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ABSTRACT 

General Circulation Models (GCMs) are important in projecting future climate change. 
Due to its coarse spatial resolution, downscaling methods are used to obtain local 
climate information from GCM. This study presents an application of statistical 
downscaling to assess rainfall changes in Peninsular Malaysia during the months of 
November to February. Statistical downscaling models are developed using the 
reanalysis output from the National Center for Environmental Prediction/ National 
Center for Atmospheric Research (NCEP/NCAR) to test the ability in simulating the 
daily time series of local rainfall. In the pre-processing step, Principal Component 
Analysis (PCA) and Self-Organizing Map (SOM) are used to reduce the dimensionality 
of the dataset. Eight variables are considered from the NCEP/NCAR reanalysis output 
including sea level pressure (SLP), geopotential height at 500hPa and 850hPa (P500 and 
P850), relative humidity at 500hPa and 850hPa (R500 and R850), near surface relative 
humidity (RHUM), near surface specific humidity (SHUM) and mean temperature 
(TEMP). Potential predictors are selected based on the correlations of NCEP reanalysis 
with observed rainfall. The predictors are ranked based on the strength of correlations 
and the model is built with high correlated predictors until the model is optimized. The 
humidity appears to be the most suitable predictors with the highest correlations to the 
observed rainfall. Eight models are developed: four with single variable (SLP) and four 
with combined variables (SHUM + SLP), to form Principal Component Analysis and 
Regression model (PCA-REG), Principal Component Analysis and Canonical 
Correlation Analysis Model (PCA-CCA), Self-Organizing Map and Regression model 
(SOM-REG) and Self-Organizing Map and Canonical correlation Analysis model 
(SOM-CCA). Results show that the best downscaling model is SOM-REG with 
combined predictors (SHUM + SLP). The calibration and validation of the best 
downscaling model determined in this study has shown that the (SOM-REG) model is 
able to adequately capture the trend of the observed rain series. This model is also 
capable to project future climate with GCM outputs. The overall results have shown that 
the future climate is predicted to be having an increasing trend. 



vi 
 

ABSTRAK 

General Circulation Models (GCMs) adalah penting dalam meramal perubahan iklim 
masa hadapan. Oleh kerana resolusi reruangnya yang kasar, kaedah penurunan skala 
telah digunakan untuk mendapatkan maklumat iklim tempatan daripada GCM. Kajian 
ini membentangkan aplikasi penurunan skala statistik untuk menilai perubahan hujan di 
Semenanjung Malaysia daripada bulan November hingga Februari. Model penurunan 
skala statistik telah dibangunkan dengan menggunakan keluaran analisis semula 
daripada National Centers for Prediction/ National Center for Atmospheric Research 
(NCEP / NCAR) untuk menguji keupayaan mensimulasi siri hujan harian tempatan. 
Dalam langkah pra-proses, Analisis Komponen Utama (PCA) dan Peta Penyusun 
Sendiri (SOM) digunakan untuk mengurangkan dimensi data. Lapan pembolehubah 
telah dipertimbangkan daripada keluaran analisis semula NCEP / NCAR termasuk 
tekanan paras laut (SLP), ketinggian geopoten pada 500hPa dan 850hPa (P500 dan 
P850), kelembapan relatif pada 500hPa dan 850hPa (R500 dan R850), berhampiran 
kelembapan relatif permukaan (RHUM), berhampiran kelembapan khusus permukaan 
(SHUM) dan suhu purata (TEMP). Peramal yang berpotensi telah dipilih berdasarkan 
korelasi analisis semula NCEP dengan amaun hujan yang dicerap. Peramal telah 
diperingkat berdasarkan kekuatan korelasi antara model yang dibina dengan peramal 
berkorelasi tinggi sehingga model dioptimumkan. Kelembapan merupakan peramal yang 
paling sesuai dengan korelasi tertinggi kepada amaun hujan yang dicerap. Lapan model 
telah dibangunkan:  empat dengan pembolehubah tunggal (SLP) dan empat dengan 
pembolehubah gabungan (SHUM + SLP) untuk membentuk model Analisis Komponen 
Utama dan Regresi (PCA-REG), model Analisis Komponen Utama dan Analisis 
Korelasi Kanonik (PCA-CCA), model Peta Penyusun Sendiri dan Regresi (SOM-REG) 
dan model Peta Penyusun Sendiri dan Analisis Korelasi Kanonik (SOM-CCA). Hasil 
kajian menunjukkan bahawa model penurunan skala terbaik ialah SOM-REG dengan 
pembolehubah gabungan (SHUM + SLP). Penentukuran dan pengesahan model 
penurunan skala terbaik yang ditentukan dalam kajian ini telah menunjukkan bahawa 
model SOM-REG ini dapat mengekalkan trend aliran siri hujan yang mencukupi. Model 
ini juga mampu meramal iklim masa hadapan dengan keluaran GCM. Hasil keseluruhan 
telah menunjukkan bahawa iklim masa hadapan diramalkan mempunyai trend yang 
semakin meningkat. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

