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ABSTRACT 

Uncertainties in oil prices and product demands affect oil refinery industry 

profits. The fluctuations in oil prices and unstable product demands result in 

disruptions at procurement, production, and inventory stages. This issue has increased 

awareness among managers and decision-makers to include uncertainty characteristics 

in refinery planning. Stochastic programming is an approach to optimising the profit 

of oil refineries under uncertainty. A crucial assumption for this approach is the use of 

scenario trees to characterise the probability distribution of the underlying stochastic 

process. However, there are limited studies on accurate forecast methods to generate 

scenario trees with low error. The existing stochastic programming approaches do not 

include uncertainty quantification of stochastic parameters with an accurate forecast 

model. Thus, this study has developed a framework to formulate uncertainty 

quantification of stochastic parameters in a stochastic programming model. In 

modelling oil price dynamics, information on whether the structural break exists is 

crucial due to the long memory property that might be camouflaged by the existence 

of the structural break. In this study, oil prices are modelled and forecasted based on 

the hurst value, and stochastic differential equations are explored to analyse the 

uncertainty of the time series. Meanwhile, the Holt-Winter method is adopted to 

describe the uncertainties of petroleum product demand with seasonal variation. The 

long memory analysis for the before-break and after-break series did not present 

similar results, which confirmed that the returns of oil prices did not possess true long 

memory during this period. The results indicate that Geometric Brownian Motion 

(GBM) and mean-reverting Ornstein-Uhlenbeck (OU) are accurate forecast models to 

represent future oil prices. It is found that the Holt-Winter seasonal method is an 

accurate model to represent future petroleum products demand as its mean absolute 

percentage error (MAPE) value is less than 10. The study obtained 64 scenarios for oil 

price uncertainty and 32 scenarios for product demand uncertainty as an effective 

scenario tree for the input of stochastic programming. This newly developed stochastic 

programming with uncertainty quantification gained 9% more profit than the 

stochastic programming based on expert judgment, amounting to approximately USD 

269,000 per day (~USD 98 million per year). Thus by incorporating uncertainty 

quantification of stochastic parameters in stochastic programming, more profit could 

be gained compared to that using stochastic programming based on an expert 

judgement approach. This new method would also be able to capture more information 

in managing the supply and demand of petroleum products. The optimal process flow 

rate in the oil refinery and the amount of shortfall and surplus petroleum finish 

products in every possible scenario could be determined so the management could plan 

for future events. Future work for this study could apply more general techniques and 

reasonable estimates for the distribution of stochastic parameters. Matching the first 

four statistical moments such as mean, variance, skewness, and kurtosis that are 

sufficient to explain the characteristics of the uncertain parameters could also be 

considered. 
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ABSTRAK 

Ketidaktentuan harga minyak dan permintaan produk mengakibatkan 

keuntungan industri penapisan minyak terjejas. Turun naik harga minyak dan 

permintaan produk yang tidak stabil mengakibatkan gangguan pada peringkat 

perolehan, pengeluaran dan inventori. Isu ini telah meningkatkan kesedaran dalam 

kalangan pengurus dan pembuat keputusan untuk memasukkan ciri ketidaktentuan 

dalam perancangan penapisan. Pengaturcaraan stokastik adalah satu pendekatan untuk 

mengoptimumkan keuntungan kilang penapisan minyak di bawah ketidaktentuan. Satu 

andaian penting pendekatan ini adalah pokok senario bercirikan taburan 

kebarangkalian proses stokastik. Walau bagaimanapun, kajian mengenai kaedah 

ramalan yang tepat untuk menjana pokok senario dengan ralat yang rendah agak 

terhad. Pendekatan pengaturcaraan stokastik sedia ada tidak termasuk kuantifikasi 

ketidaktentuan parameter stokastik dengan model ramalan yang tepat. Oleh itu, kajian 

ini telah membangunkan sebuah kerangka untuk memformulasi kuantifikasi 

ketidaktentuan parameter stokastik dalam model pengaturcaraan stokastik. Dalam 

pemodelan dinamika harga minyak, maklumat tentang kewujudan pemisahan struktur 

adalah penting kerana sifat memori panjang yang mungkin dikaburi kerana kewujudan 

pemisah struktur. Siri masa telah dimodelkan dan diramalkan berdasarkan nilai Hurst, 

dan persamaan pembeza stokastik telah diterokai untuk menganalisis ketidaktentuan 

harga minyak. Sementara itu, kaedah Holt-Winter telah digunakan untuk menerangkan 

ketidaktentuan permintaan produk petroleum dengan variasi bermusim. Analisis 

memori panjang untuk siri sebelum dan selepas pemisah struktur tidak menunjukkan 

keputusan yang sama, yang mengesahkan bahawa pulangan harga minyak tidak 

mempunyai memori panjang yang sebenar dalam tempoh ini. Hasil menunjukkan 

bahawa Gerakan Geometrik Brown (GBM) dan min-berbalik Ornstein-Uhlenbeck 

(OU) adalah model ramalan yang tepat untuk mewakili harga minyak masa hadapan. 

