulk 

Ge: A density functional theory study’, Computational Materials Science, 54, 

pp.37-42. 

Soares, J.A. (2014) ‘Introduction to optical characterization of materials’, In 

Practical Materials Characterization, pp. 43-92. 

Sönnichsen, C. (2001) ‘Plasmons in metal nanostructures’, Doctoral Dissertation, 

lmu. 

Städele, M., Moukara, M., Majewski, J.A., Vogl, P. and Görling, A. (1999) ‘Exact 

exchange Kohn-Sham formalism applied to semiconductors’, Physical 

Review B, 59(15), p.10031. 

Suárez, J.A., Plata, J.J., Márquez, A.M. and Sanz, J.F. (2016) ‘Structural, electronic 

and optical properties of copper, silver and gold sulfide: a DFT study’, 

Theoretical Chemistry Accounts, 135(3), p.70. 

Taghizadeh, S., Alimardani, V., Roudbali, P.L., Ghasemi, Y. and Kaviani, E. (2019) 

‘Gold nanoparticles application in liver cancer’, Photodiagnosis and 

Photodynamic Therapy, 25, pp.389-400. 

Theileis, V. and Bross, H. (2000) ‘Relativistic modified augmented plane wave 

method and its application to the electronic structure of gold and platinum’, 

Physical Review B, 62(20), p.13338. 

Tran, F. and Blaha, P. (2009) ‘Accurate band gaps of semiconductors and insulators 

with a semilocal exchange-correlation potential’, Physical Review Letters, 

102(22), p.226401. 

Tran, F., Blaha, P. and Schwarz, K. (2007) ‘Band gap calculations with Becke–

Johnson exchange potential’, Journal of Physics: Condensed Matter, 19(19), 

p.196208. 

Urban, A. (2010) ‘Optothermal manipulation of phospholipid membranes with gold 

nanoparticles’, Doctoral Dissertation, lmu. 

Vedhanayagam, M., Nair, B.U. and Sreeram, K.J. (2019) ‘Effect of functionalized 

gold nanoparticle on collagen stabilization for tissue engineering application’, 

International Journal of Biological Macromolecules, 123, pp.1211-1220. 

Vinod, M. and Gopchandran, K.G. (2014) ‘Au, Ag and Au: Ag colloidal 

nanoparticles synthesized by pulsed laser ablation as SERS substrates’, 

Progress in Natural Science: Materials International, 24(6), pp.569-578. 



 

240 

Vinod, M., Jayasree, R.S. and Gopchandran, K.G. (2017) ‘Synthesis of pure and 

biocompatible gold nanoparticles using laser ablation method for SERS and 

photothermal applications’, Current Applied Physics, 17(11), pp.1430-1438. 

Wang, R., Chen, K. and Ge, G. (2014) ‘A simple spectroscopic method for the 

quantification of gold nanoparticle number concentration in water and fetal 

bovine serum solutions’, Chinese Science Bulletin, 59(16), pp.1816-1821. 

Werner, W.S., Glantschnig, K. and Ambrosch-Draxl, C. (2009) ‘Optical constants 

and inelastic electron-scattering data for 17 elemental metals’, Journal of 

Physical and Chemical Reference Data, 38(4), pp.1013-1092. 

Werner, W.S., Went, M.R., Vos, M., Glantschnig, K. and Ambrosch-Draxl, C. 

(2008) ‘Measurement and density functional calculations of optical constants 

of Ag and Au from infrared to vacuum ultraviolet wavelengths’, Physical 

Review B, 77(16), p.161404. 

Yan, Z. and Chrisey, D.B. (2012) ‘Pulsed laser ablation in liquid for micro-

/nanostructure generation’, Journal of Photochemistry and Photobiology C: 

Photochemistry Reviews, 13(3), pp.204-223. 

Yu, J., Nan, J. and Zeng, H. (2017) ‘Size control of nanoparticles by multiple-pulse 

laser ablation’, Applied Surface Science, 402, pp.330-335. 

Zamiri, R., Zakaria, A., Ahangar, H.A., Darroudi, M., Zamiri, G., Rizwan, Z. and 

Drummen, G.P. (2013) ‘The effect of laser repetition rate on the LASiS 

synthesis of biocompatible silver nanoparticles in aqueous starch solution’, 

International Journal of Nanomedicine, 8, p.233. 

Zeng, H., Du, X.W., Singh, S.C., Kulinich, S.A., Yang, S., He, J. and Cai, W. (2012) 

‘Nanomaterials via laser ablation/irradiation in liquid: a review’, Advanced 

Functional Materials, 22(7), pp.1333-1353. 

Zhang, D., Gökce, B. and Barcikowski, S. (2017a) ‘Laser synthesis and processing of 

colloids: fundamentals and applications’, Chemical Reviews, 117(5), 

pp.3990-4103. 

Zhang, J., Claverie, J., Chaker, M. and Ma, D. (2017b) ‘Colloidal metal 

nanoparticles prepared by laser ablation and their applications’, 

ChemPhysChem, 18(9), pp.986-1006. 

Zheng, J., Zhou, C., Yu, M. and Liu, J. (2012) ‘Different sized luminescent gold 

nanoparticles’, Nanoscale, 4(14), pp.4073-4083. 



 

241 

Zhou, M., Higaki, T., Hu, G., Sfeir, M.Y., Chen, Y., Jiang, D.E. and Jin, R. (2019) 

‘Three-orders-of-magnitude variation of carrier lifetimes with crystal phase 

of gold nanoclusters’, Science, 364(6437), pp.279-282. 

 



 

263 

LIST OF PUBLICATIONS 

Alluhaybi, H. A., Ghoshal, S. K., Alsobhi, B. O. and Shamsuri, W. N. W. (2019) 

‘Electronic and optical correlation effects in bulk gold: Role of spin–orbit 

coupling’, Computational Condensed Matter. Elsevier B.V., 18, p. e00360. 

 

Alluhaybi, H. A., Ghoshal, S. K., Shamsuri, W. N. W., Alsobhi, B. O., Salim, A. A. 

and Krishnan, G. (2019) ‘Pulsed laser ablation in liquid assisted growth of 

gold nanoparticles: Evaluation of structural and optical features’, Nano-

Structures and Nano-Objects. Elsevier B.V., 19, p. 100355. 

 

Alluhaybi, H. A., Ghoshal, S. K., Alsobhi, B. O. and Wan Shamsuri, W. N. (2019) 

‘Visible photoluminescence from gold nanoparticles: A basic insight’, Optik. 

Elsevier, 192(March), p. 162936. 