Over the last century the facts that the Earth has warmed is generally 

acknowledged. Climate for a specified geographical region is generally defined as 

the average state of the atmosphere for a given time scale (hour, day, month, season, 

year, decade and so forth). In other word, climate is the average weather for a 

specific time and area. The average-state statistics for a given time scale including all 

deviations from the mean are obtained from the ensemble of conditions recorded for 

many occurrences for the specified period of time (Couissi, 2017).  

 

According to the summary of climate change 2014 synthesis report, the 

observed climate changes were the warming of atmospheric and ocean, diminishing 

of the snow and ice amount and risen of the sea level. The report showed three 

observations of a changing global climate system - the globally averaged combine 

land and ocean surface temperature anomaly, the globally averaged sea level change 

and the globally averaged greenhouse gas concentrations showed an increasing trend 

form 1950 to 2010 (IPCC, 2014). 

 

Malaysia has experienced a dramatic change in climate for the last few years 

(Tang, 2018; Haliza, 2018). Direct observations of climate change were the 

increasing occurrence of the drought and flood in Malaysia. Drought and flood are 

the extremes associated with rainfall variability. With high variability in extreme 

rainfall, flood occurred (Guhathakurta et al., 2011). In contrast, drought occurred 

 



2 
 

 

when the extreme rainfall variability is low. And hence, rainfall is an important tool 

to study the climate change impacts.  

 

In climate change impacts study, General Circulation models (GCMs) are 

wisely projected climate change for future. Climate change is able to assess from 

GCMs as they provide considerable potential in the study of climate variability and 

climate change (Fowler et al., 2007). Therefore, they can be used to simulate current 

and future time series of climate variables. These models are numerically coupled 

climate models for various earth systems representative such as atmosphere, oceans, 

land surface and sea-ice.  

 

Typically, GCMs run on a large 150-300 km by 150-300 km resolution and 

are not able to significantly describe the sub grid scale features. Unfortunately, they 

cannot be used in the local impact studies as many impacts models require 

information at scales of 50 km or less. This implies that GCMs do not give local 

climate a realistic description (Benestard et al., 2008). Therefore, downscaling 

method is developed to overcome these limitations (Schubert, 1998).  

 

Downscaling is used to obtain high-resolution scenarios of climate change as 

a procedure where large scales information is used to make predictions at local scales. 

In other words, downscaling is a method used to reduce the large scale information 

into small scale information that is to downscale the output of GCM predictors to the 

local predictands. With the downscaling method, predictions of rainfall trend for 

current and future can be done by submitting the output of GCM into the model built 

by the NCEP variables with rainfall.  

1.2 Statement of problem 

There is a systematic procedure for selecting and constructing a downscaling 

model from GCM outputs to generate a set of climate change scenarios for assessing 

regional climate impact. Downscaling method consist of dynamical downscaling and 



3 
 

 

statistical downscaling. Dynamical downscaling is able to describe mesoscale 

atmospheric circulation accurately than its original driving GCM. However, it is 

expensive to construct long-term or multiple regional scenarios. Therefore, statistical 

downscaling is an alternative way to study current and future regional climate change. 

To have a better understanding of statistical downscaling model, the factors that 

affect the performance of downscaling is introduced.  

 

First of all, GCMs are rarely able to reproduce the observed climate very well 

at regional scales. GCMs act as an important tool to assess climate change for 

studying our climate.  However, they tend to have a coarse spatial resolution and not 

able to resolve features of the sub grid scale significantly. A distinct problem for the 

impact assessment of climate change is bridging the gap between the resolution of 

climate models and regional and local scale processes. And hence the development 

of techniques to bridge the gap has been focused by the climate community and the 

most popular known technique is known as downscaling. Downscaling is possible to 

model the resolution of climate and establish relationships between local climate and 

atmospheric conditions. 