Kaedah bermusim Holt-Winter didapati adalah model yang tepat untuk mewakili 

permintaan produk petroleum masa hadapan kerana min nilai ralat peratusan mutlak 

(MAPE) kurang daripada 10. Kajian ini memperoleh 64 senario untuk ketidaktentuan 

harga minyak dan 32 senario untuk ketidaktentuan permintaan produk sebagai pokok 

senario yang berkesan dalam input pengaturcaraan stokastik. Kaedah pengaturcaraan 

stokastik yang baru ini memperoleh 9% lebih keuntungan daripada pengaturcaraan 

stokastik berdasarkan pertimbangan pakar, berjumlah kira-kira USD 269,000 sehari (~ 

USD 98 juta setahun). Justeru dengan menggabungkan kuantifikasi ketidaktentuan 

parameter stokastik dalam pengaturcaraan stokastik, lebih banyak keuntungan boleh 

diperolehi berbanding cara pengaturcaraan stokastik berdasarkan penilaian pakar. 

Kaedah baru ini juga dapat memberi lebih banyak maklumat dalam menguruskan 

bekalan dan permintaan produk petroleum. Kadar aliran proses penapisan minyak 

yang optimum dan jumlah kekurangan dan lebihan produk petroleum dalam setiap 

senario masa hadapan dapat dikenalpasti supaya pihak pengurusan boleh merancang 

untuk masa hadapan. Kajian akan datang boleh mempertimbangkan pengggunaan 

teknik yang lebih umum dan anggaran yang lebih munasabah untuk taburan parameter 

stokastik. Pemadanan empat pengiraan statistik momen seperti min, varians, 

kepencongan dan kurtosis yang mencukupi untuk menerangkan ciri-ciri parameter 

ketidaktentuan juga boleh dipertimbangkan. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Uncertainty in Oil and Gas Industry 

The oil and gas industry is a major player in the energy market that transforms 

oil and gas into various petroleum products. It plays a vital role in the global and 

domestic economy. Annually, the oil and gas industry in the U.S. invested an average 

of USD 227 billion on infrastructures from 2012 to 2016, accounting for 16.0% of the 

total capital expenditures in all U.S. industries (American Petroleum Institute (API), 

2018). Every year, the increasing consumption of petroleum products increases the 

demand for crude oil. In 2018, the total world consumption of petroleum was about 

100 million barrels per day (b/d); the United States (U.S.) was the largest petroleum 

consuming country (20.5 million b/d), whereby its transportation sector consumed the 

highest (66.0%) (Use of oil, 2021). In 2020, the total petroleum consumption in the 

U.S. decreased by 13% from 2019 due to the coronavirus disease (COVID-19) 

pandemic that causes declining demand for transportation fuels, as planes are grounded 

and cars parked. Overall, petroleum consumption increased from 1985 to 2020 

(Sonnichsen, 2021d). In line with the increasing consumption of petroleum products, 

the oil and gas industry has to compete for global energy resources and maintains a 

healthy earning capability to allow reinvestment in the country’s facilities, 

infrastructures, and new technologies, while generating returns that meet the 

shareholders’ expectations (American Petroleum Institute (API), 2016).  

The oil and gas industry is divided into three major sectors: upstream, 

midstream, and downstream (Koroteev & Tekic, 2021) as shown in Figure 1.1. Each 

sector consists of complex activities that link with one another. The upstream sector, 

commonly known as exploration, involves identifying deposits, drilling wells, and 

recovering raw materials from the ground, including field development. Depending on 

the standards, some crude oils are exported to the international market, and some are 

processed in the local refineries. The midstream sector is an intermediate sector, which 
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involves transportation to move crude oils to refineries. At times, the operation in the 

midstream sector is classified as part of the downstream sector. The downstream sector 

focuses on the refining, processing, marketing, and distribution of refined petroleum 

products. Because crude oil itself has minimal consumer value, downstream activities 

play an important role in process the crude oil into the range of petroleum products. 

There are more than 400 oil refineries worldwide, and most refineries operate in North 

America (IHS Markit, 2019). For example, 18 refineries with the capacity to refine 2 

million b/d are located in Canada, contributing to gross domestic product (GDP) of 2.5 

billion and the employment of 17,500 Canadian workers (Philip Cross, Pierre 

Desrochers, & Hiroko Shimizu, 2013). Meanwhile, there are 53 refineries in South 

East Asia, and seven of them operate in Malaysia, with a capacity of 880,000 b/d (U.S. 

Energy Information Administration (EIA), 2021). 

 

Figure 1.1 Sectors in the oil and gas industry 

 

The oil industry is highly dependent on changes in oil prices because oil is an 

essential input for many goods and services in the economy (Hoque, Low and Zaidi, 

2020). Lower oil prices reduce oil companies' businesses input costs and operating 

expenses and increase corporate profits and cash flow. The opposite is true when oil 

prices go up. In general, profitability in refining can be measured by their financial 

performance (Andrews, Pirog and Sherlock, 2010). The comparative financial 

performance for world refining companies, Exxon Mobil, Chevron, BP and Shell for 

the period 2011 to 2020 is shown in Figure 1.2. In general, it shows the profit 

downtrend from 2011 to 2019. The combination of high crude oil price and weak 

demand are factors that contribute to the decline in profit from 2011 to 2014. Crude 

oil is the cost that determines profits in refineries. When the crude oil price is high, the 

product demand evolves with the increasing income, and the sensitivity of demand to 

Upstream

• Exploration

• Field 
development

• Production

Midstream

• Transportation

Downstream

• Refinery
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the increase of price is low. Refineries then pass on the high crude oil price to 

consumers by raising the product price. If the demand is stagnant or low, the transition 

of high crude oil price to the final product price is unlikely. The high petroleum 

products inventories pushed down product prices compared to the cost of crude oil, 

which reducing refining profit margins (Andrews, Pirog, & Sherlock, 2012). The total 

petroleum consumption in the U.S. decreased due to the COVID-19 pandemic has 

affected the prices of crude oils to various petroleum products which causes the lowest 

profit recorded in 2020. 

 

Figure 1.2 World refiner’s net income from 2011 to 2020 

 

Source: (N. Sonnichsen, 2021)(Chevron, 2020)(BP, 2020)(Shell, 2020) 

According to Energy Information Administration (EIA) (U.S. Energy 

Information Administration (EIA), 2021), Malaysia’s national oil and gas natural 

company, Petroliam Nasional Berhad (PETRONAS) owns a share in the majority of 

Malaysia's oil and gas blocks, and its financial contributions to government income in 

the form of taxes, dividends, and cash payments accounted for around 35% of total 

government revenue in 2019. Petronas' primary activity is the production, refining, and 

distribution of oil and gas, as well as the manufacture of refined goods such as gasoline, 

lubricants, and petrochemicals. In the upstream segment, the higher the price of crude 

oil and gas, the higher the profit, and vice versa. Meanwhile, the profit in downstream 

segment is determined by the difference between the cost of raw materials and the 
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selling price of petroleum finished products. This implies that the price of crude oil 

and natural gas, as well as the selling price of its refined products, have a significant 

influence on the company's profitability (Aziz, 2020).  

PETRONAS refinery’s comparative financial performance with crude oil price 

for the past ten years, from 2011 to 2020, is presented in Figure 1.3. The decline in 

profit from 2011 to 2014 is attributable to several factors, including the combination 

of high crude oil prices and lower petroleum product sales volumes (PETRONAS, 

2010)(PETRONAS, 2011)(PETRONAS, 2012)(PETRONAS, 2013)(PETRONAS, 

2014). The increased profit from 2015 to 2018 is due to a higher refining margin 

benefitting from lower crude oil prices as well as higher petrochemical products sales 

volume (PETRONAS, 2015)(PETRONAS, 2016)(PETRONAS, 2017)(PETRONAS, 

2018). The lower petrochemical product spreads and refining margins were the 

fundamental causes of the profit drop in 2019 (PETRONAS, 2019). Lower petroleum 

product sales volume due to the impact of the COVID-19 outbreak causes profit loss 

in 2020  (PETRONAS, 2020). Because crude oil and petroleum product prices are the 

two most important factors that affect oil refining industry profit, changes in oil prices 

have a significant impact on profitability (Energy Information Administration (EIA), 

2016). Meanwhile, sales volume is an important figure in business, as it provides 

information about the market demand. These indicate that uncertainties in oil prices 

and product demands affect the worldwide oil refining industry profit and Malaysian 

oil refining industry profit. 
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Figure 1.3 PETRONAS’s refinery profit from 2011 to 2020 

 

1.2 Challenges in Optimising Oil Refinery Profit  

Fluctuating crude oil prices and unstable demand for finished products result 

in inefficiency that is transferred down to the final product cost. This also disrupts the 

procurement, production, and inventory stages, which eventually affect the 

profitability of the oil refining industry. Hence, decision making becomes more 

complex, and accurate uncertainty quantification is crucial to ensure the decision 

process reflects the behaviour of the uncertainties. 

1.2.1 Uncertainty in Oil Prices 

Crude oil is the primary raw material and input for the oil refinery process. 

There are several oil types in this world, and they are classified and priced according 

to the density and sulphur content. West Texas Intermediate (WTI) is one of the well-

known world’s crude oils. WTI crude oil is the longstanding benchmark for pricing 

crude oil futures contracts traded on the New York Mercantile Exchange (NYMEX). 
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In this study, WTI crude oil price is chosen because WTI is a widely used benchmark 

price and forms the basis of many crude oil price formulas. Refineries convert crude 

oil into various valuable products through several different processes: separation 

process, conversion process, treatment process, and blending process. The resulting 

petroleum products are classified as light, medium, or heavy products. Light products 

consist of liquid petroleum gas (LPG), gasoline, and naphtha. Medium products consist 

of middle distillates, diesel fuel, kerosene, and related jet aircraft fuel. Heavy products 

consist of fuel oils, lubricating oils, paraffin wax, asphalt, tar, and petroleum coke.  

The majority of the world's crude oil reserves are located in areas prone to 

political instability or where oil production has been disrupted due to political events. 

There were three major events that dramatically disrupted the flow of oils from global 

producers, resulting in the price movement during the late 1970s (J. D. Hamilton, 

2009): the Iranian revolution in 1978, Iraq’s invasion of Iran in September 1980, and 

Iraq’s invasion of Kuwait in August 1990.  Geopolitical events that interrupt crude oil 

and petroleum product supply to the market might impact crude oil and petroleum 

product prices. Figure 1.4 represents WTI crude oil prices from 1985 to January 2020. 