 

The second issue focus on predictor selection since it will affect the 

performance of downscaling. Normally, the selection of the optimum combination of 

predictors in downscaling is solely based on the historical observed data (rainfall) or 

reanalysis data such as NCEP reanalysis. When applying to GCMs, the hypothesis 

that the essence of the large-scale changes is captured by the chosen predictors. 

However, the hypothesis is usually beyond the scope of downscaling studies. 

Therefore, predictor selection is important to optimized downscaling model.  

 

Lastly, there is a lack of consistency in evaluating the performance of 

downscaling method. There have been several downscaling techniques proposed 

with advantages and shortcomings. However, the performance of downscaling model 

is not clear to provide which downscaling technique is reliable to simulate climate 

variables. Hence, evaluation of downscaling techniques must be performed. 
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1.3 Objectives 

The purpose of this study is to propose a statistical downscaling model using 

regression-based technique for Peninsular Malaysia. To achieve this, the specified 

objectives were outlined as follows: 

 

i) To determine the best predictors for downscaling models. 

 

ii) To compare and evaluate the performance of the downscaling models. 

 

iii)  To generate future climate scenarios.  

1.4 Scope of the study 

In this research, 40 stations in Peninsular Malaysia with 30 years of historical 

rainfall data of a period of 1975 to 2004 were analyzed. 40 stations are chosen based 

on the length of the records and completeness of the data. The data is obtained from 

the Malaysian Meteorological Department (MetMalaysia) and Malaysian Drainage 

and Irrigation Department (DID). A complete data set is used in this study. The daily 

rainfall data from November-December-January-February were only considered in 

this study. This is due to the period of Northeast monsoon occurrence in Peninsular 

Malaysia. The rainfall is used as predictand in developing a model. 

 

Predictors were the atmospheric variables which derived from National 

Centre for Environmental Prediction (NCEP) reanalysis data set The NCEP 

predictors were all downloaded from National Oceanic & Atmospheric 

Administration (NOAA) Earth System Research Laboratory (ESRL) physical 

sciences division website (www.esrl.noaa.gov). Sea level pressure (SLP), 500mb 

geopotential height (P500), 850mb geopotential height (P850), 500mb relative 

humidity (R500), 850mb relative humidity (R850), near surface relative humidity 

(RHUM), near surface specific humidity (SHUM) and mean temperature (TEMP) 
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were extracted from the grid point output of the NCEP reanalysis which accounted 

for 20 grids from 0°N to 7.5°N and 100°E to 105°E. The different level of relative 

humidity (500mb, 850mb and near surface) indicated the pressure chart from sea 

level. 

 

This study investigated that the predictor selection for downscaling model 

improved the performance of downscaling models used for Peninsular Malaysia. 

With the performance of the models, best downscaling model is selected to 

downscale General Circulation Model (GCM). The GCM used is the model of Max 

Plank Institute for Meteorology, Germany, ECHAM5/MPI OM with the scenarios of 

climate of the 20th century experiments and SRES A2 experiments.  

 

The scenarios of climate of the 20th century experiments is used for 

simulating current climate and the scenarios of SRES A2 experiments is used for 

simulating the future climate. Both data are downloaded from World Climate 

Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 

(CMIP3) multi-model dataset of Earth System Grid – Centre for Enabling 

Technologies (https://esgcet.llnl.gov:8443/index.jsp). In downscaling analysis, the 

Matlab programming is used for current and future climate simulation.  

1.5 Significance of the study 

This study investigates the predictor selection for downscaling model to 

improve the performance of downscaling models used for Peninsular Malaysia. 

Although there are 26 predictors in NCEP, and only 8 are accounted for the studies, 

selecting predictor is still carried out to find the most relevant to use for downscaling 

model. Statistical downscaling models using different methods are carried out in this 

research. With the performance of the models, best downscaling models can be 

selected. Scenarios of current and future climate can be assessed using the 

downscaling model. By having a high quality of downscaling model, meteorologist 

can wisely make decisions in future infrastructure and water management systems in 

Peninsular Malaysia. 
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1.6 Organization of thesis 

This thesis comprises of six chapters that can be divided into two parts, which 

are statistical downscaling model building and scenarios development study. For 

chapter 2, a literature review of statistical downscaling model is listed. Chapter 3 

provides a description of the data sources and study area. It also presents the 

methodology of statistical downscaling model. Chapter 4 provides the result and 

discussion for the performance of the proposed models. And lastly, Chapter 5 is the 

conclusion of the models.  
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