Crude oil prices were more stable until 2000. After 2000, there was one event where 

the oil price reached its maximum price in history (USD 145 per barrel) in July 2008 

before the price dramatically collapsed to USD 30 per barrel in December 2008. 

Supply and demand and the role of speculations were the main causes of the oil shock 

from 2007 to 2008 (J. D. Hamilton, 2009). It has been a failure of production to 

increase between 2005 and 2007, rather than a dramatic reduction in supply. Saudis 

followed a deliberate strategy of adjusting production to stabilize prices. Saudi 

production for 2007 was about 850,000 barrels a day lower than it had been in 2005. 

The decline was one important factor contributing to the stagnation in world oil 

production from 2005 to 2007. 

 Although the global supply was stagnant, the global demand continued to 

increase back then—for instance, the oil consumption in China rose 7% compound 

annual rate since 1990. In 2007, Chinese consumption was 870,000 barrels per day 

higher than in 2005. Apart from that, speculation also played an important factor in the 

oil shock from 2007 to 2008, where investors purchased oil not as a commodity but as 
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a financial asset. Such financialization of commodities introduces a speculative bubble 

in the oil price. This scenario is different from what caused oil shock in the past decade, 

primarily referring to the disruption of oil production due to geopolitical events. 

It took a year to recover from 30 dollars per barrel in December 2008 to a price 

range between 80 dollars per barrel and 100 dollars per barrel. In the second half of 

2014, the crude oil price dropped to 40 dollars per barrel. It was even worse in 2015 

when it dropped to only 30 dollars per barrel. U.S. shale oil producers dominated the 

market, causing a shift in the global crude oil supply and demand balance (Lu et al., 

2021). Then, the price started to increase, and recently, it increased up to 60 dollars 

per barrel in January 2020. Traditionally, the oil industry has been less focused on 

procurement management with volatile prices due to relatively stable crude oil prices 

(Chen et al., 2015). However, since the new millennium, crude oil prices have been 

highly volatile, forcing management to incorporate price volatility into policy-making 

decisions. The industries and governments continuously question the behaviour of oil 

prices in the future due to the uncertainty in oil prices. 

 

Figure 1.4 WTI crude oil prices from 1985 to January 2020 

 

Source: EIA, WTI spot price 
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1.2.2 Uncertainty in Demand for Finished Products 

The demand for crude oil is derived from the need for petroleum products 

(Brouwer, 2011). For example, if consumers demand more gasoline, refiners will 

purchase more crude oils to produce more gasoline. According to the International 

Energy Agency (IEA), the global economic slowdown since 2010 has significantly 

reduced the growth rate of global crude oil demand; its growth rate declined from 3.2% 

in 2010 to 0.9% in 2012. In Europe, the European debt crisis in 2009 has significantly 

impacted the economic growth and reduced demand for crude oils and refined 

products. Meanwhile, in the U.S., economic recession and lower demand for motor 

fuel have reduced oil consumption. As the world’s second-largest consumer of crude 

oil, China’s slower economic growth in 2012 has also significantly impacted the 

demand for crude oils and refined products. All these scenarios represent the 

uncertainty in demand, which has affected the planning and decision making of 

refineries in procurement, production, and inventory management. 

1.2.3 Optimisation Problem 

The decision-making process is typically treated as an optimisation problem. 

It is always required in many fields, primarily in computer science, economics, 

engineering design, operation research, environmental control, agriculture, and 

biological sciences (Sahinidis, 2004). A generic optimisation problem is represented 

as follows:   
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where some continuous variables, x , represent the decisions being made, such as 

sizing decision of reactor; 0 1−  variables y  represent the discrete choices, such as to 
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select a given reactor or not; an objective function f  serves to minimise or maximise, 

such as to minimise total costs and constraints g  and h  that the variables have to 

satisfy, such as the mass balance; variable x  is a continuous variable with a dimension 

xn  that can take a real value; variable y  is a binary variable with a dimension yn  that 

can only take value 0  or 1 ,  which is usually used to represent logic relations or 

choices; vector   represents the parameters involved in the optimisation problem, 

such as price, product demand, and processing cost. 

Optimisation problems are divided into deterministic optimisation problem and 

stochastic optimisation problem. Depending on the forms of , , , ,f g h x y , the 

deterministic optimisation problem can be classified into several categories (Li and 

Grossmann, 2021): 

1) Problem Equation (1.1) is a mixed-integer non-linear programming (MINLP) if 

some of , ,f g h  are non-linear functions. 

2) Problem Equation (1.1) is a mixed-integer linear programming (MILP) if , ,f g h  

are all linear functions. 

3) Problem Equation (1.1) is a non-linear programming (NLP) if some of , ,f g h  are 

non-linear functions and there is no y  variable, such as 0yn = . 

4) Problem Equation (1.1) is a linear programming (LP) if , ,f g h  are linear 

functions and there is no y  variable, such as 0yn = . 

The selection of LP, NLP, MILP, and MINLP depends on the nature of the 

problem. For examples, non-linear equations describe the kinetic behaviour in 

chemical engineering problems; integer variables describe the process synthesis 

problem; binary variable describes the need for capacity expansion in oil supply chain 

investment planning problem. However, the parameters   in the deterministic 

optimisation problem are assumed to be known, which does not reflect the actual 

situations. In the industrial design and operation of the chemical processes, the 

decision-making process often involves parameters with uncertainty, such as chemical 

costs, product demand, and the availability of raw materials. The failure to account for 
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uncertainty in the decision-making process may result in inferior or infeasible 

solutions. Hence, it is necessary to include uncertainty in the optimisation problem. 

1.3 Refinery Planning under Uncertainties 

Planning can be described as a developed strategy to allocate equipment, 

utility, or labour resources to carry out a specific task to develop a single product or 

multiple products (Leiras et al., 2011). In general, the planning level is characterised 

into strategic planning (long-term), tactical planning (medium-term), and operational 

planning (short-term). Strategic or long-term planning covers the longest time horizon, 

ranging from one year to several years, and the decisions cover the whole organisation, 

focusing on major investments, such as facility location problems and platform 

investment planning. Meanwhile, tactical or medium-term planning covers the mid-

term horizon, ranging from a few months to a year, and the decisions cover production, 

inventory, and distribution. Operational or short-term planning covers a short time 

horizon, ranging from one week to three months, and the decisions cover actual 

operation and resource allocation. Refinery planning activities determine the types of 

crude oils for the production of specific products to be sold in the market.  

Stochastic dynamic programming, stochastic programming, robust 

programming, and fuzzy programming are the main techniques for dealing with 

uncertainty in the refinery planning optimisation problem (Leiras et al., 2011). 

Stochastic dynamic programming requires too large a state space that leads to the 

computational burden, even with modern computing capabilities (Begen, 2011). 

Meanwhile, in fuzzy programming, the problems are not well defined either in terms 

of the objective function or constraints due to the way uncertainty is modelled as fuzzy 

numbers, and constraints are as fuzzy sets (Sahinidis, 2004). The accuracy of this 

approach is jeopardised since they rely on incorrect data and inputs. Robust 

programming assumes limited information about the distributions of the underlying 

uncertainties (Leiras, Hamacher and Elkamel, 2010). The stochastic programming 

approach deals with optimisation problems using parameters with a discrete or 

continuous probability distribution , separated into recourse models and probabilistic 
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models (Leiras et al., 2011). The risk notation in the robust stochastic programming 

with recourse’s objective function adds another variable to resolve and the risk not 

being reduced by the lower error of the stochastic parameter. Corrective action for 

recourse models is avoided due to second stage constraints that can be violated by 

incorporating a risk measure in probabilistic stochastic programming. Thus, in this 

study, we choose two-stage stochastic programming with recourse because the first 

stage decision variables have to be made before the realization of uncertainty which is 

the optimal operation mode of units and stream flows and the second-stage decision 

variable can be adjusted after the realization of uncertainty which is the amount of 

shortfall and surplus petroleum finished products. Stochastic programming is the 

prominent approach in the refinery planning optimisation under uncertainty (Leiras et 

al., 2011)(Lima, Relvas and Barbosa-Póvoa, 2018)(Li and Grossmann, 2021), and the 

crucial assumption is that a scenario tree is given to characterize the probability 

distribution of the underlying stochastic process. However, there is no better forecast 

method to generate a scenario tree that has a low error which the existing stochastic 

programming approaches do not include uncertainty quantification of stochastic 

parameters with an accurate forecast model. Thus, the problem in the oil refinery 

business is that the oil refinery business profit decreases from 2011 to 2019 due to 

there being no uncertainty quantification of stochastic parameters in developing a 

stochastic programming model. There is also no probabilistic scenario tree with a low 

error as an input parameter to the stochastic programming model, as shown in Figure 

1.5. 
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Figure 1.5 Oil refinery business problem infographic 

 Oil refineries face larger risks than what they encountered 20 years ago due to 

the fluctuation of crude oil prices. The instability of oil prices has attracted researchers 

to determine the best model to describe the fluctuations of oil prices. Time series 

models, econometric models, qualitative methods and artificial intelligence techniques 

are the four main forecast method categories used in modelling and forecasting oil 

prices (Lu et al., 2021). The time series models are the simplest model (Suganthi and 

Samuel, 2012) and essentially continuous probability distributions of random 

variables. In earlier studies, Brennan and Schwartz (1985) and Paddock, Siegel, and 

Smith (1988) modelled the commodity price as geometric Brownian motion (GBM) 

in the application of option’s evaluation. GBM is one of the continuous stochastic 

processes, and the choice of the stochastic process significantly affects the decision to 

invest in the oil and gas industry (Postali & Picchetti, 2006). Kaffel and Abid (2009), 

Mostafei, Sani, and Askari (2013), and Nwafor and Oyedele (2017) suggested that 

GBM works effectively as a proxy for the modelling of crude oil price. With an 

unexpected price change, the tractability, operational simplicity, and ability to assess 

all predictions at the same ratio are the advantages of this approach. On the other hand, 

(E. S. Schwartz, 1997) argued that the mean-reverting process (or also known as OU 

process) can accurately model the oil price. A mean-reverting process reflects the 
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tendency to reach long-term mean over time. Besides, Lima, Relvas, and Barbosa-

Póvoa (2018) proposed ARIMA model to represent the oil price series. ARIMA 

models require stationary process that may take more than one time lags to transform 

the data into stationary process. This will complicate the tractability of the continuous 

probability distribution of the time series. 

In modelling energy prices, Barros, Caporale, and Gil-Alana (2012) showed 

the importance to consider structural breaks, as the results suggested long memory 

properties if the breaks are not allowed. For the testing of long memory in the crude 

oil price, Aloui and Mabrouk (2010) and Cunado, Gil-Alana, and Gracia (2010) found 

no evidence of long memory in the crude oil price return, but they found strong 

evidence on the long memory in the volatility. Mostafei, Sani, and Askari (2013) run 

the Perron 1997 unit root test with structural break and concluded that Iranian light 

and heavy crude oils have one break date. Jibrin et al. (2015) identified long memory 

characteristics and discovered three structural breaks in both time series. It is important 

to check the subseries of the time series because Yusof, Kane, and Yusop (2013) had 

shown that although the time series exhibited long memory property, the display of 

long memory property in the subseries (after detecting structural breaks).  

Meanwhile, (Chen et al., 2017) detected a long memory process on the 

financial time series of the FTSE Bursa Malaysia KLCI index prices. However, the 

question is whether it is a true long memory or short memory with structural breaks? 

The confusion on the behaviour of long memory and structural change requires an 

understanding of the long memory property, but little attention has been given to this 

aspect in the analysis of stochastic parameters in optimisation problem. Disregard and 

misspecification of structural breaks potentially lead to poor forecasting performance 

and policy making. To date, there has been no study on the modelling of oil price 

uncertainty considering the long memory process in the refinery operation. Thus, the 

current study examined whether oil prices exhibit the property of long memory (with 

the existence of structural breaks) in order to choose the appropriate stochastic process 

for the modelling of oil price uncertainty.  
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There are many methods to detect the existence of long memory and estimate 

the fractional differencing parameter, d , which can be summarised into three 

methods: heuristic, maximum likelihood, and semi-parametric methods (Boutahar, 

Marimoutou and Nouira, 2007). Heuristic method, such as rescale range (R/S), is 

useful to determine the first estimate of d . However, this method is generally 

inaccurate and sensitive to short range serial correlation. Meanwhile, the Whittle 

approximate maximum likelihood method gives a more accurate estimate of d , but 

generally requires knowledge of the true model that is often unknown (Wang et al., 

2007). Semi-parametric method like the GPH method proposed by Geweke and Porter-

Hudak (1983) is based on the behaviour of the spectral density when frequencies 

approach zero without specifying a finite parameter model for the d th−  difference of 

the time series. Thus, the current study used the GPH method to estimate the fractional 

differencing parameter, as this model only requires information on the behaviour of 

spectral density near to origin, not necessary for the specific model. 

Demand uncertainty disrupts the procurement of raw materials, production 

flow, and inventory stages, which have attracted the management to identify the best 

model to describe demand uncertainty for oil refinery planning. Time series, 

regression, econometric, ARIMA, as well as soft computing techniques are the 

modelling and forecasting models of oil demand (Suganthi and Samuel, 2012). 

Carneiro, Ribas, and Hamacher (2010) modelled the product demand according to 

different economic growths whereas Ejikeme-Ugwu, Liu, and Wang (2011) sampled 

product demand according to a normal distribution. Fabrício Oliveira and Hamacher 

(2012) followed the first-order autoregressive model, and Fernandes, Relvas, and 

Barbosa-Póvoa (2015) considered to model the product demand with market demand 

evolution.  

As for the time series model, Lima, Relvas, and Barbosa-Póvoa (2018) handled 

demand uncertainty through time series analysis according to the Box-Jenkins 

methodology in order to fit the seasonal autoregressive integrated moving average 

(SARIMA) model to the oil demand data. SARIMA models require stationary process 

that may take more than one-time lags to transform the data into stationary process 

which will complicate the tractability of the continuous probability distribution of the 
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time series. The Holt-winter method is another suit of technique that uses historical 

data to model demand data that have trend and seasonal components. This method is 

a time series analysis that is appropriate to predict product demands (Dewi and 

Listiowarni, 2020). This method represents demand uncertainty in stochastic 

programming to optimise oil refinery profit. 

Solving stochastic programming with continuous distribution directly is 

generally computationally intractable due to the integration over the continuous 

distribution (Li and Grossmann, 2021). In stochastic programming, randomness is 

taken into account in the scenario tree, which requires the probability distribution 

function (PDF) of the stochastic parameter to approximate the discrete distribution of 

a limited number of outcomes. If the number of scenarios is too large, the model scale 

and calculation time will be increased. This modelling of the stochastic parameter 

using a scenario tree as its approximation is known as scenario generation. The 

binomial tree is a discrete approximation to the underlying stochastic process that can 

be used to obtain a solution that is computationally efficient for stochastic 

programming. Using a two-stage stochastic programming method explicitly combines 

all scenarios and optimises expectations in an objective function.  

 

1.4 Problem Statement 

Every day, oil refinery production planning needs to make crucial decisions to 

improve or sustain the company’s production profitability, such as determining the 

right amount of crude oil to purchase and products to produce and optimise the 

production with the best use of the existing resources. It is difficult to reach a 

consensus on where profitability is headed in the next few years with the current oil 

prices and products demands uncertainty. Discovering the behaviour of oil prices and 

petroleum products demands is not a simple task in optimising oil refinery production 

planning. Managements are wondering what is the oil price tomorrow, how much it 

will differ from today’s price and how much demand of petroleum products in the 

future. The fluctuation of oil prices makes it difficult to forecast the raw material 

procurement prices. Meanwhile, demand uncertainty causes difficulty to determine the 
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correct quantity of raw material to order and the number of finished products to 

produce. An inaccurate forecast leads to inefficient decision making in optimising the 

company’s profit margin. One of our primary concerns in this study is to formulate 

stochastic input parameters into an optimisation problem by identifying the 

characteristics of data series before forecasting future oil prices uncertainty and 

seasonal variation in forecasting future product demands uncertainty. 

Generating scenario tree that has a low error requires better forecast method. 

One of the perplexing issues with regards on how an accurate forecast model of the 

stochastic parameters generate a scenario tree that has a low error. Naturally, time 

series models are continuous probability distributions of random variables. It is 

complicated and computational intractable to solve two-stage stochastic programming 

directly with continuous distribution due to its integration over the continuous 

distribution. It is important to discretise continuous probability distribution with a 

limited number of outcomes. Therefore, the construction of a probabilistic binomial 

scenario tree based on the forecast model as an accurate input parameter to stochastic 

programming becomes second task in our study.  

Numerous prior studies on downstream oil supply chain management under 

uncertainties adopted stochastic programming as the mathematical model to determine 

the optimal solution to maximise the profit or minimise the cost (Tong, You and Rong, 

2014)(Lima, Relvas, & Barbosa-Póvoa, 2018)(Wang et al., 2019)(Zhang et al., 

2019)(Zang et al., 2020). Recently, the improvement of mathematical programming 

software results in  increasing interest to use stochastic programming for process 

system engineering (PSE) applications including oil refinery (Li and Grossmann, 

2021). However, those studies mainly focused on designing the algorithm for the 

stochastic programming and paid less attention on generating scenario tree that has 

low error although it is an essential component to develop stochastic programming that 

is robust in facing uncertainties. The question is how to quantify stochastic parameters 

in developing two-stage stochastic programming for optimising oil refinery profit? 

What are the effects of uncertainty quantification of stochastic parameters in two-stage 

stochastic programming with recourse? Therefore, to manage uncertainties in 

optimisation model, frameworks are developed in this research to formulate 
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uncertainty quantification in stochastic programming model. This study tends to 

propose the formulation of stochastic input parameters into the two-stage stochastic 

programming to optimise oil refinery profit. Applying mathematical programming 

models to solve issues of the oil refinery optimisation model with uncertainties is 

relatively new, where the development of stochastic modelling and technique is still 

required.  

1.5 Research Questions 

The research questions of this study are as follows: 

(a) How to mathematically formulate oil refinery profit optimisation problem with 

uncertainty?   

i) Does the data series exhibit the property of true long memory or short 

memory with structural breaks? What is the accurate forecast technique to 

represent future oil prices that possesses with long memory property for 

objective function coefficients? 

ii) How to forecast stochastic product demand with seasonal variation for 

optimisation constraints? 

(b) How to establish a binomial scenario tree for discretisation of the continuous 

probability distribution? 

i) How to incorporate the stochasticity into the input parameters? 

(c) How to develop a two-stage stochastic programming in optimising oil refinery 

profit? 

i) What are the effects of uncertainty quantification of stochastic parameters 

in two-stage stochastic programming with recourse? 
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1.6 Research Objectives 

The objectives of this study are as follows: 

(a) To formulate stochastic input parameter for oil refinery profit optimisation 

problem with uncertainty quantification 

i) To forecast prices uncertainty with consideration of long memory process 

for objective function coefficients 

ii) To forecast stochastic product demand with seasonal variation for 

optimisation constraints 

(b) To establish a binomial scenario tree by incorporating stochasticity of input 

parameters for the two-stage stochastic programming 

(c) To develop a two-stage stochastic programming for optimising oil refinery 

midterm production planning profit 

1.7 Scope of Study 

The scope of this study is as follows: 

(a) This study established a general framework to analyse the stochastic 

parameters, the prices of crude oils and finished products (Table 1.1), and the 

demand for petroleum finished products (Table 1.2) at oil refinery production 

as input to the optimisation model. 

Table 1.1 Prices of crude oils and finished products  

No. Price Data Date  

1 WTI crude oil 1986-2020 

2 Gasoline 1993-2020 

3 Naphtha 2007-2020 

4 Jet fuel 1990-2020 
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5 Heating oil 1990-2020 

6 Fuel oil 1983-2020 

 

Table 1.2 Demand for petroleum finished products  

No. Demand Data Date 

1 Gasoline 2000-2020 

2 Naphtha 2000-2020 

3 Jet fuel 2000-2020 

4 Heating oil 2000-2020 

5 Fuel oil 2000-2020 

 

(b) This study presented the structural break test for the stochastic parameters. 

Following that, the long memory parameters before and after the break periods 

were estimated using the semi-parametric method. 

(c) The drift and diffusion coefficient parameters for data after the break period 

were estimated through maximum likelihood estimation. The stochastic 

parameters were modelled and forecasted based on the stochastic differential 

equations (SDEs). 

(d) The demand uncertainties were modelled based on the trend and seasonal 

components in the data series. 

(e) The binomial model for each stochastic parameter was constructed and 

combined to develop a scenario tree that represents all possible scenarios as 

input parameters for the stochastic programming. 

(f) This study considered the deterministic oil refinery production planning 

proposed by Allen (1971) and Khor et al. (2008) as the base case of a numerical 

example. Following that, the base case model was reformulated to include 

uncertainties, and two-stage stochastic programming with fixed recourse was 

used to maximise the oil refinery profit margin. 
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1.8 Significance of Study 

The contribution of this study is highlighted through methodology, formulation 

and theoretical perspectives. From a methodology perspective, uncertainty 

quantification of stochastic input parameters for oil refinery profit optimisation had 

been done. Involving uncertainty quantification of stochastic programming 

parameters, the study determined an accurate forecast model to represent the future 

value of oil prices and petroleum product demands in the optimisation model. 

Therefore, this study established a probabilistic scenario tree that has low error for oil 

prices and product demands uncertainty. Developing two-stage stochastic 

programming for optimising oil refinery profit with accurate forecast leads to reduced 

stochastic programming risk by the lower error of scenario tree, resulting in efficient 

decision-making and improved petroleum refinery profits. 

A framework to formulate uncertainty quantification in stochastic 

programming had been established. The stochastic model framework in this study is 

divided into three modules: module 1 refers to time series analysis, module 2 refers to 

the discretisation of the continuous probability distribution, and module 3 refers to the 

stochastic optimisation model. Following the three modules, the obtained results of the 

time series analysis were translated into a scenario tree for the study to implement in 

stochastic programming. This study determined the advanced knowledge in improving 

forecast accuracy of stochastic parameters to represent the uncertainties in the 

optimisation model based on the characteristics of the data series.   

The advancement of knowledge in the fields of applied stochastic modelling 

and optimisation methods had been made. The proposed model in this study integrated 

the uncertainty quantification into the stochastic programming that contributed to the 

growing body of knowledge on the interface of stochastic and operation research 

management. Thus, the current study provides the practical tool to optimise refinery 

margin and inculcate a data-driven decision-making environment. 
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1.9 Thesis Organisation 

Overall, the thesis is structured as follows: Chapter 1 introduces the 

background of the study, problem statement, objectives of the study, as well as the 

scope and significance of the study; Chapter 2 reviews literature on stochastic 

optimisation for oil refinery; Chapter 3 presents the methodology; Chapter 4 focuses 

on the result of the analysis of stochastic parameters, scenario tree construction and 

optimisation model; Chapter 5 presents the conclusion and recommendations for 

future research. 

Chapter 2 reviews literature on oil refinery production planning under 

uncertainties, especially in the two-stage stochastic programming model. In order to 

incorporate uncertainties into the oil refinery problem, the methodology for dealing 

with uncertainties is the key component of developing a two-stage stochastic 

programming model that is robust against uncertainties. Thus, the literature review on 

modelling and forecasting uncertainties are discussed in this chapter. After selecting 

the appropriate model to describe the behaviour of uncertainties, the study proceeded 

to construct all possible scenarios in the future. Thus, the literature review on scenario 

construction for uncertainties is also presented in this chapter. 

Chapter 3 presents the fundamental methodology to deal with uncertainties, 

discretises the probability distribution to produce scenarios assigned with 

probabilities, and constructs a scenario tree as input for the optimisation problem. 

When it comes to price uncertainty, the observation of a true long memory process in 

this study was defined in terms of detecting long memory and structural break. This 

chapter also describes the construction of Brownian motion, the geometric Brownian 

motion (GBM), and mean-reverting process or also known as Ornstein-Uhlenbeck 

(OU) process. In this study, uncertainties were modelled and forecasted, corresponding 

to each of Hurst parameter. The Holt-Winters seasonal method was adopted in this 

study to describe the uncertainties of product demand considering the trend and 

seasonal components. Then, this chapter explains the scenario generation for the 

stochastic parameters. The scenario-based approach was used to represent 

uncertainties in this study. Moment matching method in the scenario generation model 
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was used to discretise continuous distribution, with a limited number of outcomes for 

price uncertainty. Meanwhile, the prediction interval in this study represented the 

future realisation of demand uncertainty. A scenario construction for price and demand 

uncertainties is thoroughly discussed in this chapter. Lastly, Chapter 3 demonstrates 

problem formulation for the uncertainties in the application of oil refinery production 

planning. The chapter begins with the structure of the deterministic petroleum refinery 

planning model based on the production planning proposed by Allen (1971). The study 

reformulated the deterministic model with the addition of stochastic parameters to 

address uncertainties in the commodity price and demand for finished products based 

on Khor et al. (2008). The details of the framework to maximise oil refinery profit 

margin with consideration of uncertainties are thoroughly discussed in this chapter.   

Meanwhile, Chapter 4 discusses the major findings of the current study with 

respect to the objectives of study and corresponding research questions. This chapter 

explains the mathematical model of two-stage stochastic programming with recourse 

in applying the refinery production planning problem. In this study, the test of the 

proposed stochastic model was performed using the Generic Algebraic Modelling 

System (GAMS) to calculate the profit and determine the optimality. The comparison 

with the shortcut discretisation method, involving an expert judgment, is discussed in 

this chapter. 

The final chapter, Chapter 5 concludes the overall findings according to the 

outline of the objectives of the study. This chapter also includes recommendations for 

future research, specifically on further development of the proposed model.  
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